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Abstract: Navigation problems are generally solved applying least-squares (LS) adjustments.
Techniques based on LS can be shown to perform optimally when the system noise is Gaussian
distributed and the parametric model is accurately known. Unfortunately, real world problems
usually contain unexpectedly large errors, so-called outliers, that violate the noise model assumption,
leading to a spoiled solution estimation. In this work, the framework of robust statistics is
explored to provide robust solutions to the global navigation satellite systems (GNSS) single
point positioning (SPP) problem. Considering that GNSS observables may be contaminated by
erroneous measurements, we survey the most popular approaches for robust regression (M-, S-,
and MM-estimators) and how they can be adapted into a general methodology for robust GNSS
positioning. We provide both theoretical insights and validation over experimental datasets, which
serves in discussing the robust methods in detail.

Keywords: robust statistics; global navigation satellite systems (GNSS); multipath; single point
positioning (SPP)

1. Introduction

Global navigation satellite systems (GNSS) play a fundamental role on prospective applications
of intelligent transportation systems (ITS), as the main source of positioning information [1]. Besides,
GNSS provides timing synchronization to critical applications such as the power grid or the stock
market [2]. However, GNSS performance can be easily degraded by natural phenomena and signal
reflection. Navigation in urban scenarios results particularly challenging due to the presence of severe
multipath effects, inducing large errors in the observed pseudorange measurements. Most positioning
techniques are based on maximum likelihood (ML) estimation, since it provides optimal solutions
under the assumption of Gaussian distributed observation noise. Although this assumption is generally
fulfilled for nominal GNSS open-sky conditions, positioning on signal-degraded scenarios constitutes
a challenge for ML estimators such as the least-squares (LS) [3].

Thus, the GNSS community has devoted great efforts towards the development of resilient
navigation solutions [4]. One of the most popular approaches is based on solution separation—also
known as consistency-checking—where a statistical test is applied to the estimated residuals to
verify whether the Gaussian assumption is fulfilled. Otherwise, combinations of subsets excluding
one observation are computed and the statistical test applied again. This procedure is repeated
until a fault-free subset is found. Advanced receiver autonomous integrity monitoring (ARAIM)
is possibly the most well-known representative of the solution separation approach, becoming the

Sensors 2019, 19, 5402; doi:10.3390/s19245402 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1586-3269
https://orcid.org/0000-0001-6953-755X
https://orcid.org/0000-0001-7858-4171
https://orcid.org/0000-0002-5960-6600
http://www.mdpi.com/1424-8220/19/24/5402?type=check_update&version=1
http://dx.doi.org/10.3390/s19245402
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5402 2 of 18

de facto navigation method for vertical guidance in the aviation domain [5,6]. Numerous other
works have adapted consistency-checking navigation algorithms for single point positioning (SPP)
in signal-degraded scenarios [7–10]. Unfortunately, with the deployment and growing availability of
GNSS constellations, solution separation methods present challenging scalability issues since their
computation complexity constitutes a combinatorial problem with the number of observations and
outliers, eventually becoming an intractable problem.

Robust statistics provides an alternative framework for the definition of navigation methods
resilient against multiple erroneous observations. Originally suggested for general data analysis
in the early 1970s [11–13], robust estimators have experienced substantial research growth and
their use has extended to manifold fields: signal processing [14–16], biomedical [17,18], power
systems [19], etc. Within the scope of GNSS, robust methods have been successfully applied to enhance
receivers with anti-jamming capabilities based on the so-called Robust Interference Mitigation [20–26].
The application of robust estimators to compute position, velocity, and time (PVT) solutions in
satellite-based navigation has also appealed numerous authors, both for memory-less SPP [27–30]
and for recursive estimation [31–33]. In that PVT context, the performance of robust techniques has
been demonstrated on both simulated and real data, and this paper attempts to characterize those
estimators in terms of quantities relevant to the robust statistics literature. This paper focuses on the
SPP problem, thus purposely does not consider precise point positioning (PPP) or real-time kinematic
(RTK) approaches, which typically involve more complex estimates and the application of different
methodologies [34–36] to the ones investigated here.

This work introduces the principles of robust statistics for regression problems and presents
three of the most popular robust methods: M-, S-, and MM-estimators. Besides, a comprehensive
guide on the implementation of such techniques for solving the GNSS SPP problem is detailed.
Moreover, the specific challenges on the application of robust estimators for GNSS positioning are
discussed. Simulation experiments were carried out to evaluate the positioning capabilities of the
M-, S-, and MM-estimators against classical LS. In those experiments, the pseudorange observations
were contaminated with a percentage of outliers, ranging from 10% to 40 %, of different magnitude.
In addition, the Gaussian efficiency and the capability of mitigating the effects of outliers is addressed
over different data sizes, to verify the importance of data redundancy for the performance of robust
estimators. Finally, the paper is concluded with a set of real data experiments, where standard
and robust SPP solutions are compared in a vehicular scenario, which contains intervals of harsh
propagation conditions that exemplify the benefits of robust SPP techniques. This paper extends [37]
with additional analysis of the robust methods, the definition of the loss-of-efficiency concept for
robust PVT estimation, and additional experimental discussions using real data in a vehicular scenario.

The rest of the paper is organized as follows. In Section 2, the basics of robust estimation are
introduced. Section 3 relates the specific implementation details of using robust techniques in the
context of GNSS single point positioning. The concept of loss-of-efficiency for PVT robust estimators
is introduced in Section 4. Section 5 presents the results and discusses the performance of robust
estimators in both synthetic and real experiments. Finally, Section 6 concludes the paper with an
outlook and discussion of future work directions.

2. Robust Statistics Principles

Classical regression methods assume perfect knowledge of the probability distribution that
the data obey. Particularly, parametric models are typically considered [38]. A traditional way to
represent “well-behaved” data is to assume that the underlying noise is normally distributed, that is,
η ∼ N

(
µ, σ2), with known mean and variance, µ and σ2. If this assumption holds, the LS estimate

is known to be optimal. However, several real-world measurements have confirmed the presence of
heavy-tailed (or approximately normal) noise [39–41], causing estimators derived from the Gaussian
probability model to be biased or even to break down [14]. Under these circumstances, the robust
estimators become relevant, given their capacity to provide close-to-optimal results in non-nominal
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conditions. The concept of approximate normality can be formalized by considering a proportion 1− ε

of the observations to be effectively following a Gaussian distribution, while a complementary portion
0 ≤ ε ≤ 1 of the data being contaminated by an unknown (potentially) non-Gaussian distribution,

η ∼ (1− ε) F + ε H (1)

where F = N
(
µ, σ2) is the nominal Gaussian distribution and H is an arbitrary contaminating

distribution. Observations following the assumed F distribution are commonly referred to as inliers,
while the corrupted observations are regarded as outliers. Notice that another approach for modeling
outliers involves the use of heavy-tailed distributions, whose tails tend to zero at a slower rate than
the Gaussian distribution. Cauchy, Laplace, Student-t, or α-stable distributions are examples of such
heavy-tailed densities. The remainder of this section introduces basic notions in robust statistics
and details some of the most well-known robust estimators for regression problems. For a detailed
theoretical analysis of robust statistics, the reader is referred to classical textbooks [13,42,43], or the
recent works [14,44] for its application to a variety of signal processing problems. The peculiarities of
applying these methods to GNSS SPP are discussed in Section 3, as well as their validation using both
synthetic and real data experiments in Section 5.

2.1. Dictionary of Robust Statistics Terms

In [45], Huber described the main notations of robustness in analogy to the stability of a bridge:
(i) the qualitative aspect: a small perturbation should induce small effects; (ii) the breakdown aspect:
how big could a perturbation be before the bridge would fall apart; and (iii) the infinitesimal aspect:
how is the structure altered under the effects of infinitesimal perturbations. This section covers the
basic concepts of robust statistics.

First, qualitative robustness is described adopting Hampel’s definition [11]. In plain words, if a
bounded change in the distribution of the observations is seen as a bounded change in the distribution
of the estimates, then the claim is that the estimator is robust. More precisely, let X = {x1, . . . , xn} be a
set of i.i.d. observations from a distribution F, and let Tn = Tn(X ) be a sequence of estimates. Then, Tn

is called robust at F = F0 if the sequence of maps of distributions (LF(Tn) stands for the distribution of
an estimator (or test statistic) Tn under F), LF(Tn) is equicontinuous at F0, that is, if we take a suitable
distance d∗, in the space of probability measures, and assume that for all δ2 > 0 there exists a δ1 > 0
such that,

d∗(F0, F) ≤ δ1 ⇒ d∗
(
LF0(Tn),LF(Tn)

)
≤ δ2 . (2)

Another important concept is that of breakdown point ε∗ of an estimator, defined as the smallest
percentage of contamination that can cause the estimator to take on arbitrarily large aberrant value [11].
Later, the concept of breakdown point on finite sets was introduced in [46]. Consider any sample X
of n observations and any estimator T , Tn. The corrupted sample X ′ is obtained via ε-replacement,
for which a random subset of size m of the original X samples is replaced by arbitrary values, with a
contamination fraction of ε = m/n. The maximum estimation bias due to ε-contaminated is defined as

MC (ε; T,X ) = sup|T(X ′)− T(X )| (3)

where the supremum is evaluated over all the set of ε-corrupted samples [46]. Thus, the breakdown
point ε∗ of an estimator T reads:

ε∗ (T,X ) = inf {ε : MC (T,X ) = ∞} (4)

For an in-depth discussion on the breakdown point of the most relevant robust estimators, the
reader might refer to [47]. The influence function IF, first introduced by Hampel [48] under the name
influence curve, has often been considered as the most useful heuristic tool of robust statistics [42,44].
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The IF measures the change of the estimator T at the distribution F when the sample contains a fraction
ε of outliers, as

IF (x, T(F), F) = lim
ε→0

T ((1− ε) F + ε δx)− T(F)
ε

(5)

where x is the position of the infinitesimal contamination and δx is the point-mass probability at x. IF’s
main use is to assess the relative influence of individual observations toward the value of an estimate.
If it is unbounded, an outlier might cause trouble.

Robust estimators provide resiliency to outliers, but they do it at the price of some performance
degradation under the nominal model, that is, when all observations are inliers. Such degradation is
quantified via the so-called loss-of-efficiency (LoE), defined as the performance ratio between a robust
estimator and the optimal method under the nominal noise model. LoE is also known as relative
or Gaussian efficiency, when the underlying assumed model is Gaussian, in which case the optimal
estimator is the (weighted) LS.

2.2. Robust Estimates for Regression Problems

Consider a linear regression problem yi = z>i x+ ηi, with i = 1, . . . , n, and x the vector of unknown
parameters, or in vector form, y = Zx + η with Z defined with the different z>i in its rows. The noise
vector η is assumed to be independent and identical along the set of observations. We can define a
vector r = y− Zx of observation residuals. The regression is generally solved applying a LS estimator
(minimization of the `2-norm of the residuals),

x̂LS = arg min
x
||y− Zx||2 ⇒ arg min

x

n

∑
i=1

(
ri(x)

σ

)2

, (6)

which is optimal when the Gaussian noise assumption for η holds. However, it lacks robustness since
a single (arbitrarily large) outlier could completely spoil the estimation. A first approach towards
protecting against outlying measurements is the least-absolute value (LAV) or `1, consisting on the
substitution of the squared residuals as

x̂`1 = arg min
x

n

∑
i=1

∣∣∣∣ ri(x)
σ

∣∣∣∣ . (7)

Nonetheless, the `1 method retains a sum of residuals and thus the influence of outliers is still
unbounded. This problem can be generalized by considering a general loss function ρ(x) (referred to
as the ρ-function), and then reformulating the regression as

x̂ = arg min
x

n

∑
i=1

ρ

(
ri(x)

σ

)
. (8)

For instance, considering a scalar variable x (which is related to the previous definitions as
x = ri(x)/σ), ρLS (x) = x2 and ρ`1 (x) = |x| correspond to the aforementioned LS and LAV estimation
approaches. The framework of robust statistics proposes loss functions ρ (·) such that the estimates
are nearly optimal when the noise follows the assumed distribution (e.g., normal) and nearly optimal
when the noise departs from it. The score function (referred to as the ψ-function) is defined as the
derivative of an estimator loss function ψ(x) = ∂ρ(x)

∂x . Several robust estimators of regression have been
proposed in the literature, the most popular being: (i) M-estimate; (ii) S-estimate; and (iii) MM-estimate.
In the sequel, the loss functions for robust statistics are introduced, as well as some relevant properties,
for which Figure 1 provides some pictorial support.
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Figure 1. Illustration of the loss (left), score (middle) and weighting (right) functions for different
classical and robust estimators. Here, the families of Huber and Tukey functions are depicted with
parameters a = 1.345 and c = 4.685, respectively.

2.2.1. Huber and Tukey Families of Loss Functions

The key idea behind robust estimation is to use loss functions which appropriately penalize
outliers in the measurements. Loss functions can be classified according to the shape of their score
function ψ as monotone or recesdending. Among the redescending category, estimators for which
ψ(xr) = 0, xr < ∞ are denoted as strongly redescending [44]. Several loss functions exist in the literature,
the most common being Huber and Tukey’s bisquare families of functions. The family of monotone
Huber functions is defined as (again using an arbitrary scalar variable x)

ρH
a (x) =

{
x2 if |x| ≤ a
2a|x| − a2 if |x| > a

, (9)

ψH
a (x) =

{
x if |x| ≤ a
a sign(x) if |x| > a

, (10)

WH
a (x) = min

{
1,

a
|x|

}
, (11)

then ρH
a (x) is quadratic around 0 and increases linearly with x. In the case of location estimation,

the limit cases, a → ∞ and a → 0, correspond to the mean and median estimates, respectively. The
Huber loss function constitutes a combination of the ρ`2 and ρ`1 functions, behaving as a LS for small
errors and as LAV for larger ones. The parameter a is chosen based on the target asymptotic relative
efficiency (ARE) at a distribution. Thus, a0.95 = 1.345 indicates that the M-estimator based on Huber’s
loss function poses an ARE of 0.95 at the standard normal distribution [44].

To achieve robustness, a desirable property of ρ-functions is boundedness, which implies
redescending ψ-functions that tend to 0 at infinity. A popular choice is the Tukey’s bisquare or
biweight family of functions,

ρB
c (x) =

 1−
(

1−
( x

c
)2
)3

if |x| ≤ c

1 if |x| > c
(12)

ψB
c (x) = x

(
1−

( x
c

)2
)2

I(|x| ≤ c), (13)

WB
c (x) =

(
1−

( x
c

)2
)2

I(|x| ≤ c), (14)

with c > 0 a constant parameter and I(|x| ≤ c) the indicator function, i.e. I(|x| ≤ c) = 1 if |x| ≤ c
and 0 if |x| > c. Tukey’s loss function is nonconvex and bounded, which makes it robust to large
outliers, whose influence is completely denied. Similar to Huber-based M-estimation, the value of the
parameter c controls the degree of robustness and it is chosen to achieve certain ARE [44]. For 95%
efficiency at the Gaussian distribution, Tukey parameter c0.95 = 4.685.
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2.2.2. M-Estimator

The M-estimate of regression is defined as

x̂M = arg min
x

n

∑
i=1

ρ

(
ri(x)

σ̂

)
, (15)

with σ̂ an auxiliary estimate of the scale of errors, or, equivalently, as the solution to

n

∑
i=1

ψ

(
ri(x)

σ̂

)
∂ (ri(x)/σ̂)

∂x
= 0 , (16)

which is commonly solved by an Iteratively Reweighted LS (IRLS) procedure, with an instrumental
weight function defined as

W(x) =

{
ψ(x)/x, if x 6= 0
ψ′(0), if x = 0

, (17)

to provide the convenient alternative formulation,

n

∑
i=1

W (ri/σ̂)
ri
σ̂

∂ (ri/σ̂)

∂x
= 0 . (18)

Solving such system requires finding the estimate as well as the weights for each of the
observations according to the corresponding weighting function. Notice that a normalization using
the dispersion of the residuals σ̂ is included in the formulation, because these estimates are not scale
equivariant. An estimate of the residuals dispersion must be used, for instance, the normalized median
absolute deviation (MAD), defined as

σ̂MAD(x) = cm Med(|x−Med(x)|) (19)

being Med(x) the median of x, and cm a normalizing constant (≈1.4815 to make MAD consistent with
the usual parameter σ at Gaussian distributions) [49]. Instead of using an auxiliary scale estimate for
the M-estimation, it is also possible to perform a joint regression of the vector of unknown parameters
and the scale [42].

Notice as well the relevance on the choice of monotone against redescending loss functions.
Monotone estimators constitute a convex optimization problem, for which the uniqueness of the
solution is guaranteed and the starting point only influences the convergence rate [44]. Contrarily,
redescending estimators suffer from the defect of requiring regularity conditions for their uniqueness
and continuity [47]. A more extentsive discussion on this matter can be found in Section 5.1 with the
pictorial support of a GNSS-related example.

2.2.3. S-Estimator

The S-estimate of regression is defined as the estimator that minimizes the robust scale M-estimate,

x̂S = arg min
x

sM(r(x)), (20)

with sM(r(x)) the M-estimate of scale, which satisfies

1
n

n

∑
i=1

ρ

(
ri(x)

sM(r(x))

)
= b, (21)
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and, thus,

x̂S = arg min
x

n

∑
i=1

ρ

(
ri(x)

ŝ

)
, ŝ = sM(r(x̂S)) . (22)

Again, this is solved by an IRLS approach. A typical choice for the ρ-function is the bisquare scale
with ρ(x) = min{1− (1− x2)3, 1} and b = 0.5. In this case, W(x) = min{3− 3x2 + x4, 1/x2}, where it
is clear that larger values of x have smaller weights. S-estimator is characterized by a high breakdown
point, while attaining a low efficiency at the normal distribution.

2.2.4. MM-Estimator

The MM-estimator is designed to achieve both high efficiency and high breakdown point
simultaneously. Consider two bounded loss functions, ρ0 and ρ1, which satisfy ρ1 < ρ0. Then,
the MM estimator is defined as

x̂MM = arg min
x

n

∑
i=1

ρ1

(
ri(x)

sM(r(x̂0))

)
, (23)

where x̂0 is a consistent estimator of x that has a high breakdown point, and sM(r(x̂0)) is the M-estimate
of scale of the residuals of x̂1, computed using ρ0 and b.

The MM-estimate is implemented in three steps:

(1) Compute an initial consistent S-estimate of x, namely x̂0, with a high breakdown point but
possibly low normal efficiency.

(2) Compute an M-estimate of the scale of the residuals sM(r(x̂0)) using the high breakdown point
estimate x̂0.

(3) Compute the regression M-estimate initialized at x̂0, considering the robust scale estimate
sM(r(x̂0)) and using a recursive IRLS approach.

3. Robust Statistics for GNSS Positioning

The GNSS-based positioning principle consists in solving a geometric problem from the measured
ranges to the visible satellites, whose positions are known. Assuming that n ≥ 4 satellites are tracked,
then the observation model to relate the code pseudoranges to the unknown receiver coordinates is
as follows:

Ri = ‖pi − p‖2 + δt− δti + Ii + Tri + ηi (24)

where the subscript i = {1, . . . , n} refers to the ith satellite, Ri is the observed pseudorange, pi and p
denote the satellite and receiver positions respectively, and δt and δti are the clock offsets of the receiver
and the satellite (in m). In addition, Ii and Tri denote the ionospheric and tropospheric corrections and
ηi gathers the remaining unmodeled errors (e.g., multipath effects, instrumental delays, phase biases,
etc.). Solving the system of equations in Equation (24) can be formulated as a regression problem:

y = h (x) + η (25)

where y is the n-dimensional observation vector of pseudoranges, h (·) is the observation model from

Equation (24) and x =
[
p>, δt

]> ∈ Rp is the unknown parameter vector. The dimension of the state
estimate p depends on the number of constellations used (three for positioning plus one per each
GNSS constellation used). In the context of GNSS, the LS adjustment is the most commonly used
method for the estimation of the regression problem of Equation (25). Since GNSS SPP involves a
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nonlinear observation model, the problem is typically linearized and solved applying an iterative
Gauss–Newton method as

∆̂xk
=
(

H>WH
)−1

H>W
(

y− h
(

x̂k−1
))

(26)

x̂k = x̂k−1 + ∆̂xk (27)

where H is the Jacobian matrix for the observation model, also known as geometry matrix.
That linearization is performed around some guess point x̂k−1 for the kth iteration of the method, and
∆̂x constitutes the update on the state estimate as in Equation (27). W is the weighting matrix for the
observations. Classical SPP solutions take W as the inverse of the observations covariance matrix
R. Stochastic modelling of pseudorange observations has been a recurrent topic within the GNSS
community. A simplification commonly used is to assume that the observations noise is uncorrelated,
zero-mean and normally distributed ηi ∼ N

(
0, σ2

i
)

[50]. Thus, the covariance matrix is given by

R = W−1 = diag
(

σ2
1 , . . . , σ2

n

)
(28)

where σ2
i is derived from combining the uncertainty of the different error sources (satellite ephemeris

and clock, ionosphere, troposphere, multipath and receiver noise), as in [51,52] or from error models
dependent on the satellite elevation and/or the signal carrier-to-noise density ratio [53–55].

Algorithm 1 describes the IRLS process for the robust estimation of the GNSS SPP. Notice that WLS
(weighted least squares) refers to the iterative Gauss–Newton described in Equations (26) and (27), and
MAD is defined in Equation (19). N and δ denote the maximum number of iterations of the iterative
Gauss–Newton method and the convergence criteria, respectively. The choice of the influence function
and the scale estimate is subject on the robust estimator applied—e.g., for the M-estimator, one might
use the Huber function in Equation (10) and the MAD as scale estimate.

Algorithm 1: IRLS procedure for robust GNSS SPP.

Input : y ∈ Rn, x0 ∈ Rp

Output : x̂ ∈ Rp

for k← 1 to N do
1 Update residuals: rk ← y− h

(
xk−1

)
2 Update scale: σ̂k ← MAD(rk)

3 Update weights: W← diag
(

ψ(rk/σ̂k)/
(

rk/σ̂k
))

4 WLS: xk ← arg minx ‖y− h
(

xk−1
)
‖2

W−1

if ‖xk − xk−1‖ < δ then
5 return x̂← xk

Remarkably, there are certain specific challenges associated to the GNSS-based positioning
problem that we point out in this paper. First, the observation model h (·) is nonlinear. Thus, the
IRLS procedure for finding the observations weights based on the M-estimator concatenates with the
iterative LS used for dealing with the model nonlinearity. Secondly, the GNSS problem is characterized
by presenting fat data samples, namely, there is a low redundancy of observations. Since generally
only around a dozen satellites are tracked and at least four parameters are to be estimated, GNSS SPP
constitutes a severe case of low redundancy regression problem [56]. Lastly, the general assumption
on robust statistics of independent and identically distributed noise is not met for the GNSS case.
Not only are GNSS observations noise uniquely described using stochastic models, but the assumption
of independent noise can be violated for satellites of similar direction-of-arrival (e.g., for multipath
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and none line of sight effects), or for all satellites (e.g., under the influence of a jamming attack or an
ionospheric storm).

4. Loss-of-Efficiency in Robust PVT Solvers

The optimal PVT solution was seen to result in a weighted least squares expression, where
the weights are proportional to the inverse of the observation’s covariance matrix, as shown in
Equations (26) and (27). This is optimal in the MSE sense and under perfect model assumptions.
When using robust solutions, a frequently asked question is how much the robust method degrades
the performance with respect to the optimal estimator when the model actually holds true. This is
quantified by the so-called LoE: the ratio of performance errors between robust and optimal methods
under nominal conditions. Notice that, by definition, under nominal conditions the robust estimator is
suboptimal so that ratio should be in the interval (1, ∞), where 1 is the ideal case where robust and
optimal methods have the same performance.

In the case of PVT solvers, we can define the LoE as the ratio of mean squared error (MSE) that
the optimal and robust estimators achieve. For the case of the optimal estimator (x̂o) in Equation (26),
it is easy to show that its covariance matrix is given by

C(x̂o) =
(

H>R−1H
)−1

(29)

which provides the minimal MSE error

MSE(x̂o) = Trace (C(x̂o)) (30)

since the optimal estimator in Equation (26) is unbiased. Then, for a suboptimal estimator x̂, the LoE
can be defined as the ratio of MSEs:

LoE(x̂) =
MSE(x̂)
MSE(x̂o)

=
Trace (C(x̂)) + ||Bias(x̂)||2

Trace (C(x̂o))
(31)

with 1 < LoE(x̂) < ∞. The terms in the numerator related to the robust estimator under study are

Bias(x̂) = x−E(x̂) and C(x̂) = E
(
(x̂−E(x̂)) (x̂−E(x̂))>

)
, (32)

which might need to be obtained through simulations if no closed form solution can be obtained.
In summary, we propose to measure the LoE of robust PVT solvers as the ratio of MSEs of that

robust estimator and the optimal estimator, under nominal conditions where no outliers are present in
the data.

5. Test and Results

This section presents results of the described robust SPP estimators. Particularly, Section 5.1
reports a set of simulated experiments to highlight certain aspects of these estimators and provide
further insights on their application to GNSS SPP. Additionally, we provide results with an
experimental dataset using real data recorded over harsh propagation conditions in Section 5.2.

5.1. Simulated Environment

The performance of robust M-, S-, and MM-estimators, as well as classical LS for GNSS positioning,
was compared based on a synthetic experimentation. Two simulation scenarios were considered:
(i) a single-constellation case for which n = 10 satellite observations are available; and (ii) a
multi-constellation case for which four constellation are assumed to provide a total of n = 40
observations. In the latter, each constellation is considered to have an independent clock offset
and thus the dimension of the unknown parameter vector is seven (three for the positioning and
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four for the clock offsets). The combination of experiments also considers variability among the
fraction of contaminated measurements ε and the magnitude α of such corrupted observations, as
indicated in Table 1. In total, there were 42 different experiments and the results for each of them
were obtained over 104 Monte Carlo runs. The configuration for the robust estimators was as follows:
(i) Huber-based M-estimator with a0.95 = 1.345; (ii) Tukey-based S-estimator with c0.95 = 4.685, b = 0.5;
and (iii) MM-estimator combining S-estimator for initial scale and unknown parameter estimates
followed by a M-estimation (with the same parameters configuration).

Table 1. Parameters configuration for the Monte Carlo simulation.

Simulation parameters

Number of satellites n {10,40}
Percentage of outliers ε {0,10,30,40}
Outlier magnitude α {1,3,6,10,30,60,100}
Robust parameters a = 1.345, b = 0.5, c = 4.685

Single-constellation scenario setup

UTC time 15/05/2017 09 : 30

Location Koblenz, Germany
(50◦21′56′′ N, 7◦35′55′′ E)

PDOP 1.72

The simulation of the measurements was realized based on the simplified observation model
in Equation (24), where atmospheric- and satellite-related effects (ionospheric, tropospheric, and
ephemeris errors) were disregarded. The vector of observation errors η stacks the errors for the inlier
ηin and outlier ηout observations, which are distributed as follows

η =
[
η>in, η>out

]>
, ηin ∼ N

(
0, σ2

)
, ηout ∼ N

(
0, α2σ2

)
,

where the variance σ of the healthy observations is 2 m. For each Monte Carlo run, the choice of the
corrupted satellites was randomly sampled.

For the single constellation scenario, the geometry of the satellites was based on the actual
positions of GPS satellites, as shown in the sky plot of Figure 2, from a receiver located in Koblenz
(Germany) in May 2017. For the multi-GNSS case, n = 40 observations were simulated across four
constellations (with ten satellites each). The position of the satellites were artificially “placed” on
the sky according to randomly sampling the azimuth, elevation, and distance between satellites and
receiver (azimuth ∼ U (0, 2π), elevation ∼ U (0, π/4), and distance ∼ N (20.200 (km), 2.000 (km2)))
for each Monte Carlo instance.

Figure 2. Sky plot for the single constellation simulation n = 10.
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Figure 3 depicts the performance of the compared estimators, showing the positioning root mean
squared error (RMSE) on the ordinate axis and the magnitude α of the outliers on the ordinate axis.
The first row of Figure 3 illustrates the single constellation case, while the second row shows the
multi-constellation scenario. In Figure 3, the fraction of outliers ε grows from left to right, with ε = 10%
(left column), ε = 30% (middle column), and ε = 40% (right column). A common element across all
cases is, the absolute lack of robustness of the LS-estimates, whose RMSE is driven by the large errors
present in the corrupted observations. Looking at the left column, M, S, and MM estimates evidence
robustness at ε = 10%, neglecting the effects of outliers regardless of their magnitude and number
of constellations. The latter is interesting, since it appears that, even for the single constellation case
(Figure 3, top left), ten observations provide enough redundancy for the estimation of four parameters
and spotting a single corrupted measurement. For the middle column ε = 30%, the S and MM
estimators remain nearly unaffected by the outliers, indicating that their breakdown point ε∗ ≥ 30% for
n ≥ 10. On the other hand, the M estimator breaks down for the single constellation case. Finally, let us
examine the right column with ε = 40%. It is clear that all robust methods break down before such high
fraction of contamination for the single constellation case. On the contrary, the S and MM estimators
are capable of successfully bounding the effects of outliers for the multi-constellation scenario, where
the large number of measurements provide with sufficient data redundancy. It becomes evident that
robust methods, especially the MM estimator, represent a promising alternative to traditional ML or
LS-based GNSS positioning. Especially for a near future, in which multiple GNSS constellations will
be fully deployed and a large number of observations will be made available, robust methods can
assure great resilience against satellite faults at a cost of minimal efficiency loss, as shown below.

Figure 3. RMSE positioning error for ε ∈ {10, 30, 40}% contamination data (each column) and for
n ∈ {10, 40} (single- and multi-constellation cases, respectively) pseudorange observations (each row).

The relative efficiency of the estimators with respect to the LS is studied for the nominal case—e.g.,
when no outlying observations are present. Figure 4 depicts the LoE of the estimators, as defined in
Section 4. The S-estimator is clearly the least efficient among the evaluated methods, and its efficiency
even decreases with the number of observations. Contrarily, the MM-estimator exhibits the closest
performance to the LS and it can be considered as an efficient estimator. Notice that the MM efficiency
scales with the number of observations, making it an appealing option for prospective multi-GNSS
scenarios. Overall, one can conclude that the MM-estimator results the most interesting among the
robust methods compared, offering robustness (high breakdown point) while maintaining a high
efficiency at the nominal Gaussian distribution of errors.
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Figure 4. Loss-of-efficiency of the estimators as a function of the number of observations available.

To gain understanding on how robust estimators actually perform for GNSS-positioning, a test
scenario with a single fault was studied. Moreover, this example serves as pictorial support for the
discussion on convex (based on monotone loss functions) against nonconvex (based on redescending
loss functions) minimization. Making use of the single-constellation geometry of Figure 2, satellite
observations are assumed to present a low variance noise (0.12 m2) and a large bias inferred to satellite
G17. This drives to a position error of approximately 6 m in the west direction, while the north and
down directions remain mostly unaffected. Figure 5 depicts the surface (on the left column) and
contour (on the right column) of the LS, M-Huber, and M-Tukey loss functions (first, second, and third
rows, respectively) for the aforementioned test scenario. Besides, the ground truth solution is marked
with a red diamond on the right column. Observing the first row, for the LS estimates, it becomes clear
how the bias on satellite G17 is “dragging” the estimate towards the wrong direction. On the second
row, the M-Huber estimate manages to discriminate the effect of the outlier and the solution becomes
unbiased. Moreover, the minimization constitutes a convex problem, for which a single minimum
exists and the uniqueness and stability is guaranteed. Finally, the third row shows the M-Tukey
estimate. While the solution remains unaffected by the outlier, it is clear that the minimization of the
nonconvex problem leads to the appearance of multiple minima. Therefore, if the initial point estimate
is defect, the final estimate might not be found (due to jumps between close minima) or be spoiled
(due to a local minimum).

5.2. Experimentation under Real Harsh Conditions

To experimentally address the performance of the MM-estimator for GNSS positioning, a data
collection was performed for an automotive scenario. The test vehicle was equipped with a geodetic
antenna (navXperience 3G+C) connected to a geodetic GNSS receiver (Javad Delta), as shown in
Figure 6 (left). The experiment was carried out on 15 May 2019 (DOY 135, UTC 10:00–18:00), covering
a distance of approximately 800 km from Koblenz, in west Germany, to Neustrelitz, in northeast
Germany, as illustrated in Figure 6 (right). Along the route, a wide variety of GNSS harsh conditions
were confronted: urban navigation, high-speed highways, national roads under forest foliage, bridge
passing, etc. Thus, the capability of the MM estimator for dealing with corrupted observations can be
consistently evaluated on real multipath and NLOS conditions. The onboard GNSS receiver allows for
multi-constellation (GPS, GLONASS, and Galileo), multi-frequency (L1, L2, and L5) tracking, and the
sampling rate was set at 2 Hz. The ground truth reference solution was based on a dual frequency
GPS+GLONASS PPP solution derived from the CSRS-PPP service [57]. Unfortunately, the PPP solution
results are unavailable for the most challenging situations (e.g., tunnel or bridge crossing), thus the LS
and MM performance could not be assessed during these epochs.
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Figure 5. Surface (left column) and contour (right column) plot of the loss functions, projected in
the east–north frame, for the LS (top), M-Huber (middle) and M-Tukey (bottom) estimates. The red
diamond highlights the ground truth on the right column.

0 

0 

250 

155 [mil] 

[km] 

Figure 6. Vehicle employed for the measurement campaign (left). Trajectory covered during the data
collection, starting in Koblenz and finishing in Neustrelitz (right).

For the evaluation, the positioning performance of a classical LS solution was compared to the
MM-estimator, which has been shown to be the most suitable among the robust methods for GNSS
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positioning. The estimation of the positioning solution used GPS and Galileo observations on the L1
frequency, with an elevation mask of 5◦, and the clock offset of Galileo was considered independent
from the GPS one (hence, the number of parameters of the state estimate is of dimension five).
The number of observations and the Position Dilution of Precision (PDOP) over time are illustrated in
Figure 7 (bottom left). The combination of GPS and Galileo grants the availability of radio-navigation
for around 96.5% of time, with often satellite tracking losses due to signal reflection and blockage.

Figure 7. Number of GPS+Galileo satellites tracked and PDOP (bottom left). Squared positioning
errors for the LS and MM estimators over time, and highlight on time spans A and B (top left).
Histogram of positioning errors for LS and MM-estimator (right).

Figure 7 (top left) depicts the three-dimensional squared positioning error over time for the LS
and MM estimators. For the majority of the studied epochs—nominal opens-sky conditions for GNSS
navigation—the performance of the LS and MM estimators is equivalent and the LoE of the MM is
not even perceptible. This statement is supported with the results shown in Figure 7 (right), which
illustrates the distribution of the positioning errors. For the bulk of the results, or errors under 5 m,
LS and MM offer similar performance, with the MM even being slightly better. While LS presents a
large population of positioning errors between 10 and 20 m, the MM estimator is capable of mitigating
the vast majority of these errors. The largest positioning errors—for instance, shortly after 12:00
and around 15:30—cannot be mitigated by the MM estimator, which becomes as biased as the LS.
This is due to a reduced satellite visibility combined with several satellites being contaminated for
these epochs.

To better illustrate the outlier rejection capability of the MM estimator, time spans “A” and “B”
are highlighted using a gray shaded area in Figure 7 (top left). These periods A and B of 15 and 30 min
duration, respectively, are shown in detail in Figure 8, including pictures taken from the automobile
during these instances. Part A corresponds to a highway where there is a succession of eight small
bridges. The MM estimator results, in this case, completely unaffected by the multipath and NLOS
effects. Part B corresponds to a national road surrounded by dense foliage, inducing damps on the
received satellite signals. Again, the MM estimator avoids the effects of the contaminated observations,
which drive the LS estimator to have errors of around 20 m.
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Figure 8. Illustration of time span “A” where multiple bridges are present (top left) and positioning
errors during such time (top right). Illustration of time span “B” for navigation under dense foliage
(bottom left) and the associated positioning errors (bottom right).

6. Outlook and Future Work

This paper provides an overview of robust statistics and how it can be used to enhance the
resilience of GNSS single point positioning (SPP) solutions in the presence of outliers. These large
deviations from the nominal model might be caused in practice—in the GNSS context of interest
here—by multipath propagation or hardware malfunctioning, for instance. SPP can be seen as a
regression problem, for which this paper presents its robust alternatives leveraging the sound theory
of robust statistics. At the same time, the article discusses the specific aspects of applying robust
regression to GNSS SPP solvers, and supports the discussion with simulation results showing the
improvements of such methods as well as their characterization. Additionally, the article considers
the use of an experimental evaluation using real data, collected in a vehicular setup and including
challenging propagation conditions such that the use of robust SPP methods is justified and shown in
practice. Future research should provide a better (analytical) understanding of the loss-of-efficiency
incurred by those methods, as well as the relaxation of the i.i.d. assumption among different satellites,
and the use of robust techniques in recursive versions that yield to more sophisticated PVT solutions.
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