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Abstract: In this paper, scanning paths optimization for the powder bed fusion additive manufacturing process
is investigated. The path design is a key factor of the manufacturing time and for the control of residual
stresses arising during the building, since it directly impacts the temperature distribution. In the literature, the
scanning paths proposed are mainly based on existing patterns, the relevance of which is not related to the part
to build. In this work, we propose an optimization algorithm to determine the scanning path without a priori
restrictions. Taking into account the time dependence of the source, the manufacturing time is minimized
under two constraints: melting the required structure and avoiding any over-heating causing thermally induced
residual stresses. The results illustrate how crucial the part’s shape and topology is in the path quality and
point out promising leads to define path and part design constraints.
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Highlights
• First systematic use of geometric sensitivity approach for path optimization

• Optimization under realistic partial differential equation constraint

• Numerical tests for real materials with calibrated physical parameters

1 Introduction
Powder bed fusion additive manufacturing consists in building an object layer by layer using metallic pow-
der [7, 19, 29, 38]. For each layer, some powder is spread on top of the already built part and a heat source
travels along a prescribed path to melt prescribed zones. This technology is very promising because of several
advantages [26, 46]: better optimized and more complex parts can now be built because the manufacturing
constraints are less demanding than in traditional technologies, mass production is not required anymore to
make the process economically efficient which is very interesting in prototyping and repairing issues. How-
ever, such a building process complicates the control of the part’s final quality. Indeed, the high temperatures
involved cause several mechanical, metallurgical and thermal phenomena. Among the different defects to
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mitigate (porosity, residual stresses, loss of alloy elements, anisotropy, surface roughness [19, 38, 42]), we
especially focus here on residual stresses: mainly provoked by an ill-controlled temperature distribution, they
can result in distortions, weaknesses or even cracks [37].
If several parameters are involved in the manufacturing process, the scanning path is one of the most important
ones. Indeed, it directly impacts both the manufacturing time [27, 44] and the temperature distribution which
governs the part’s quality [20, 22, 30, 35, 42, 45]. The literature on scanning paths goes back to traditional
machining (welding, milling [6, 17, 33, 43]), most of the works being based upon patterns or a priori fixed
strategies [31]. Raster lines, contours, Medial Axis Transformation, fractals, etc.: in each case, the strategy is
fixed independently from the part to build and the path adapted through few parameters optimization. If some
works consider splitting into cells the area to melt, then matching them with scanning strategies [1, 30, 40],
the optimization only focuses on these cells and the matching without considering any further scanning path
modifications. Recently, three works proposed a different approach in which the path is fully optimized without
any a priori restrictions. The work initiated by [34] in which the path is optimized for anisotropy has recently
been extended to the control of residual stresses in [15]. The authors propose the optimization of a level set
function corresponding to the scanning path. The defects are characterized by an inherent strain method under
a steady state modelling assumption. A second work considers the scanning path optimization using optimal
control [2, 3]. Theoretical results on the existence and uniqueness of solutions have been obtained in a transient
context. Finally, in a third work [10], we optimize the scanning path in the steady state context by using shape
optimization tools. There, the residual stresses are controlled through a temperature constraint. This method
has then been extended to a concurrent optimization of the path and the part’s shape and topology [11].
In the present paper we extend our previous approach of path optimization to the more realistic transient case,
still controlling the residual stresses through the temperature. In [10], the path was represented as a broken
line in which the distance between two consecutive points was fixed: the discrete path was determined by
the sequence of angles between each element and the horizontal line, by the starting point and by the number
of elements modelling the time required to travel along the path. This representation is not efficient because
it makes the issue of scanning time minimization very complex [9]. A novel discretization is proposed in
this work. The path is still represented by a broken line however defined directly by its nodal points: the
length between two consecutive points is not fixed anymore. If this increases the computational costs of the
process’ simulation, this makes the notion of scanning time more intuitive. In line with the conclusions given
in [11], the various numerical test cases, including some with different parts to build, show the efficiency of
our approach and its ability to give a better understanding on how the path is related to the part’s shape and
topology.
Section 2 details the modelling choices made in this paper. Because of the number and complexity of the
phenomena involved in the powder bed fusion manufacturing process, a macroscopic approach is chosen in
which the powder and the solid only are considered. Then, the scanning path being defined on the layer plane,
this model is made two dimensional. In the end, the optimization problem is defined as follows: the scanning
time is minimized under the constraints of the correct melting of the part to build and the absence of over
heating. The constraints are expressed as functions of the temperature only, avoiding any mechanical problem
resolution including residual stresses computation.
Section 3 is concerned with algorithmic issues. First, a discretization of the optimization problem is proposed:
the temperature is computed on a fixed mesh while the path is described by a broken line the nodal points of
which must be optimized. Then, this problem is differentiated and, using an Augmented Lagrangian method
to deal with the constraints, a descent direction is defined. Finally, the effective algorithm is detailed.
Section 4 presents the numerical results. The algorithm is tested for the building of three different parts and
for two different materials (aluminium and titanium alloys). These various results provide information on the
algorithm efficiency as well as intuition on the notion of optimal path and on how it is related to the part to
build.

2 Modelling and optimization problem
Simulating the several complex phenomena involved in powder bed fusion processes (energy absorption, fluid
mechanics of the melting pool for example) constitutes a research topic in its own [19, 38, 42] aimed at propos-
ing and discussing compromises between accuracy and computational time. Two main categories spring up
[25, 36]: the first one, referred to as ”microscopic”, is a high fidelity model implying a complete physical
description of the process whereas the second one, called ”macroscopic”, relies on many simplifications thus
proving to be much more economical in terms of computational costs. In this work, because the path is opti-
mized using an iterative algorithm, several simulations are required which prohibits a microscopic approach.
We present in this section the macroscopic model chosen and the resulting optimization problem. For further
details on this model, the interested reader is referred to [9] and especially to Chapter 5.
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2.1 Two dimensional thermal model
The macroscopic approach, involving only powder and solid, provides the control of the manufacturing time
and the thermo-mechanical effects, especially thermal expansion and residual stresses. This latter requires
plasticity models which hard resolution is frequently avoided in optimization (see [5, 8, 15] for alternate
approaches). In this work, we choose to focus on the thermal problem only, assuming that these residual
stresses are mainly caused by spatial temperature gradient and thermal expansion [19, 37]. Hence, on the
contrary to the inherent strain method proposed in [15], we do not include any mechanical computation. On
the other hand, we keep the problem’s time dependence. Focusing on the temperature only is obviously a huge
approximation but offers a relevant first step in setting path optimization algorithms and opens perspectives in
considering a full thermo-mechanical system.
The focus is in this work on a single layer and thus on a two dimensional problem: the working or compu-
tational domain Σ ⊂ R2 corresponds to the top layer under building. At the initial time 0, the domain Σ is
maintained at a fixed temperature yini. A source q is switched on, moved along a path Γ belonging to this layer
until being switched off at the final time tF. We focus on conduction effects only [48, 49] and, assuming that
the considered layer is surrounded by low-conductive powder (compared to the solid’s conductivity), adiabatic
boundary conditions (Neumann) are chosen. The material coefficients such as the density ρ, the heat capacity
cp and the conduction λ are assumed to be independent from temperature, time and space (and thus fixed
real numbers). The resulting heat equation given by (1) is finally a classic conduction heat equation to which
has been added a correcting term β(y− yini) modelling the conduction in the building direction ez (Figure 1)
[9, 10].  ρcP∂ty(t,x)−∇ · (λ∇y(t,x))+β(y(t,x)− yini) = q(t,x) in(0, tF)×Σ

λ∂ny(t,x) = 0 on(0, tF)×∂Σ

y(0,x) = yini(x) inΣ.
(1)

The source is modeled as a Gaussian beam [19, 36] given by (2), with P > 0 the source power, A an absorption
coefficient, L a characteristic length related to the dimension loss and r related to the beam focus:

q(t,x) =
AP

πLr2 exp
(
−|x−u(t)|2

r2

)
0≤ t ≤ tF. (2)

In the following, this notation is simplified introducing P =
AP

πLr2 . The source center u(t) following the path Γ

is solution of the trajectory ordinary differential equation, with V the (scalar) source speed and τΓ the tangent
to the path: {

u̇(t) =V (t)τΓ(t) t ∈ (0, tF)
u(0) = u0.

In this work, the velocity is kept constant V = 1ms−1. This model being the result of several assumptions,
its coefficients have been calibrated and especially the coefficient β and the characteristic length L introduced
because of the dimension loss. Further details on this calibration process can be found in [9] and the corre-
sponding values chosen for the numerical applications are given in Section 4.

Figure 1: Three dimensional problem

Figure 2: Working domain Σ

composed of ΣS and Σ\ΣS

2.2 Optimization problem
The working domain Σ is split into two different zones: the domain ΣS must be built during the scanning and
the domain Σ\ΣS must remain powder (Figure 2). Controlling the building through the path is monitored by
three different constraints that should vanish [9, 10].
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• Control of the solid region. The part ΣS ⊂ Σ must melt before solidification. Thus ∀x ∈ ΣS, there must
be a time t ∈ (0, tF) such that the temperature y(t,x) is above the phase change (fusion) temperature yφ,
namely y(t,x)≥ yφ (the change of phase is in this model assumed to be instantaneous which is of course
an approximation). Therefore, the following constraint, with the notation (.)+ = max(0, .),

Cφ(Γ,y) =
∫

ΣS

[(
yφ− max

t∈(0,tF)
y(t,x)

)+
]2

dx,

has to vanish to ensure that the desired solid region is built with a given path Γ. In the following, we need
to differentiate this function with respect to tF and y. Since the maximum function is not differentiable,
it is approximated by a Lp-norm. The effective or approximate version of the constraint is given by:

Cφ(Γ,y) =
∫

ΣS

[(
yφ−Np(Γ,y)(x)

)+]2
dx, Np(Γ,y)(x) =

(
1
tF

∫ tF

0
|y(t,x)]pdt

)1/p

The integer p has a real impact on the constraint (accuracy and numerical computations issues). In
numerical applications, this coefficient is fixed to p= 64.

• Control of the powder region. The part Σ\ΣS must remain powder. Thus, at each point x ∈ Σ\ΣS, the
temperature, y(t,x), must remain under a maximum temperature yΣ\ΣS ≤ yφ, namely y(t,x) ≤ yΣ\ΣS . A
constraint, referred to as ”maximum temperature constraint out of the part” in the following, can then
be introduced

CΣ\ΣS(Γ,y) =
1
tF

∫
Σ\ΣS

∫ tF

0

[(
y(t,x)− yΣ\ΣS

)+]2
dtdx.

• Control of the defects. To avoid the appearance of defects in the part during its building (especially
residual stresses and deformations), the maximum temperature is required to stay below a fixed thresh-
old. Thus, at each point x ∈ ΣS, the temperature y(t,x) must remain below a maximum temperature yΣS ,
namely y(t,x) ≤ yΣS . The choice of the maximal temperature yΣS is somehow arbitrary and obviously
impacts the optimization results. For further details, the reader can refer to [9] and especially to Chapter
7. The ”maximum temperature constraint in the part” is thus defined by

CΣS(Γ,y) =
1
tF

∫
ΣS

∫ tF

0

[
(y(t,x)− yΣS)

+]2 dtdx.

The objective is to minimize the final time tF under the temperature constraints Cφ = CΣ\ΣS = CΣS = 0. This
leads to the following optimization problem:

min
Γ

J(Γ) = tF such that
{

Cφ =CΣS =CΣ\ΣS = 0,
y solution of (1).

(3)

Remark 1. The different constraints chosen for this model could be improved. The phase constraint Cφ is
built as if the change of phase were instantaneous whereas in reality, the temperature must stand above the
change of phase temperature for a small amount of time which could be modeled. Alternatively, the change of
phase temperature yφ could be chosen higher than the real one. The maximum temperature constraint in the
part CΣS is supposed to control the residual stresses. Of course, the resolution of a mechanical problem or the
control of the maximum temperature spatial gradient would provide more information. Improving these two
constraints is part of the perspectives.

3 Discrete model and optimization algorithm
To optimize the path, a descent gradient method is used. To compute the corresponding descent direction, the
optimization problem is first discretized, implying the choice of a working domain mesh and a path numerical
representation. Then, a numerical gradient is found and finally an optimization algorithm is set.

3.1 Path representation and discrete model
To develop an iterative optimization algorithm adapting the source path, a numerical framework must be
chosen, including a path representation and a mesh of the working domain Σ. We choose to maintain the
working domain mesh fixed along the iterations and to represent the path as a broken line (in the spirit of front
tracking methods, see [9, 47] for further details). Of course, other choices could be possible, like splines, as
in [2, 3], which are smoother but somehow more complex to manipulate. The broken line path can be defined
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through several variables. A first idea, developed in [9, 10], is derived from optimal control: most of the
resolution techniques for problems mixing partial and ordinary differential equations [16, 32, 50, 51] choose
the path curvature as control. In [9, 10], a path control based on the direction of each broken line segment has
been experimented. However, the control of the final time remains a complicated issue.
In this work, the broken line is represented by its nodes: at each iteration, we consider the path as a sequence
of Nu points u = (ui)i∈J1,NuK. The heat equation is discretized with an implicit Euler scheme following these
points with the time step defined by ∀i ∈ J1,Nu−1K, ∆ti = |ui+1−ui|/V (and V fixed to 1ms−1 in this section).
These (Nu−1) time steps depend on the path but we need an additional initial time step ∆t0 to have as many
of them as we have points ui in the path. The time step ∆t0 is arbitrarily fixed. This time step can be seen as
the required time for the source to be switched on. We set y0 = yini. Then, ∀i ∈ J0,Nu−1K, ρcP

yi+1− yi

∆ti
−∇(λ∇yi+1)+β(yi+1− yini) = Pexp

(
−|x−ui+1|2

r2

)
x ∈ Σ,

λ∂nyi+1 = 0 x ∈ ∂Σ.
(4)

The final time is given by:

tF =
Nu−1

∑
i=0

∆ti.

Because ∆t0 is arbitrarily fixed and not subject to optimization, it is removed from the final time sum in the
following. The constraints are discretized through an implicit scheme corresponding to the heat equation’s:

Cφ =
∫

ΣS

[(
yφ−Np

)+]2
dx =

∫
ΣS

yφ−

(
1
tF

Nu−1

∑
i=0

∆tiy
p
i+1

)1/p
+2

dx.

and 
CΣS =

1
tF

∫
ΣS

Nu−1

∑
i=0

∆ti
[
(yi+1− yΣS)

+]2 dx,

CΣ\ΣS =
1
tF

∫
Σ\ΣS

Nu−1

∑
i=0

∆ti
[(

yi+1− yΣ\ΣS

)+]2
dx.

Figure 3: Front-tracking approach: fixed
physical mesh and moving broken line path

discretization

Figure 4: Path representation by a broken line

This path description requires running a specific step after each path modification in order to keep its repre-
sentation correct. Indeed, at each iteration, each point of the sequence u is moved, modifying the distance
between two consecutive points. In [10], a rediscretization process has been described in the context of path
discretization under a steady state assumption. The same process is chosen here, forcing the distance between
two points to remain in a segment [dlower,dupper]. We choose in the following 2dlower = dupper = 1.4∆x where
∆x is the typical mesh cell length. This arbitrary choice results from a compromise between accuracy of the de-
scription (related to the physical mesh accuracy) and computational time (note that the choice of these bounds
impacts the optimal path, for further details on this topic, the interested reader is referred to [9]).

3.2 Differentiation of the discrete optimization problem with respect to the discrete
path

Because the optimization method chosen is a gradient descent, the differentiation of each function with respect
to the path is required. After discretization, this amounts to determining the derivative of each function with
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respect to the nodal points defining the broken line.

To set the dependence of the steps ∆t with respect to the points u, the definition of the discrete tangent vectors
is recalled:

∀i ∈ J1,Nu−1K, τΓi =
(ui+1−ui)

|ui+1−ui|
. (5)

In the sequel the differential of a function f (u) in the direction v is denoted by D f (u)(v). Proposition 1 gives
the derivative of each time step ∆ti (i ∈ J0,Nu− 1K) with respect to the nodal points. It is recalled that ∆t0 is
arbitrarily fixed and is thus independent from the points and V is fixed to 1 ms1.

Proposition 1. Let u = (ui)i∈J1,NuK ∈ ΣNu the nodal points of the path Γ. Then, the time steps are differentiable
with respect to u and, ∀v ∈ RNu×2,{

D∆ti(u)(v) = τΓi · (vi+1− vi) ∀i ∈ J1,Nu−1K,
D∆t0(u)(v) = 0

Propositions 2, 3, 4 and 5 respectively give the derivative of the final time tF, of the phase constraint Cφ, of the
maximum temperature constraint out of the part CΣ\ΣS and of the maximum temperature constraint in the part
CΣS with respect to the nodal points. The complete proofs, which are standard from a mathematical point of
view, can be found in [9], Chapter 7.

Proposition 2. Let u = (ui)i∈J1,NuK ∈ ΣNu the nodal points of the path Γ. Then, the final time tF is differentiable
at u and, with τΓ · v = τΓxvx + τΓyvy, ∀v ∈ RNu×2

DtF(u)(v) = τΓNu−1 · vNu +
Nu−1

∑
i=2

(τΓi−1− τΓi) · vi− τΓ1 · v1,

To compute the derivative of the phase constraint Cφ, a sequence of adjoint functions
(

pφ

i

)
i∈J1,NuK

∈ H1(Σ)Nu

is defined by a backward in time system such that ρcP
pφ

Nu

∆tNu−1
−∇

(
λ∇pφ

Nu

)
+βpφ

Nu
=

2
tF

(
yφ−Np

)+ N1−p
p yp−1

Nu
1ΣS inΣ

λ∂n pφ

Nu
= 0 on∂Σ,

(6)

and ∀i ∈ J1,Nu−1K, ρcP
pφ

i − pφ

i+1

∆ti−1
−∇

(
λ∇pφ

i

)
+βpφ

i =
2
tF

(
yφ−Np

)+ N1−p
p yp−1

i 1ΣS inΣ,

λ∂n pφ

i = 0 on∂Σ.

(7)

Proposition 3. Let u = (ui)i∈J1,NuK ∈ ΣNu the nodal points of the path Γ. Then, the phase constraint Cφ is
differentiable at u and, ∀v ∈ RNu×2,

DCφ(u)(v) =
[
−
(

HEφ

2 +Cφ

2

)
τΓ1−∆t0

2P
r2

∫
Σ

pφ

1 exp
(
−|x−u1|2

r2

)
(x−u1)dx

]
· v1

+
Nu−1

∑
i=2

[(
HEφ

i +Cφ

i

)
τΓi−1−

(
HEφ

i+1 +Cφ

i+1

)
τΓi−∆ti−1

2P
r2

∫
Σ

pφ

i exp
(
−|x−ui|2

r2

)
(x−ui)dx

]
· vi

+

[(
HEφ

Nu
+Cφ

Nu

)
τΓNu−1−∆tNu−1

2P
r2

∫
Σ

pφ

Nu
exp
(
−|x−uNu |2

r2

)
(x−uNu)dx

]
· vNu

with the adjoint
(

pφ

i

)
i∈J1,NuK

∈ H1(Σ)Nu solution to (6) and (7) and ∀i ∈ J2,NuK,


HEφ

i =
∫

Σ

(
λ∇yi ·∇pφ

i +β(yi−yini)pφ

i −Pexp

(
− (x−ui)

2

r2

)
pφ

i

)
dx,

Cφ

i =
∫

Σ

2
ptF

(
yφ−Np

)+ [Np−N1−p
p ypi

]
1ΣS dx.

To compute the derivative of the maximum temperature constraint out of the part CΣ\ΣS , a sequence of adjoint

functions
(

pΣ\ΣS
i

)
i∈J1,NuK

∈ H1(Σ)Nu is defined by a backward system in time such that
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 ρcP
pΣ\ΣS

Nu

∆tNu−1
−∇

(
λ∇pΣ\ΣS

Nu

)
+βpΣ\ΣS

Nu
=− 2

tF

(
yNu − yΣ\ΣS

)+
1Σ\ΣS inΣ

λ∂n pΣ\ΣS
Nu

= 0 on∂Σ,

(8)

and ∀i ∈ J1,Nu−1K,
ρcP

pΣ\ΣS
i − pΣ\ΣS

i+1

∆ti−1
−∇

(
λ∇pΣ\ΣS

i

)
+βpΣ\ΣS

i − 2
tF

(
yi− yΣ\ΣS

)+
1Σ\ΣS

inΣ

λ∂n pΣ\ΣS
i = 0

on∂Σ.

(9)

Proposition 4. Let u = (ui)i∈J1,NuK ∈ ΣNu the nodal points of the path Γ. Then, the maximum temperature
constraint out of the part CΣ\ΣS is differentiable at u and, ∀v ∈ RNu×2,

DCΣ\ΣS(u)(v) =
[
−
(

HEΣ\ΣS
2 +CΣ\ΣS

2

)
τΓ1−∆t0

2P
r2

∫
Σ

pΣ\ΣS
1 exp

(
−|x−u1|2

r2

)
(x−u1)dx

]
· v1

+
Nu−1

∑
i=2

[(
HEΣ\ΣS i+CΣ\ΣS

i

)
τΓi−1−

(
HEΣ\ΣS

i+1 +CΣ\ΣS
i+1

)
τΓi−∆ti−1

2P
r2

∫
Σ

pΣ\ΣS
i exp

(
−|x−ui|2

r2

)
(x−ui)dx

]
· vi

+

[(
HEΣ\ΣS

Nu
+CΣ\ΣS

Nu

)
τΓNu−1−∆tNu−1

2P
r2

∫
Σ

pΣ\ΣS
Nu

exp
(
−|x−uNu |2

r2

)
(x−uNu)dx

]
· vNu

with the adjoint
(

pΣ\ΣS
i

)
i∈J1,NuK

∈ H1(Σ)Nu solution to (8) and (9) and ∀i ∈ J2,NuK,
HEΣ\ΣS

i =
∫

Σ

(
λ∇yi ·∇pΣ\ΣS

i +β(yi−yini)pΣ\ΣS
i −Pexp

(
− (x−ui)

2

r2

)
pΣ\ΣS

i

)
dx,

CΣ\ΣS
i =

1
tF

[∫
Σ

[(
yi− yΣ\ΣS

)+]2
1Σ\ΣS dx−CΣ\ΣS

]
To compute the derivative of the maximum temperature constraint out of the part CΣS , a sequence of adjoint

functions
(

pΣS
i

)
i∈J1,NuK

∈ H1(Σ)Nu is defined by a backward system in time such that ρcP
pΣS

Nu

∆tNu−1
−∇

(
λ∇pΣS

Nu

)
+βpΣS

Nu
=− 2

tF
(yNu − yΣS)

+
1ΣS inΣ

λ∂n pΣS
Nu

= 0 on∂Σ,

(10)

and ∀i ∈ J1,Nu−1K, ρcP
pΣS

i − pΣS
i+1

∆ti−1
−∇

(
λ∇pΣS

i

)
+βpΣS

i =− 2
tF
(yi− yΣS)

+
1ΣS inΣ

λ∂n pΣS
i = 0 on∂Σ.

(11)

Proposition 5. Let u = (ui)i∈J1,NuK ∈ ΣNu the nodal points of the path Γ. Then, the maximum temperature
constraint in the part CΣS is differentiable at u and, ∀v ∈ RNu×2,

DCΣS(u)(v) =

[
−
(

HEΣS
2 +CΣS

2

)
τΓ1−∆t0

2P
r2

∫
Σ

pΣS
1 exp

(
− (x−u1)

2

r2

)
(x−u1)dx

]
· v1

+
Nu−1

∑
i=2

[(
HEΣS i+CΣS

i

)
τΓi−1−

(
HEΣS

i+1 +CΣS
i+1

)
τΓi−∆ti−1

2P
r2

∫
Σ

pΣS
i exp

(
− (x−ui)

2

r2

)
(x−ui)dx

]
· vi

+

[(
HEΣS

Nu
+CΣS

Nu

)
τΓNu−1−∆tNu−1

2P
r2

∫
Σ

pΣS
Nu

exp

(
− (x−uNu)

2

r2

)
(x−uNu)dx

]
· vNu

with the adjoint
(

pΣS
i

)
i∈J1,NuK

∈ H1(Σ)Nu solution to (10) and (11) and ∀i ∈ J2,NuK,
HEΣS

i =
∫

Σ

λ∇yi ·∇pΣS
i +β(yi−yini)pΣS

i −Pexp

(
− (x−ui)

2

r2

)
pΣS

i dx,

CΣS
i =

1
tF

[∫
Σ

[
(yi− yΣS)

+]2
1ΣS dx−CΣS

]
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3.3 Transformation of the derivatives into gradients
The previous Propositions 2, 3, 4 and 5 have computed derivatives of various functions (tF, Cφ, CΣS , CΣ\ΣS ),
which are generically denoted by f (u), with respect to the points u = (ui)i∈J1,NuK. The directional derivative
can be written, for all v ∈ RNu×2,

D f (u)(v) =
Nu

∑
i=1

∆tiGi · vi,

for some collection of values Gi ∈ R2, ∀i ∈ J1,NuK. This derivative D f (u) of f (u) must be transformed into
a gradient f ′(u) which lies in the same space as u. A first obvious idea consists in choosing this gradient as
f ′(u) ∈ RNu,2 such that ∀i ∈ J1,NuK,

f ′i (u) = Gi.

This would indeed lead to D f (u)(− f ′) =−∑
Nu
i=1 G2

i making f ′ a descent direction.

There exist other possibilities to define gradients. Copying the strategy used in classical shape optimization
[4, 12, 18, 39], a regularization process can be included into the transformation of the derivative into gradient:
this process consists in practice to diffuse the derivative information at a node ui to the neighbouring nodes
and thus prevent the path to get too irregular. The gradient f ′ ∈ RNu×2 is then defined as the solution to the
discrete diffusion equation such that, ∀v ∈ RNu,2,

Nu−1

∑
i=1

∆ti

[
ν

2
Γ

(
f ′i+1− f ′i

∆ti

)(
vi+1− vi

∆ti

)
+

f ′i+1vi+1 + f ′i vi

2

]
=

Nu−1

∑
i=1

∆ti
Gi+1vi+1 +Givi

2
. (12)

The regularization coefficient νΓ is arbitrarily fixed to νΓ = 20dlower. Note that, when f ′ is given by (12),
the direction − f ′ is a descent direction too. Further information on this regularization process as well as an
analysis of the impact of this coefficient on the optimal path can be found in [9], Chapter 7.

Remark 2. Note that the formula given in (12) does not exactly correspond to a scalar product when νΓ 6= 0.
Yet, the direction − f ′ is a descent direction and choosing = 0 amounts to a L2−scalar product.

3.4 Optimization algorithm
Recall that the optimization problem (3) consists in minimizing the final time tF while satisfying the temper-
ature constraints Cφ = CΣS = CΣ\ΣS = 0. The optimization variable in (3) is the path Γ. After discretization,
the path is a broken line with nodal points u. Therefore, in the sequel the optimization variable is u instead
of Γ. In order to deal with these constraints, an augmented Lagrangian method is chosen [41]. It consists in
applying a classical Lagrangian method to a penalized function which amounts to solve, with µφ, µΣS , µΣ\ΣS
fixed positive penalization coefficients,

min
u∈ΣNu

max
lφ∈R,lΣS∈R,lΣ\ΣS

∈R
LALM (13)

with
LALM = tF + lφCφ +

µφ

2
C2

φ + lΣSCΣS +
µΣS

2
C2

ΣS
+ lΣ\ΣSCΣ\ΣS +

µΣ\ΣS

2
C2

Σ\ΣS
.

At each iteration, the update direction chosen is d ∈ RNu×2 such that

d =−
[

t ′F(u)+(lφ +µφCφ)C′φ(u)+(lΣS +µΣSCΣS)C
′
ΣS
(u)+(lΣ\ΣS +µΣ\ΣSCΣ\ΣS)C

′
Σ\ΣS

(u)
]
, (14)

where t ′F, C′
φ
, C′

ΣS
and C′

Σ\ΣS
are computed solving the regularization equation (12). Each point ui is then moved

along the direction di so that
uk+1

i = uk
i + skdk

i . (15)

The step is given as sk =
Cs∆x

maxi∈J1,NuK |dk
i |

. The coefficient Cs is initialized to 1 and updated depending on the

success of the iteration, with the tolerance arbitrarily initialized to 2 and multiplied by 0.9 every 50 iterations:{
Ck+1

s = max(1,1.2Ck
s ), if Lk+1

ALM ≤ tolLk
ALM,

Ck+1
s = 0.6Ck

s , else.

The update of the Lagrange multipliers follows
lk+1
φ

= lk
φ
+µφCk

φ
,

lk+1
ΣS

= lk
ΣS
+µΣSCk

ΣS
,

lk+1
Σ\ΣS

= lk
Σ\ΣS

+µΣ\ΣSCk
Σ\ΣS

.

(16)
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In all numerical applications, the multipliers are initialized to 0 (l0
φ
= l0

ΣS
= l0

Σ\ΣS
= 0) and the penalization

coefficients are set to 10 (µφ = µΣS = µΣ\ΣS = 10). As for the number of iterations, it is bounded by 800.
However, if the coefficient Cs gets smaller than 10−6 the algorithm is stopped. A recap of the optimization
process is given in Algorithm 1.

1 mesh creation and initialization of the path;
2 rediscretization of the path;
3 resolution of the heat equation and computation of the objective function and constraints;
4 computation of the derivatives and regularization to get the descent direction;
5 while iteration n≤ 800 and Cs ≥ 10−6 do
6 update of the tolerance;
7 line variation such that Γn+1 = Γn + sndn;
8 rediscretization of the path;
9 resolution of the heat equation, computation of the objective function and constraint;

10 if LALM(Γn+1)< LALM(Γn)∗ toln then
11 iteration accepted;
12 Lagrange multiplier updated;
13 step increased ;
14 update of the variables;
15 computation of the derivatives and regularization to get the descent direction;
16 end
17 else
18 iteration refused;
19 step decreased;
20 end
21 end

Algorithm 1: Optimization iterative algorithm.

Remark 3. The temperature constraints are taken into account by an augmented Lagrangian method in our
optimization algorithm. This method is simple, easy to code and to explain. However, it only ensures the
fulfillment of the constraints at convergence which might not happen in a finite number of iterations. This
choice explains, in the numerical applications, that the constraints are slightly above 0 at the final iteration.
The model and optimization method proposed here could be used combined with other optimization algorithms
or other augmented Lagrangian coefficients (see [9] for an analysis of this issue). For example, the approach
proposed in [23] could be used and would probably lead to results better satisfying the constraints. This
remains part of the perspectives.

4 Numerical results

The working domain considered is Σ = [−0.7,0.7]× [−0.7,0.7] (given in mm) meshed with 12800 triangular
elements. The accuracy of the discretized path is chosen such that dlower = 0.7∆x≤ ∆u≤ 1.4∆x = dupper, with
∆x the mean mesh element size, and the regularization coefficient as νΓ = 20dlower. The coefficient ∆t0 is
fixed to dupper. The finite element analysis is performed with Freefem 3.56 [28] and Python 3.6.0. The reso-
lution of the different linear systems is done using a conjugate gradient method (library scipy.sparse.linalg.cg
in Python, with a tolerance set to 10−10 for the convergence). The complete code is available on github
(https://gitlab.labos.polytechnique.fr/mathilde.boissier/path-unsteady.git).

Two different materials are considered in the following: the aluminium and the titanium. The parameters
involved in the heat equation for each case are summed up in Table 1. We recall that the characteristic length
L as well as the coefficient β have been chosen according to a calibration of the model presented in Section
2 (see [9], Chapter 4 for further details). In both cases, the initial temperature is fixed to yini = 773K, the
source absorption coefficient A = 0.12, the source radius r = 5.0 ∗ 10−5m and the characteristic length L =
5.85∗10−5m.
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Metal ρcP λ P β yφ (K) yΣS (K) yΣ\ΣS (K)
JK−1m−3 Wm−1K−1 W WK−1m−3 K K K

Aluminium 2144∗103 130 400
λ

L∗1.17∗10−4 870 1670 870

Titanium 3536∗103 15 300
λ

L∗1.17∗10−4 1900 3400 1800

Table 1: Numerical values chosen in the aluminium and titanium test cases.

In both cases, four different shapes are associated to the part to build ΣS: a simple square included in the
working domain Σ (ΣS homothety with ratio 0.9 of the domain Σ) displayed by Figure 5(a)), and three different
”objects” (zero-hole, one-hole and three-holes) respectively shown by Figure 5(b),(c),(d).

(a) Square object,
|ΣS|= 1.59mm2

(b) Zero-hole object,
|ΣS|= 1.52mm2

(c) One-hole object,
|ΣS|= 1.18mm2

(d) Three-hole object,
|ΣS|= 1.13mm2

Figure 5: Different objects to build: the black area corresponds to ΣS

For each optimization test, the numerical values are given adimensionalized (|Σ| = 1.96mm2, |ΣS| given by
Figure 5 and |Σ\ΣS|= |Σ|− |ΣS|):

Cφ =
Cφ

|ΣS|y2
φ

, CΣS =
CΣS

|ΣS|y2
ΣS

, CΣ\ΣS =
CΣ\ΣS

|Σ\ΣS|y2
Σ\ΣS

. (17)

4.1 Aluminium test case
The aluminium test case is first considered. To illustrate the optimization process, a first optimization is
run starting from a zigzag with 6 lines. The path as well as the corresponding maximum temperature over
the building at different iterations are given by Figure 6. The evolution of the final time tF, the temperature
constraints Cφ, CΣS , CΣ\ΣS and the mean computational time per iteration is shown by Figure 7.

(a) Iteration 0 (Initial path) (b) Iteration 20 (c) Iteration 40 (d) Final iteration (390)

(e) Temperature colorbar (K)

Figure 6: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building with respect to the iterations,
starting from a zigzag with 6 lines (aluminium)
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(d) Maximum temperature constraint
outside CΣ\ΣS
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Figure 7: Evolution of the final time, the phase constraint, the maximum temperature constraints with respect
to the iterations, starting from a zigzag with 6 lines (aluminium)

In this first test, the final time, i.e. the length of the path (the source velocity being constant), is first drastically
reduced and then increased again, setting the new source points in accordance with the problem requirements.
The decrease of the constraints can be observed and, if they end up slightly greater than 0, this is mainly
because of the augmented Lagrangian method choice. As for the mean computational time, it is for most
iterations around 8s. Note that the conjugate gradient method used in the point-based problem to solve linear
problems could be accelerated by adding a preconditioner. This remains part of the perspectives.

The second test consists in starting from several different initializations to measure their impact on the final
path. The initializations and results of the ten tests run are presented in Figure 8. Final adimensionalized
values are summed up in Table 2. The graph of the final time with respect to the aggregated adimensionalized
constraint C =Cφ +CΣS +CΣ\ΣS in each case is given in Figure 9.
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Initialization Result (391)

(a) Zigzag with 3 lines

Initialization Result (390)

(b) Zigzag with 6 lines

Initialization Result (397)

(c) Zigzag with 9 lines

Initialization Result (391)

(d) Zigzag with 12 lines

Initialization Result (391)

(e) Zigzag with 15 lines

Initialization Result (386)

(f) Spiral

Initialization Result (397)

(g) Contour with 1 line

Initialization Result (383)

(h) Contour with 2 lines

Initialization Result (385)

(i) Contour with 3 lines

Initialization Result(381)

(j) Contour with 4 lines

(k) Temperature colorbar (K)

Figure 8: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the initialization
(aluminium)

Case tfin
F (s) Cφ

fin CΣS
fin CΣ\ΣS

fin

zigzag 3 lines 4.964e−03 1.72e−04 2.93e−09 1.00e−05
zigzag 6 lines 4.987e−03 1.32e−04 2.85e−09 1.34e−05
zigzag 9 lines 5.030e−03 1.54e−04 5.01e−09 9.11e−06

zigzag 12 lines 5.020e−03 1.16e−04 2.91e−09 1.49e−05
zigzag 15 lines 5.743e−03 1.16e−04 2.60e−09 2.23e−05

spiral 4.961e−03 1.75e−04 3.81e−09 5.13e−06
contour 1 line 4.983e−03 1.51e−04 3.70e−09 1.25e−05
contour 2 lines 4.925e−03 1.75e−04 4.44e−09 4.08e−06
contour 3 lines 4.930e−03 1.75e−04 4.27e−09 3.70e−06
contour 4 lines 4.849e−03 1.68e−04 3.12e−09 1.91e−06

Table 2: Comparison of the final cost and constraints of the final results (aluminium)
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Figure 9: Constraint C̄ =Cφ +CΣS +CΣ\ΣS with respect to the final time tF (s) for the final results (aluminium)

The first conclusion to these different tests is that the algorithm is efficient. Indeed, but for the result coming out
from the zigzag with 15 lines which final time is a little higher, each of the others appear intuitive and the final
quantities are alike. In particular, the final time belongs mostly to [4.9ms,5.1ms], justifying the introduction
of a notion of specific final time or energy (this notion has also been pointed out using a simplified steady
model, see [9]). Moreover, the optimized path shapes form disctinct clusters. Indeed, the contour with 2 and
3 lines lead to the same final path shape. A second cluster results from the 6-, 12- and 15-lines zigzag with a
slight difference for the 15-line leading to a supplementary line. In addition, these last three cases are the most
efficient with respect to the thermal constraints (see Figure 9).
In each of the cases, the phase constraint is not fully satisfied: for all the paths found, unmelted zones remain.
This is proscribed by industrial applications which would rather increase the maximum temperature inside the
part to build than leave powder unmelted. Thus the algorithm chosen should be modified to favor the phase
constraint, modification requiring some care. Indeed, the phase constraint is only approximated and underval-
ued (see Section 2.2): it is already slightly favored. Unbalancing the different constraints could then result in
large increases of the maximum temperature constraints. This algorithm modification could be dealt with by
using another optimization algorithm than the Augmented Lagrangian method but this study remains part of
the perspectives.

We finally focus on the building of three complicated geometries shown in Figure 5(b,c,d) (with respectively
(|Σa

S| = 1.52mm2, |Σb
S| = 1.18mm2 and |Σc

S| = 1.13mm2). For each object, the optimization is run for two
different initializations. The results for each object are presented by Figures 10, 11, 12, the graph shown in
Figure 13 and Table 3.
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Initialization Result (iteration 379)

(a) Initialization 1

Initialization Result (iteration 395)

(b) Initialization 2

Figure 10: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the
initialization for the zero hole object (aluminium)

Initialization Result (iteration 409)

(a) Initialization 1

Initialization Result (iteration 410)

(b) Initialization 2

Figure 11: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the
initialization for the one hole object (aluminium)

Initialization Result (iteration 386)

(a) Initialization 1

Initialization Result (iteration 397)

(b) Initialization 2

Figure 12: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the
initialization for the three holes object (aluminium)

Temperature colobar

Case tfin
F (s) Cφ

fin CΣS
fin CΣ\ΣS

fin

Zero hole
initialization 1 4.531e−03 1.46e−04 4.22e−09 2.39e−07
initialization 2 4.652e−03 1.68e−04 4.44e−09 1.31e−05

One hole
initialization 1 3.532e−03 2.60e−04 7.71e−09 5.63e−07
initialization 2 3.499e−03 2.77e−04 7.59e−09 5.36e−07

Three holes
initialization 1 3.710e−03 1.91e−04 6.67e−09 1.27e−04
initialization 2 3.900e−03 2.27e−04 1.50e−08 2.93e−04

Table 3: Comparison of the final cost and constraints of the final results for the zero, one and three holes
objects (aluminium)
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Figure 13: Constraint C̄ =Cφ +CΣS +CΣ\ΣS with respect to the final time tF (s) for the final results for the
zero, one and three hole objects (aluminium)

The results from path optimization for a specific geometry confirm the previous remarks. First of all, at
least for the two first objects, the algorithm leads to correct results and the final time values for the different
initializations are similar. On the second object, the behavior of the algorithm is very satisfying, respecting the
presence of the hole while showing a perfectly symmetrical and identical behavior for both initializations. As
for the third object, the optimization is very hard: the aluminium conductivity is high and the shape appears
very difficult to build while not melting the holes. This could be improved by better calibrating the model.
Indeed, if leading to results that can be interpreted in a physical way, it remains not perfect and based on
several assumptions. The developed method, yet requiring further work to accelerate the computations, could
easily be adapted to a more complicated model. This remains part of perspectives.

4.2 Titanium test case
The titanium test case is then considered. As its conductivity is lower than that of aluminum, complications
on the optimization process are expected. Indeed, a higher final time is required and, if this should increase
the number of admissible solutions, this also increases the number of local minima. A first optimization is
run starting from a zigzag with 12 lines. The path as well as the corresponding maximum temperature over
the building at different iterations are given by Figure 14. The evolution of the final time tF, the temperature
constraints and the mean computational time per iteration is shown by Figure 15.
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(a) Iteration 0 (Initial path) (b) Iteration 100 (c) Iteration 350 (d) Final iteration (588)

(e) Temperature colorbar (K)

Figure 14: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building with respect to the iterations,
starting from a zigzag with 12 lines (titanium).
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Figure 15: Evolution of the final time, the phase constraint, the maximum temperature constraints with
respect to the iterations, starting from a zigzag with 12 lines (titanium).

The algorithm is able to lengthen the path (and thus the final time since the source velocity is constant) on
the left and right sides (Figure 14(b)). Then, to remove the unmelted parts between the horizontal lines,
perturbations are introduced to fill the holes (Figure 14(c)). These perturbations are deeply related with the
regularization process (νΓ in (3.3)). Note that the maximum temperature constraint is always satisfied : start-
ing from this initialization, the maximum temperature should be chosen below 3400K to impact the final path.

Copying the tests run for the aluminium, several initializations are now tested. The initializations and results
are presented in Figure 16. Final adimensionalized values are summed up in Table 4. The graph of the final
time with respect to the aggregated adimensionalized constraint C̄ =Cφ +CΣS +CΣ\ΣS in each case is given in
Figure 17.
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Initialization Result (405)

(a) Zigzag with 6 lines

Initialization Result (447)

(b) Zigzag with 9 lines

Initialization Result (799)

(c) Zigzag with 12 lines

Initialization Result (497)

(d) Zigzag with 18 lines

Initialization Result (425)

(e) Zigzag with 21 lines

Initialization Result (401)

(f) Spiral

Initialization Result (415)

(g) Contour with 1 line

Initialization Result (393)

(h) Contour with 2 lines

Initialization Result (547)

(i) Contour with 4 lines

Initialization Result (575)

(j) Contour with 5 lines

(k) Temperature colorbar (K)

Figure 16: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the
initialization (titanium)

Case tfin
F (s) Cφ

fin CΣS
fin CΣ\ΣS

fin

zigzag 6 lines 2.243e−02 3.44e−07 0.00e+00 2.43e−05
zigzag 9 lines 2.307e−02 4.76e−07 0.00e+00 1.24e−05
zigzag 12 lines 1.874e−02 4.53e−04 0.00e+00 2.32e−07
zigzag 18 lines 2.246e−02 3.17e−06 0.00e+00 1.59e−05
zigzag 21 lines 2.496e−02 3.09e−06 0.00e+00 7.48e−06

spiral 2.386e−02 9.15e−06 0.00e+00 5.66e−06
contour 1 line 2.271e−02 1.79e−08 0.00e+00 6.99e−06
contour 2 lines 2.361e−02 1.20e−06 0.00e+00 1.83e−05
contour 4 lines 2.340e−02 1.01e−04 0.00e+00 4.68e−06
contour 5 lines 2.321e−02 1.32e−04 0.00e+00 5.19e−06

Table 4: Comparison of the final cost and constraints of the final results (titanium)
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Figure 17: Constraint C̄ =Cφ +CΣS +CΣ\ΣS with respect to the final time tF (s) for the final results (titanium)

The results in the titanium test case are a lot more intricate than in the aluminium case, with many more local
minima than with the aluminium. Yet, the optimization process works well with constraints satisfied and final
times that get quite close to one another even if starting from very different initializations. Indeed, but for two
of them, the final times all belong to [22.4ms,23.9ms]. The two exceptions are for the zigzag with 21 lines and
the zigzag with 12 lines. The first one has a very high initial final time and the algorithm does not manage to
reduce enough the path length. The second initialization seems quite close to a good optimum and does not
require much path modifications. The idea of specific energy is still valid when considering a material with
lower conductivity.
In order to facilitate the optimization and obtain results that could be applied in the industry, the optimization
should be run on smaller zones, thus reducing the number of local minima. We could then work on the ex-
pansion of these results for small domains to larger by concurrent optimization between several domains or
symmetry conditions. These developments are part of the perspectives.

Finally, as for the aluminium, for each of the objects given in Figure 5, the optimization is run for two different
initializations. The results for each object are presented by Figures 18, 19, 20, by the graph shown in Figure
21 and Table 5.
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Initialization Result (iteration 499)

(a) Initialization 1

Initialization Result (iteration 458)

(b) Initialization 2

Figure 18: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the
initialization for the zero hole object (titanium)

Initialization Result (iteration 419)

(a) Initialization 1

Initialization Result (iteration 466)

(b) Initialization 2

Figure 19: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the
initialization for the one hole object (titanium)

Initialization Result (iteration 417)

(a) Initialization 1

Initialization Result (iteration 459)

(b) Initialization 2

Figure 20: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building depending on the
initialization for the three holes object (titanium)

Temperature colobar

Case tfin
F (s) Cφ

fin CΣS
fin CΣ\ΣS

fin

Zero hole
initialization 1 2.238e−02 1.80e−10 0.00e+00 2.03e−05
initialization 2 2.050e−02 2.72e−08 0.00e+00 1.30e−05

One hole
initialization 1 1.643e−02 3.20e−09 0.00e+00 1.12e−05
initialization 2 1.564e−02 1.45e−07 0.00e+00 1.51e−05

Three holes
initialization 1 1.640e−02 1.03e−08 0.00e+00 4.59e−05
initialization 2 1.547e−02 2.68e−07 0.00e+00 4.67e−05

Table 5: Comparison of the final cost and constraints of the final results for the zero, one and three holes
objects (titanium)
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Figure 21: Constraint C̄ =Cφ +CΣS +CΣ\ΣS with respect to the final time tF (s) for the final results (titanium)

The results for each of the objects are better than for the aluminium. Indeed, the shape is better respected
while keeping the maximum temperature constraint low. This conclusion was expected. Since the titanium’s
conduction is lower than the aluminium’s, building thin bars is easier which explains the results obtained for
the object with three holes. However, the final paths are once again too complicated to be directly applied
in the industry: the curvature should be controlled and we could split the object to work on smaller domains
thus reducing the number of local minima. These adaptations to further industrial requirements are part of the
perspectives.

5 Conclusion and perspectives
We developed in this work a scanning path optimization algorithm controlling the residual stresses and taking
into account the unsteady character of the travelling heat source. Although the resulting paths are intricate,
especially for low conductivity materials, the optimization algorithm definitely proves its relevance since our
results corroborate tendencies already mentioned in the literature. First of all, in accordance with the steady
state case developed in [10], the results clearly depend on the initialization. Yet, whatever ”correct” initial-
ization is chosen, the scanning time and the constraints, for the optimized result, appear very similar: it hints
towards the existence of a required energy related to the material conductivity, the source properties (and es-
pecially its power) and the part’s shape and topology [9, 13, 14, 24]. This amount of energy could be a very
useful tool in the scanning path choice. Then, in accordance with the steady state case [11], the part’s shape
and topology impact the path quality. In particular, the shape thickness is involved into the path feasibility.
These promising results point out several perspectives in order to better understand how path and part’s shape
and topology are related. The optimization algorithm could be modified to better control the fulfillment of the
constraints, for example replacing the Augmented Lagrangian method by a null space gradient algorithm, as
developed in [23]. The path description could be made more complex: in particular, kinematics could be taken
into account. Indeed, in this work, the source velocity is assumed constant. However, it is not in practice and
it is very much path-dependent (the velocity especially depends on the path curvature): including a velocity
model (see [21] for example) would probably highly impact the optimal path. In a second phase, it would be
very interesting to allow the source to be switched on and off along the building. Finally, the residual stresses
control should be made more realistic by including a mechanical performance evaluation in the optimization.
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