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Abstract

We propose a Bayesian approach for parameter uncertainty quantification in macro-
scopic traffic flow models from cross-sectional data. We validate the results comparing the
error metrics of both first and second order models. While involving more parameters to
be calibrated, second order models globally show better performances in reconstructing
traffic quantities of interest.
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1 Introduction

Macroscopic traffic flow models, consisting in hyperbolic partial differential equations based
on the mass conservation principle, are employed since several decades to describe the spatio-
temporal evolution of traffic aggregate quantities such as density and mean velocity on road
networks. Compared to microscopic approaches, they offer the advantage of being compu-
tationally less expensive, and therefore adapted to large road networks. Moreover, their
analytical properties make them suitable for solving optimal control problems motivated by
traffic management issues. Last but not least, they involve a small number of parameters,
thus reducing calibration cost. Yet, the inherent simplification of the dynamics induced by
the models, their non-linearity and the data noise are all sources of challenging difficulties
when dealing with parameter identification.

In this work, we focus in particular on the comparison between first order models, that are
models consisting only in the mass conservation equation, here represented by the celebrated
Lighthill-Whitham-Richards (LWR) model [35, 46], and second order ones, including a second
equation accounting for the speed evolution.

Classically, macroscopic traffic models are calibrated either by fitting the so-called funda-
mental diagram, i.e., the density-flow or density-speed mapping described by the model flux
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function (see e.g., [6, 14, 15, 16, 17]), or by minimizing some error measure of the simulation
output, against either data provided by loop detectors at fixed locations [41, 48, 51] or tra-
jectory data [43, 52]. Also, data information can be leveraged to improve existing models or
design new ones, as proposed by [13, 15, 16, 17, 27, 39]. Nevertheless, up to our knowledge
few works have been devoted to evaluate the inherent uncertainty of both models and data
and its impact on model-based predictions [3, 20, 28]. Yet, this is a fundamental aspect to
improve decision and control strategies based on mathematical models. To this end, we pro-
pose here to follow a Bayesian approach, which allows to evaluate the parameter probability
distribution given the observed data [32].

Statistical calibration techniques have been recently used for pedestrian models [9, 22,
23, 24] against microscopic trajectory data. In this paper, we only consider aggregate mea-
surements provided by detectors at fixed locations. Without the ability to closely follow the
microscopic dynamics, we are forced to use non-intrusive methods, combined with compara-
tively coarser grained data. Consequently, following Kennedy-O’Hagan [33], we introduce a
bias term to better account for possible discrepancies between the mathematical models and
reality, which also need to be estimated. This generic framework has been applied in a variety
of fields, e.g., ranging from physics [29] to engineering [2, 31] or biology [44]. See also, e.g.,
[5] for a recent review of the methods and [4] for a discussion on the model discrepancy.

The article is organized as follows. In Section 2, we introduce the class of Generic Sec-
ond Order Models, which will be the object of the study. Section 3 describe the data sets
considered for model calibration, whose statistical calibration handling is presented in Sec-
tion 4. The calibration results are discussed in Section 5 and some perspectives are drawn in
Section 6.

2 Macroscopic traffic flow models

Generic Second Order traffic flow Models (GSOM in short) were introduced in [34] and consist
in 2× 2 hyperbolic systems of the form{

∂tρ+ ∂x(ρv) = 0,

∂tw + v∂xw = 0,
t > 0, x ∈ R, (2.1)

where the average speed of vehicles is a function of the density ρ = ρ(x, t) and a Lagrangian
vehicle property w = w(x, t), namely v = V(ρ, w) for some speed function V satisfying the
following hypotheses [16]:

V(ρ, w) ≥ 0, V(0, w) = w, V(ρ, 0) = 0, (2.2a)

∂2Q

∂ρ2
(ρ, w) < 0 for w > 0, where Q(ρ, w) := ρV(ρ, w) (2.2b)

∂V
∂w

(ρ, w) > 0, (2.2c)

∀w > 0 ∃ Rw > 0 : V(Rw, w) = 0. (2.2d)

As in [7, 16], we observe that (2.2b) implies
∂V
∂ρ

(ρ, w) < 0 for w > 0, if V is a C2 function in

ρ. We also remark that in (2.2d) we can have Rw = R for all w > 0.
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Setting y := ρw for ρ > 0, system (2.1) can be rewritten in conservative form as{
∂tρ+ ∂x(ρv) = 0,

∂ty + ∂x(yv) = 0,
x ∈ R, t > 0, (2.3)

with v = Ṽ(ρ, y) := V
(
ρ,
y

ρ

)
.

System (2.1), respectively (2.3), is strictly hyperbolic for ρ > 0, with eigenvalues

λ1(ρ, w) = V(ρ, w) + ρVρ(ρ, w), λ2(ρ, w) = V(ρ, w), (2.4)

with the first characteristic field being genuinely non-linear and the second linearly degenerate.
The associated Riemann invariants are

z1(ρ, w) = V(ρ, w), z2(ρ, w) = w.

Since shock and rarefaction curves of the first family coincide, the system belongs to the
Temple class [49]. Notice that, setting V(ρ, w) = w − p(ρ) for a suitable “pressure” function
p, system (2.3) corresponds to the celebrated Aw-Rascle-Zhang (ARZ) model [1, 53]. We also
remark that taking w = const we recover the classical Lighthill-Whitham-Richards (LWR)
model [35, 46].

In the present setting, we are interested in the Initial Boundary Value Problem (IBVP)
for (2.3), namely{

∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ ]xin, xout[⊂ R, t > 0, (2.5a)

(ρ, w)(x, 0) = (ρ0, w0)(x), x ∈ ]xin, xout[, (2.5b)

(ρ, w)(xin, t) = (ρin, win)(t), t > 0, (2.5c)

(ρ, w)(xout, t) = (ρout, wout)(t), t > 0, (2.5d)

with values in an invariant domain of the form

ΩV :=
{

(ρ, w) ∈ R2
+ : w ∈ [wmin, wmax]

}
for some 0 ≤ wmin ≤ wmax < +∞.
Solutions to (2.5) have to be intended in the weak sense as in [8, Definition 2.2]. In particular,
we remark that boundary conditions (2.5c) and (2.5d) may not be satisfied in the strong sense,
i.e., we may have

(ρin, win)(t) 6= lim
x→xin+

(ρ, w)(x, t),

(ρout, wout)(t) 6= lim
x→xout−

(ρ, w)(x, t).

Note also that general IBVP well-posedness results provided in the literature, see e.g., [8,
Theorem 2.3], hold under the hypothesis of strict hyperbolicity, which is not satisfied by (2.5a)
at ρ = 0. The well-posedness of (2.5) will make the object of a separate study.
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Remark 1. In the implementation, we derive the initial and boundary data directly from real
traffic data. Since the quantity w is not directly provided by the measured data, we need to
invert the velocity function V. This gives us a new function W which reads as

W : ΩW → [wmin, wmax]

(ρ, v) 7→ W(ρ, v)
(2.6)

where the domain is defined as ΩW = {(ρ, v) : ρ ∈ [0, Rwmax ], v ∈ [V(ρ, wmin),V(ρ, wmax)]}.
We note that providing the initial data and boundary conditions for both the density and the
empty-road velocity, the second order GSOM model is equipped with more real data compared
to the first order LWR model.

In this paper, we consider a speed function of the form

V(ρ, w) = w

1− exp

(
C

V

(
1− R

ρ

)) , (2.7)

which is derived from Newell-Franklin [19, 40] and satisfies (2.2). In (2.7), the parameters
to be identified are θ = (V,C,R,wmin, wmax), with V > 0 is the maximal speed, R > 0 is
the maximal density, C > 0 is the wave propagation speed in congestion, wmin and wmax
are respectively the minimum and maximum vehicle property. In this setting, the variable w
plays the role of an empty-road velocity of the driver [16]. Notice that, fixing w = V in (2.7),
we recover the first order LWR model. In this case, the calibration parameter set reduces to
θ = (V,C,R).

2.1 Numerical solution

To efficiently compute approximate solutions of (2.5), we use the Harten-Lax-van Leer (HLL)
Riemann solver [26]. Given a (possibly non-uniform) spatial discretization {x0, . . . , xM} of
the interval ]xin, xout[ (with x0 = xin and xM = xout), we set the cell sizes ∆xj := xj − xj−1

for j = 1, . . . ,M , and a suitable time step ∆t satisfying the Courant-Friedrichs-Lewy (CFL)
stability condition

∆t ≤ minj ∆xj

max(ρ,w)∈ΩV{
∣∣λ1(ρ, w)

∣∣, ∣∣λ2(ρ, w)
∣∣} . (2.8)

Denoting by

U :=

(
ρ
ρw

)
and F (U) :=

(
ρv
ρwv

)
the vectors of the conserved quantities and fluxes respectively, we approximate the initial
data (2.5b) as

U0
j :=

1

∆xj

∫ xj

xj−1

U0(y) dy.

Approximate solutions are then computed iteratively by the finite volume formula

Un+1
j = Un

j −
∆t

∆xj

(
Fnj − Fnj−1

)
, j = 1, . . . ,M, (2.9)
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where the numerical fluxes Fnj := FHLL(Un
j ,U

n
j+1) are computed using the HLL Riemann

solver:

FHLL(UL,UR) :=


F (UL) if SL ≥ 0,

F (UHLL) if SL < 0 ≤ SR,
F (UR) if SR < 0,

(2.10)

where SL < SR are the approximate wave speeds. Following [12, 16], we employ the following
definition of characteristic speeds

SL := min{λ1(UL), λ1(UR)},
SR := min{λ2(UL), λ2(UR)},

(2.11)

and we set

F (UHLL) :=
SRF (UR)− SLF (UL)−

(
F (UR)− F (UL)

)
SR − SL

.

Note that, since λ2(ρ, w) = v ≥ 0 for all (ρ, w) ∈ ΩV , the case SR < 0 in (2.10) never occurs.
Boundary conditions (2.5c) and (2.5d) are taken into account by (2.9) setting

Un
0 :=

1

∆t

∫ tn

tn−1

Uin(s) ds,

Un
M+1 :=

1

∆t

∫ tn

tn−1

Uout(s) ds,

where tn = n∆t and n = 1, . . . , N .

When considering the scalar LWR equation, we use the classical Godunov scheme [21]
in its supply-demand implementation [11]. We note that for the first order LWR model the
boundary conditions are given in terms of flows Fin and Fout, instead of densities. Thus, the
IBVP (2.5) reads

∂tρ+ ∂x(ρv) = 0, x ∈ ]xin, xout[, t > 0,

ρ(x, 0) = (ρ0)(x), x ∈ ]xin, xout[,

q(xin, t) = Fin(t), t > 0,

q(xout, t) = Fout(t), t > 0.

Remark 2. Since initial and boundary conditions provided by data can lie outside the domain
of the inverse mapping W, we will perform a projection following [16, Section 3.3]:
Given a density 0 ≤ ρ ≤ Rwmax and any speed v > 0 (can be outside of the domain ΩW) we
consider

Ṽ(ρ, v) = min
{

max{v,V(ρ, wmin)},V(ρ, wmax)
}

(2.12)

where V(ρ, wmin) (resp. V(ρ, wmax)) is the lower (resp. upper) bound of the speed curves.
This allows to define D̃W := {(ρ, v) : ρ ∈ [0, Rwmax ], v ≥ 0}.
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3 Data and simulation setting

In this section, we describe the two sensor data sets that will be used for the calibration tests
in Section 5.

One data set was provided by the Direction Interdépartementale des Routes Méditerranée
(DIRMED) and covers 3 months, from September 1st to November 30th, 2015. The considered
set of data (DirMed data) comes from 135 loop detectors placed on the freeways in the North
of Marseille (A7, A51, A50 and A55). Given the 6 minute averages of the traffic flow and
speed measured by the loop detectors, the traffic density is a derived quantity.
In this paper, we focus on a 1.25 km long rampless road stretch on the highway A50 from
Aubagne to Marseille. The road consists of three lanes and the speed limit is 90 km/hour.
The data for this highway part were collected by 4 loop detectors (IDs 305, 304, 303 and 302).
For the simulation, we divide the chosen road stretch into 4 segments. Each segment contains
one detector. All the details about the considered traffic data and the loop detector locations
are available in the git repository https://gitlab.inria.fr/acumes/dduq-traffic.
The fundamental diagrams in Figure 1 illustrate the collected flow and speed data together
with their corresponding densities for the inner loop 303. Most of the data points are located
in the free flow phase which is visible by the clear functional relationship between density
and flow or speed. The free flow phase corresponds roughly to speed values greater than 60
km/h. The more widely distributed data points in the higher density region correspond to
congested regimes.

Figure 1: Fundamental flow and speed diagrams for DirMed data corresponding to loop 303.
Data from 09/01 to 11/30/2015.

For the calibration and validation in Section 5, we will focus on Tuesday 11/10 for a five hours
time slot between 7am and 12pm. The density evolution is illustrated in Figure 3a.

The other data set is referred to as the RTMC data set [38], which is provided by the
Minnesota Department of Transportation (MnDOT). Analogously to the DirMed data set,
the MnDOT data are 6 minute averages obtained by single loop detectors measuring the
traffic flow and the occupancy (fraction of time that a vehicle is occupying a detector) along
several (interstate) highways (while in the DirMed data set, speeds were measured instead
of the occupancy). For the tests, we divide a 1.1 km long road stretch on the northbound
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direction of the interstate highway I-35W again into 4 segments. Each of them contains one
loop detector (S60, S61, S1708, S62). The rampless road stretch has five lanes and the speed
limit is 55 miles/hour (≈ 90 km/hour).
The fundamental flow and speed diagram for the inner loop S1708 is depicted in Figure
2. In contrast to Figure 1, the congested area is equipped with more data points, which
are again widely spread. However, the functional relationship in the free flow region is still
visible, especially in the flow diagram. We emphasize that both the maximum density and
the maximum flow value are higher than in the DirMed data case, since the road has five
lanes (instead of three).

Figure 2: Fundamental flow and speed diagrams for RTMC data corresponding to loop S1708.
Data from weekdays from 01/01 to 04/12/2013.

In our analysis, we will consider the data on Friday 02/22/2013 in a five hours time slot
between 6am and 11am. The density evolution is illustrated in Figure 3b. Figure 3 emphasizes
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Figure 3: Density visualization for two data scenarios in a 5 hours time slot.

that we take both congestion (orange and red colored densities) and free flow (green colored
densities) phases into account. The rush hour for the DirMed data case takes place at the
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beginning of the considered time period, between 7:30am and 9:30am, whereas the congested
phase for the RTMC data starts after two hours, at 8:00am.

Remark 3. In order to reduce the influence of the piecewise constant initial data, we run the
traffic model through an initialization phase of 6 minutes (see [16]). Thus, the validation of
the data will be finally done on a 4 hours 54 minutes time slot.

4 Calibration approaches

After presenting the mathematical model in Section 2 and describing the data sets in Section 3,
we now present our calibration procedure to fuse the two. Instead of a least-squares approach
on a family of flow rate curves, as generally performed in this context, see, e.g., [13, 16] , we
follow the statistical framework proposed by [29, 33]. The benefits are two-fold. First, when
relying on a Bayesian estimation procedure, uncertainty quantification is directly available in
the form of a posterior distribution on the calibration parameters, rather than scalar values.
Looking at the fundamental diagrams of Figures 1 and 2, it is clear that a single parameter θ
value is insufficient to properly fit the cloud of points. Second, accounting for and estimating
a bias term between the mathematical model and data enables alleviating the shortcomings
of the former.

4.1 Kennedy-O’Hagan calibration framework

We denote by P the real process under study (e.g., the space-time evolution of the density ρ),
F the so-called “field” where P is physically observed, both depending on x and t. Denote
by M the mathematical model, which depends on (x, t, θ), with θ the additional calibration
parameter(s), and by (X,T ) all the (x, t) points where observations have been recorded.
Denote by yF (x, t) the field observations under conditions x, t of the real output yP (x, t).

It is generally assumed that P and F are related by

yF (x, t) = yP (x, t) + ε, where ε ∼ N (0, σ2
ε).

Kennedy-O’Hagan (KOH) [33] proposed to additionally take into account inadequacy between
the mathematical model with optimal parameters θ∗ and reality, via an additional discrepancy
(or bias) term b(x, t, θ): yP (x, t) = yM (x, t, θ∗) + b(x, t, θ∗) resulting in

yF (x, t) = yM (x, t, θ∗) + b(x, t, θ∗) + ε.

In [33], the authors further proposed a Bayesian framework to estimate the best calibration
parameter θ∗, along with σε and b(·, ·, ·). The outcome is a posterior probability distribution
instead of a single optimal value. In KOH, b is modeled by a Gaussian process (GP), which
amounts to assume a multivariate normal distribution for the errors. KOH also models yM

with a Gaussian process as yM is computationally expensive in their setup. This is not
necessary here since the mathematical model takes only a few seconds to evaluate, thus
corresponding to the framework described in [29].

To follow [29], besides defining priors on the calibration parameters, one needs to be able
to estimate the posterior. Bayes’ rule expresses it as

π(θ∗ | yF ) =
L(yF | θ∗)× π(θ∗)

π(yF )
,
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which says that the posterior is given by the product of the likelihood and the prior, divided by
the marginal likelihood. The marginal likelihood (a.k.a. evidence) is a normalizing constant
that does not depend on θ. Analytical expressions of posterior distributions are seldom
available, leading to a variety of estimation techniques. In this paper, we use a standard
Markov Chain Monte Carlo (MCMC) method, the Metropolis algorithm, see Algorithm 1.
More details can be found in [29]. Independent samples are obtained by thinning out the
output chain, that is, keeping only one out of p samples, to avoid autocorrelation (see, e.g.,
[30]).

Algorithm 1 Metropolis algorithm with a symmetric proposal distribution

1: initialize θ∗1 (sample from the prior distribution π(θ∗))
2: for each i in {2, ...N} do
3: generate θ̂∗ from a symmetric distribution, e.g., θ̂∗ ∼ N (θ∗i−1, σ

2
pI)

4: compute the ratio α := min

{
1, π(θ̂∗|yF )

π(θ∗i−1|yF )

}
5: generate a uniform random number u ∼ U([0, 1])
6: if u ≤ α then
7: θ∗i = θ̂∗

8: else
9: θ∗i = θ∗i−1

10: end if
11: end for
12: Return θ∗ = (θ∗1, . . . , θ

∗
N )

4.2 Gaussian process regression

We rely on Gaussian process regression for estimating the bias term [29, 33]. Given a set
of observations bn = (b(x(1)), . . . , b(x(n))) of the bias at (x(1), . . . , x(n)) (dropping t and θ∗

for notational simplicity), this GP assumption amounts to consider that bn is a realization
of a (zero-mean) multivariate normal distribution: bn ∼ N (0n,Kn). Here, Kn denotes the
covariance matrix between the observed biases, that is, Cov

[
b(x), b(x′)

]
= k(x, x′) where

k(·, ·) is a positive definite function, typically from a parametric family, such as the Gaussian
kernel: kG(x, x′) = σ2 exp(−(x − x′)2/l2), among others like Matérn kernels, see e.g., [47].
The (hyper-)parameters σ2 and l are, respectively, the process variance and the length-scale.
Extension to the multivariate case is generally obtained via a product of univariate covariance
kernels.

GP predictive equations of b(·) at n′ new locations X , denoted Y (X ) | bn, are the so-called
“kriging” equations:

Y (X ) | bn ∼ N (mn(X ), s2
n(X ,X )),with (4.1)

mn(X ) := E[Y (X )|bn] = kn(X )>K−1
n bn, (4.2)

s2
n(X ,X ) := Cov[Y (X ), Y (X )|bn] = k(X ,X )− kn(X )>K−1

n kn(X ). (4.3)

where kn(X ) := (k(X (j), x(i)))1≤j≤n′,1≤i≤n and the predictive variance is the diagonal of
s2
n(X ,X ). Equations (4.1) describe the best (minimizing Mean Square Prediction Error)

linear unbiased predictor (BLUP).
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To estimate the hyperparameters of the kernel function, we maximize the likelihood, the
probability density of the observations given the parameters: P[Y (Xn) = bn]. As bn ∼
N (0,Kn), the likelihood L is given by the MVN density. Taking the logarithm, this gives:

logL(l1, . . . , ld, σ
2) = −n

2
log 2π − 1

2
log |Kn| −

1

2
b>nK

−1
n bn.

Rewriting Kn = σ2(Cn + gIn) with Cn the correlation matrix (foreshadowing the need
to account for noise in observations with g ≥ 0), we can compute the optimal variance σ̂2

differentiating the resulting expression

logL(l1, . . . , ld, σ
2) = −n

2
log 2π − n

2
log σ2 − 1

2
log |Cn + gIn| −

1

2σ2
b>n (Cn + gIn)−1bn,

so that
∂ logL
∂σ2

= − n

2σ2
+

1

2(σ2)2
b>n (Cn + gIn)−1bn = 0

which gives σ̂2 = b>n (Cn+gIn)−1bn
n .

Plugging in this σ̂2 in the likelihood, we obtain the concentrated likelihood L̃:

log L̃(l1, . . . , ld, g) = −n
2

log 2π − n

2
log σ̂2 − 1

2
log |Cn + gIn| −

n

2
. (4.4)

Solving for the remaining hyperparameters is not possible in closed-form, therefore numer-
ical optimization methods must be used (usually relying on the gradient of the concentrated
log-likelihood). We refer to [25, 45] for further details on GP modeling.

Bayesian calibration via MCMC estimation can be time consuming. Several simplifications
have been proposed, such as relying on optimization and on modularization, as in e.g., [36,
25]. Without bias estimation, the resulting estimation procedure reverts to the least squares
approach. Due to the grid structure of the data (regular measurement at the same loop
locations), the computational cost of fitting GPs (in O(n3)) can be reduced by exploiting the
resulting Kronecker structure (see, e.g., [10] for a detailed application example).

5 Validation and comparison

In this section, we present our calibration results for the two data sets introduced in Section 3.
Our quantity of interest (y) will be the flow observations since we expect flow measurements
be more precise compared to the speed or density data.

5.1 Direct approach

We start with considering a calibration approach leading to a single optimized value instead of
a posterior probability distribution, which will be referred to as the direct approach. It consists
in the maximization of the concentrated log-likelihood function (4.4). Since the observed bias

b(x, t, θ) = yF (x, t)− yM (x, t, θ) for all (x, t)-combinations in (X,T )

depends on the unknown calibration parameter θ, the process variance σ̂2 in (4.4) depends
also on the calibration parameter θ. This results in solving the optimization problem

max
l1,l2,g,V,C,R,wmin,wmax

log L̃(l1, l2, g) (5.1)
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for 8 parameters. Following the principle of modularization [36], we solve this expanded opti-
mization problem by a 2-level approach leading to solve two nested maximization problems.
In the so-called inner-level, we maximize the concentrated log-likelihood function dependent
on θ, thus obtaining the hyperparameters l̂1(θ), l̂2(θ), ĝ(θ). These hyperparameters are then
inserted into (4.4) and the concentrated likelihood is maximized with respect to θ, giving the
optimized calibration parameter θ∗. We call the second step the higher-level. The inner opti-
mization level is executed by the local optimization solver fmincon. For the higher-level we
compare both fmincon and pso from Matlab and we choose the one which leads to a higher
value for the likelihood function. Since our quantity of interest are the flow observations, the
optimization is done on the flow errors. The initial guesses and boundary intervals are listed
in Table 1.

inner-level higher-level
l1 l2 g V C R wmin wmax

DirMed
initial guess 1 0.52 3.3 90 30 350 40 115
lower bound 0.1 0.1 0.005 70 10 180 1 70
upper bound 5 1.2 5 120 70 450 80 300

RTMC
initial guess 1 0.52 3.3 90 30 500 40 115
lower bound 0.1 0.1 0.005 70 10 250 1 70
upper bound 5 1.1 5 120 70 750 80 300

Table 1: Initial guesses, upper and lower bounds for the direct approach.

The optimization results for the calibration parameters are summarized in Table 2. We
observe that the two traffic flow models (LWR and GSOM) lead to different optimal calibra-
tion parameters although we use mostly the same initial guesses and bounds. Nevertheless,
the results of the non-convex optimization problem depend crucially on the initial guess.
However, there are two aspects to emphasize: the speed parameters obtained by the GSOM
model are closer to the maximum speed level (90 km/h) and none of the parameters lie on
the boundary in the second order model (unlike the maximum density of 450 (DirMed data)
and the maximum speed close to 70 (RTMC data) for the LWR model). We note that, in
both traffic flow models, the maximum density for the DirMed data is smaller since there are
only three lanes instead of five.

LWR GSOM
V ∗ C∗ R∗ V ∗ C∗ R∗ w∗

min w∗
max

DirMed 85.34 17.93 450.00 89.88 28.11 349.97 40.00 114.70
RTMC 70.12 29.53 463.99 92.71 29.63 488.23 40.00 113.19

Table 2: Optimization results for the direct approach.

Remark 4. In contrast to [15, 16], we do not set a-priori the value of the maximum density
R. Here, it is considered as one of the parameters to calibrate.

The fundamental diagrams in Figures 4 and 5 report the same data as Figures 1 and 2,
where we superpose the flow and speed curves obtained corresponding to the optimal cali-
bration parameters from Table 2 for the function (2.7). Figure 4b and Figure 5b show that
the GSOM model can capture the spread of the data in the congested part, unlike the LWR
model. In both cases, the fit looks better for RTMC data.

Figure 6 depicts the flow and speed profiles for the DirMed scenario and Figure 7 shows
the flow and density profiles for the RTMC scenario. We observe that for the GSOM model
the numerical solution (blue squares) follows the profile of the measured speed and density
data (red stars) better than the flow values. Even jumps and drop regions are well captured,
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Figure 4: Fundamental flow and speed diagrams for DirMed data corresponding to loop 303.
In red, equilibrium curve for LWR (Figure 4a) and family of flow and speed curves for GSOM
(Figure 4b), based on the optimal calibration parameter of Table 2.
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Figure 5: Fundamental flow and speed diagrams for RTMC data corresponding to loop S1708.
In red, equilibrium curve for LWR (Figure 5a) and family of flow and speed curves for GSOM
(Figure 5b) based on the optimal calibration parameter of Table 2.

though being more difficult to predict. At this point, we want to emphasize that although
the optimization is done only on the flow errors, the GSOM is able to recover the density and
speed quantities much better than the LWR model. However, by comparing the flow profiles
of the two traffic flow models, we observe a better performance for the LWR model. The
simulated GSOM flow data have more outliers, especially for the DirMed data case on loop
302.

In order to compare the predictive accuracy of the results between the two traffic flow
models numerically, we define an error metric E which consists of the sum of normalized flow,
speed and density errors. Denoting yFflow (resp. yFspeed, yFdensity) the measured flow (resp. speed,

density) data and yMflow (resp. yMspeed, yMdensity) as the simulated flow (resp. speed, density) data,
including the correction by their predictive kriging means (4.2), the error function is defined
as the sum of

Ek =
1

Tf · (xout − xin)

1

∆q

∑
(x,t)∈(X,T )

|yFk (x, t)− yMk (x, t, θ∗)|,

for k ∈ {flow, speed, density}. Thus

E = Eflow + Espeed + Edensity. (5.2)
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Figure 6: Comparison of real and simulated flow and speed profiles for LWR and GSOM
models: direct approach for the DirMed data.

Above, Tf stands for the time horizon (4 hours 54 minutes) and ∆q, (resp. ∆v, ∆ρ) represents
normalization constants to overcome the biases induced by the different physical units. For
the choice of the normalization constants, we follow [15] and define ∆q (resp. ∆v, ∆ρ) as the
ranges of the real measured traffic flow (resp. speed, density) data. Thus, we obtain

∆q = Qmax −Qmin, ∆v = V max − V min, ∆ρ = Rmax − Rmin

where Qmax and Qmin (resp. V max and V min , Rmax and Rmin ) stands for the maximum and
minimum observed traffic flow (resp. speed, density) in the considered data set.

13



0 1 2 3 4 5

time in hours

0

2000

4000

6000

flo
w

  i
n 

ve
h/

h

loop 60

0 1 2 3 4 5

time in hours

0

2000

4000

6000

flo
w

  i
n 

ve
h/

h

loop 61

0 1 2 3 4 5

time in hours

0

2000

4000

6000

flo
w

  i
n 

ve
h/

h

loop 1708

0 1 2 3 4 5

time in hours

0

2000

4000

6000

flo
w

  i
n 

ve
h/

h

loop 62

simulated GSOM data
simulated LWR data
real data

(a) flow profile

0 1 2 3 4 5

time in hours

0

100

200

300

de
ns

ity
 in

 v
eh

/k
m

loop 60

0 1 2 3 4 5

time in hours

0

100

200

300

de
ns

ity
 in

 v
eh

/k
m

loop 61

0 1 2 3 4 5

time in hours

0

100

200

300

de
ns

ity
 in

 v
eh

/k
m

loop 1708

0 1 2 3 4 5

time in hours

0

100

200

300

de
ns

ity
 in

 v
eh

/k
m

loop 62

simulated GSOM data
simulated LWR data
real data

(b) density profile

Figure 7: Comparison of real and simulated flow and density profiles for LWR and GSOM
models: direct approach for the RTMC data.

Table 3 shows the error values for both data sets and both traffic flow models. The GSOM

LWR GSOM

Eflow Espeed Edensity E Eflow Espeed Edensity E
DirMed 1.1457 1.5533 4.0071 6.7061 (+35%) 1.9889 1.2459 1.7348 4.9696
RTMC 0.8974 1.7818 2.3153 4.9944 (+98%) 1.2170 1.0761 0.0868 2.3799

Table 3: Error results for the direct approach. In bold, the lowest flow, speed, density and
total errors per data scenario.

14



model has the smallest total error E for both data scenarios, the error in the LWR model being
at least 35% higher. As we already observed in Figures 6 and 7, the main error contributions
for the LWR model come from the speed and density errors. These values are strikingly
higher than the corresponding errors from the GSOM model, which in turn performs worst
on the flow variable. We refer to Section 5.3 for further investigation on this aspect.

Appendix A presents the results of a more intuitive approach to determine the optimal
calibration parameter. However, the direct approach outperforms this rather naive approach
since every single error quantity in Table 3 is lower than the corresponding one from Table 9.
This supports our decision to equip the model with a discrepancy term.

5.2 Bayesian approach

The main aim of this work is to apply the the Bayesian approach introduced in Section 4
to obtain posterior probability distributions of the model parameters. In the following, we
introduce the formulas used in the Metropolis Algorithm 1.

• The prior distribution π(θVCR) for the calibration parameters θVCR = (V,C,R) is given
by a multivariate normal distribution, i.e.,

π(θVCR) ∝ 1√
|ΣθVCR

|
exp
{
−0.5

(
θVCR − µθVCR

)>
Σ−1
θVCR

(
θVCR − µθVCR

)}
with mean µθVCR

and covariance matrix ΣθVCR
.

• For the parameter wm = (wmin, wmax), we use a uniform prior, i.e.,

wmin ∼ U([awmin , bwmin ]), wmax ∼ U([awmax , bwmax ]).

Since we assume the parameters of the prior to be independent, the prior joint proba-
bility density function π(wm) is finally given by the product of the univariate functions,
i.e.,

π(wm) =
1

bwmin − awmin
· 1[awmin ,bwmin ](wmin) · 1

bwmax − awmax
· 1[awmax ,bwmax ](wmax).

• The proposal distribution for θ̂VCR is defined as a multivariate normal distribution, i.e.,

θ̂VCR ∼ N (θVCRi−1 ,Σ
p
VCR)

with covariance matrix Σp
VCR.

• The proposal for the calibration parameter ŵm is given by a multivariate normal dis-
tribution specified by

ŵm ∼ N (wmi−1 ,Σ
p
m) with covariance matrix Σp

m.

• The sampling model for yF reads as

L(yF | θ∗) ∝ 1√
|Kn|

exp
{
−0.5

(
b(θ∗)>K−1

n b(θ∗)
)}
.

Inserting the process variance σ̂2 from the covariance matrix Kn appearing in the ex-
ponential yields the following simplification:

L(yF | θ∗) ∝ |Kn|−1/2
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Thus, the posterior distribution π(θ∗ | yF ) is computed by means of Bayes Theorem, i.e.,

π(θ∗ | yF ) ∝ L
(
yF | θ∗

)
× π(θVCR)× π(wm).

The choice of the mean vectors, covariance matrices and bounds for the uniform distributions
can be found in Table 4.

µθVCR
diag(ΣθVCR

) diag(Σ
p
VCR) [awmin , bwmin ] [awmax , bwmax ] diag(Σpm)

LWR GSOM
DirMed (90, 30, 350) (100, 100, 2500) (6, 1.5, 90) (6, 3, 100) (10, 60) (70, 200) (2, 2)
RTMC (90, 40, 450) (56.3, 225, 5652) (8, 4, 100) (4, 2, 80) (10, 60) (70, 200) (2, 2)

Table 4: Prior and proposal specifications applied in the Metropolis Algorithm 1 for the two
data sets. The choices do not differ between the LWR and GSOM model except for the
proposal variance Σp

VCR.

Remark 5. We note that the choice of the bounds for the uniform distributions (see column
5 and 6 in Table 4) on the parameters wmin and wmax can be extended to a larger range.
However, preliminary tests did no show a significant difference in the outcome.

To apply the Metropolis Algorithm 1, we set the number of iterations to N = 105. It is
a common approach to remove the first MCMC outputs in order to reduce the dependence
of the proposal distribution on the initial guess. We set this burn-in phase to 10% of the
N -iterations. Next, we reduce the sample chain to a number N̂ minimizing autocorrelations.
To this end, we use the multivariate effective sample size (ESS) function, multiESS in the R

package mcmcse [18]. The effective sample sizes are listed in Table 5.

LWR GSOM
DirMed 720 979
RTMC 1407 842

Table 5: Effective sample sizes N̂ for the two data sets.

For a graphical representation of the results of the MCMC method, we consider both
the histograms and the two-dimensional density contour plots, which are smoothed by a
kernel density estimator (see Figure 8). In the histogram graphics, we additionally add the
probability density of the prior distribution for the calibration parameters (green line) and
the kernel smoothed posterior distribution which is computed by the Matlab command
fitdist (red line). This operator fits a kernel probability distribution object to the sample
data. The parameters for the kernel distribution object in Matlab are chosen to be “normal”
by default.

We observe that, for both data sets, the speed calibration parameter V has the largest
variance among the V, C, R parameters (despite being the most intuitive one to specify a
priori) and the kernel smoothed posterior distribution is close to the prior distribution. In
comparison, the posterior distributions for C and R are more peaked and shifted in one
direction compared to the prior ones. In general, we detect a negative correlation between C
and R, visible by the diagonal shape of the C−R contours. We conclude that lower C values
correspond to higher R values and vice-versa, whereas the V parameter seems uncorrelated
with the other ones. Comparing the histograms for the minimum and maximum empty-road
velocity, we see that wmin and wmax can be shifted or spread along their range. For both
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Figure 8: Histograms and 2-dimensional density contour plots for the GSOM model.

data scenarios, the wmax parameter takes the more important role whereas wmin seems to be
less determinant. Note that this may be an effect of the projection in Remark 2. However,
this is not always the case since we also observed RTMC and DirMed scenarios which behave
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in the opposite way. Examples can be found in the pdf-file of the git repository.
For a performance comparison between the two traffic flow models and also between the

two calibration approaches, we again define an error metric for the simulated MCMC outputs.
In formulas, this reads for the flow error

Eflow
MCMC =

1

Tf · (xout − xin)

1

∆q

∑
(x,t)∈(X,T )

(∣∣∣yFflow(x, t)− E[yMflow(x, t)]
∣∣∣)

with E[yMflow(x, t)] = E
[
E[yMflow(x, t) | θ∗]

]
≈ 1

N̂

N̂∑
i=1

yMflow(x, t, θ∗i ) ,

where yMflow(x, t, θ∗i ) is defined as the output of the simulation code evaluated at the ith optimal

calibration parameter θ∗i (for i ∈ {1, . . . , N̂}) at time t and loop position x. This error metric
both quantifies the accuracy of the model and is coherent with the one used for the direct
approach.

Analogously, we define the speed (resp. density) error Espeed
MCMC (resp. Edensity

MCMC ) by using the
measured and simulated speed (resp. density) values and by using the normalization constant
∆v (resp. ∆ρ). Again, we emphasize that we correct all simulated traffic quantities yM by
their predictive means (4.2).
Finally, the total MCMC cost error is given by the sum of the previously defined errors, i.e.,

EMCMC = Eflow
MCMC + Espeed

MCMC + Edensity
MCMC .

The error values for the two traffic flow models are listed in Table 6. We clearly see that

LWR GSOM

Eflow
MCMC E

speed
MCMC

E
density
MCMC

EMCMC Eflow
MCMC E

speed
MCMC

E
density
MCMC

EMCMC
DirMed 1.0560 1.2720 4.3358 6.6639 (+37%) 1.9956 1.1756 1.6801 4.8513
RTMC 0.8961 2.5066 2.2182 5.6209 (+78%) 1.2588 0.8643 1.0287 3.1518

Table 6: Time-space error results for the Bayesian approach. In bold, the lowest flow, speed,
density and total errors per data scenario.

the total error EMCMC is at least 37% higher for the first order model. Additionally, the speed
and density predictions of the GSOM model are more accurate for all considered scenarios. As
observed with the direct approach, we remark again that although the calibration is based only
on the flow data, the corrected simulated speed and density outputs lead to good prediction
accuracy results in the second order model, whereas the flow error is lower for the first order
LWR model.

Remark 6. In [15, 16], the authors consider only the error on the speed and the density. For
these quantities, they come to the same conclusion, namely that GSOM outperforms the LWR
model. However, the flow error is neglected in their evaluations, although they construct their
data-fitted model on the measured flow-density fundamental diagram.

So far, we considered the results of the direct approach and the Bayesian approach sep-
arately. To complete the analysis, we also need to compare their performance among each
other. We have seen that the Bayesian approach provides us with more information than the
direct single output approach. Regarding the numerical error computations, we can compare
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the entries of Tables 3 (direct approach) and 6 (Bayesian approach). We observe that the
total error of the Bayesian approach EMCMC is slightly lower for the DirMed data but higher
for the RTMC data. For the single error quantities (flow, speed and density error) we cannot
detect a clear pattern on the performance accuracy regarding the two approaches. The flow
errors lie in a similar range whereas the speed and density errors can be visibly higher for
both the direct and Bayesian approach.

5.3 Benchmark on synthetic data

In the previous analysis, we observed that the second order GSOM model outperforms the
LWR model on real data regarding the speed, density and total error for both statistical
approaches (direct and Bayesian), but not on flow reconstruction. To understand which
scenario characteristics are decisive for the flow performance, we perform a study on so-called
synthetic data, which should be reconstructed more easily by the simulation code than real
data. The procedure is the following:

1. Choose a data scenario (e.g., DirMed scenario) to have initial and boundary data.

2. Given these data, choose one arbitrary reasonable set of parameters (e.g., (V,C,R) =
(90, 20, 400), wmin = 40, wmax = 130) and run both the LWR and GSOM simulations.

3. Compute the synthetic flow and speed data from the simulation output.

4. Construct perturbed data by adding noise to the new synthetic data. This noise accounts
for the observational noise and it is assumed to be a normally distributed random
variable with zero mean. The noise variance is taken of increasing order γ = 0%, 1%,
10%, 20% or 50% of the range of the synthetic flow and speed data.

5. Derive the perturbed density data by the functional relationship: density = flow/speed.

6. Use the initial and boundary conditions of these perturbed data to calibrate both models
by the direct approach.

7. Compare the single traffic quantity errors and the total error of both models (computed
with respect to the noisy data to match the real setup).

Remark 7. In step 6, we use both the initial calibration parameters (V , C and R are the
same for both models) and the parameters obtained by the global pso solver (V , C and R are
different for the models). The following conclusions, however, are independent of the choice.

The results are reported in Table 7. For low noise data (γ = 0%, 1%), the second order
model performs notably better with respect to all error quantities. Increasing data noise,
we observe that the GSOM model still performs better regarding all error quantities for
γ ∈ {10%, 20%}. However, for higher γ values, the flow accuracy of the second order model
deteriorates faster compared to the LWR model. At γ = 50% the flow error is finally higher.

We conclude that:

1. The higher the noise, the worse the performance on the flow error.

2. The other error quantities (speed, density and total error) are always lower in the second
order model for every choice of γ.
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Fan [15] comes to a similar conclusion, suggesting that the GSOM model can be beaten by
other models due to the oscillatory behaviour of the boundary conditions.

LWR GSOM

γ Eflow Espeed Edensity E Eflow Espeed Edensity E

0% 0.1417 (+165%) 0.1388 0.2909 0.5714 (+147%) 0.0534 0.0793 0.0988 0.2315
1% 0.2082 (+178%) 0.2304 0.3904 0.8289 (+119%) 0.0748 0.1099 0.1942 0.3789

10% 0.7897 (+22%) 0.7063 2.1694 3.6654 (+112%) 0.6482 0.5337 0.5446 1.7265
20% 0.9957 (+10%) 1.1221 2.6550 4.7727 (+57%) 0.9044 0.9841 1.1530 3.0415
50% 1.5266 (−1%) 1.4391 3.2298 6.1955 (+25%) 1.5360 1.2575 2.1558 4.9493

Table 7: Flow error comparison for synthetic data corresponding to the calibration parameters
(V,C,R) = (90, 20, 400), (wmin, wmax) = (40, 130). In bold, the lowest flow error for every
choice of γ.

6 Conclusion

We have applied a Bayesian calibration technique for parameter identification and uncertainty
quantification in macroscopic road traffic models, exploiting different loop detector data sets.
The study has highlighted the globally better performances of second order compared to first
order models, except for flow errors, which may suffer from high noise levels.

More generally, the proposed approach results in better reconstruction performances than
direct calibration techniques commonly used in practice, which moreover do not consider
parameter uncertainty. In particular, our results point out the benefit of introducing a bias
term to compensate model limitations in reproducing real data.

From the traffic modeling point of view, further investigations should include more com-
plex situations including on- and off-ramps and road junctions, traffic lights, etc. Also, time
or space dependence could be considered for some parameters [42], as well as local variations
of the bias on the road possibly depending on the traffic regimes [31].

Regarding the calibration techniques, in this paper we have applied a modularized version
of KOH calibration [36, 50], alleviating some of the shortcomings of the original approach.
Given the flexibility of this framework, it can be improved in many ways: either by reducing
identifiability issues with orthogonality constraints as in [44], or by increasing the scalabil-
ity with the deployment of deep GPs in a variational inference scheme [37]. Refining the
model comparison, e.g., via efficient computation of Bayes factors, is another topic for further
research.

A Least square approach

A commonly used approach to calibrate the optimal parameters is the minimization of a
least square cost function taking both the real data and simulated data into account, see e.g.,
[48, 41, 51].

Accordingly, θ will be calibrated based on the cost function

C(θ) =
∑

(x,t)∈(X,T )

∣∣∣yF (x, t)− yM (x, t, θ)
∣∣∣2 .

Thus, the optimal calibration parameter θ∗ is given by

θ∗ = argmin
θ∈Θ

C(θ).
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The bounds for the five dimensional parameter space Θ and the initial guesses for the op-
timization solver fmincon from Matlab are those defined in the right columns of Table 1.
The optimization results for the calibration parameters are summarized in Table 8.

LWR GSOM
V ∗ C∗ R∗ V ∗ C∗ R∗ w∗

min w∗
max

DirMed 93.03 18.38 431.47 91.48 16.28 450 2.874 91.14
RTMC 70.04 32.74 439.19 89.11 36.4 415.87 46.45 70

Table 8: Optimization results for the least squares approach.

Comparing the errors reported in Table 9 with those of Tables 3 and 6, we conclude that
both the Bayesian approach and direct approach greatly outperform this basic calibration
procedure, thus evidencing the benefit of introducing a bias term.

LWR GSOM

Eflow Espeed Edensity E Eflow Espeed Edensity E
DirMed 1.2318 10.8871 27.9798 40.0988 (+349%) 2.3614 2.9826 3.578 8.9224
RTMC 1.5918 10.4583 17.3069 29.3571 (+296%) 2.4984 2.2846 2.6247 7.4077

Table 9: Time-space error results for the least squares approach. In bold, the lowest flow,
speed, density and total errors per data scenario.
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