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When Model-Checking Freeze LTL over
Counter Machines Becomes Decidable ?

Stéphane Demri1 and Arnaud Sangnier2

1LSV, ENS Cachan, CNRS, INRIA Saclay IdF, France
2Dipartimento di Informatica, Università di Torino, Italy

Abstract. We study the decidability status of model-checking freeze LTL over
various subclasses of counter machines for which the reachability problem is
known to be decidable (reversal-bounded counter machines, vector additions sys-
tems with states, flat counter machines, one-counter machines). In freeze LTL, a
register can store a counter value and at some future position an equality test can
be done between a register and a counter value. Herein, we complete an earlier
work started on one-counter machines by considering other subclasses of counter
machines, and especially the class of reversal-bounded counter machines. This
gives us the opportuniy to provide a systematic classification that distinguishes
determinism vs. nondeterminism and we consider subclasses of formulae by re-
stricting the set of atomic formulae or/and the polarity of the occurrences of the
freeze operators, leading to the flat fragment.

1 Introduction

Counter machines. Counter machines are ubiquitous computational models that provide
a natural class of infinite-state transition systems, suitable for modeling various applica-
tions such as broadcast protocols [17], time granularities [10] and programs with pointer
variables [6], to quote a few examples. They are also known to be closely related to data
logics for which decision procedures can be designed relying on those for counter ma-
chines, see e.g. remarkable examples in [5,3]. When dealing with this class of models,
most interesting reachability problems are undecidable but subclasses leading to de-
cidability have been designed including reversal-bounded counter machines [25], one-
counter machines [26], flat counter machines [18] and vector addition systems with
states (see e.g. [32]).
Model-checking with Freeze LTL. In order to verify properties on counter machines, we
aim at comparing counter values and we shall use the so-called freeze operator. The
freeze quantifier in real-time logics has been introduced in the logic TPTL, see e.g. [1].
The formula x · φ(x) binds the variable x to the time t of the current state: x · φ(x) is
semantically equivalent to φ(t). This variable-binding mechanism, quite natural when
rephrased in first-order logic, is present in various logical formalisms including for ex-
ample hybrid logics [22,2], freeze LTL [14] and predicate λ-abstraction [30]. Freeze
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LTL is a powerful extension of LTL that allows to store counter values in registers. In-
finitary satisfiability restricted to one register is already undecidable [14] just as model-
checking for nondeterministic one-counter machines [15], which is quite unexpected
since one-counter machines seem to be harmless operational models. Moreover, there
is some hope that model-checking happens to be more tractable than satisfiability since
more constraints are requested on models viewed as runs.
Our contribution. We carry on with the quest started in [15] to determine which classes
of counter machines admit decidable model-checking with freeze LTL. In the paper, we
consider the above-mentioned classes of counter machines for which the reachability
problem is decidable. We provide an exhaustive analysis completing [15]; some results
are obtained by adequately adapting known results to our framework or by designing
simple reductions. However, at each position, we may have to deal with more than one
counter values. Our main technical contributions allow us to establish the following
results with a special focus on reversal-bounded counter machines.

– Model-checking freeze LTL (written MCω(LTL↓)) over deterministic vector addi-
tion systems with states and deterministic reversal-bounded counter machines is de-
cidable (see Corollary 11). However, MCω(LTL↓) over reversal-bounded counter
machines is undecidable, even when restricted to one register (see Theorem 7).

– MCω(LTL↓) restricted to flat formulae over reversal-bounded counter machines is
decidable (see Corollary 17) as well as the restriction to positively flat formulae
over one-counter machines (see Theorem 18), partly by taking advantage of recent
results about parameterized one-counter machines [23].

A complete summary can be found in Section 8. As a nice by-product of the classifica-
tion we made, we show a tight relationship between reachability problems for parame-
terized counter machines and model-checking counter machines over the flat fragment
of freeze LTL (see Section 7.2). Besides, we believe that the principles underlying our
undecidability proof for MCω(LTL↓) over reversal-bounded counter machines could
be reused for other problems on such counter machines.

Because of lack of space, omitted proofs can be found in [16].

2 Standard Classes of Counter Machines

In this section, we recall standard definitions about various classes of counter machines.
We write N [resp. Z] for the set of natural numbers [resp. integers]. Given a dimension
n ≥ 1 and k ∈ Z, we write k to denote the vector with all values equal to k and ei to
denote the unit vector for i ∈ {1, . . . , n}. We recall that a semilinear set of Nn is a finite
union of linear sets. We often refer to Presburger arithmetic which consists of first-order
logic over the structure 〈N, 0,≤,+〉 (and more generally over 〈Z, 0,≤,+〉) [31]. It is
known that a subset of Nk is semilinear if and only if it is definable by a formula in
Presburger arithmetic [20].

2.1 Counter machines

A counter machine M is defined as a tuple 〈n,Q,∆, q0〉 where n ≥ 1 is the dimension
ofM ,Q is a finite set of control states,∆ ⊆ Q×G×A×Q is a finite set of transitions
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where G = {zero, true}n is the finite set of guards and A = {−1, 0, 1}n is the
finite set of actions, and q0 ∈ Q is the initial control state. Given a counter machine
M , we introduce the transition system TS(M) = 〈Q × Nn,−→〉 where Q × Nn is
the set of configurations and −→⊆ (Q × Nn) × (Q × Nn) is the transition relation:
for 〈q, v〉, 〈q′, v′〉 ∈ Q × Nn, we have 〈q, v〉 −→ 〈q′, v′〉 def⇔ there exists a transition
t = 〈q, g, a, q′〉 ∈ ∆ such that: v′ = v + a and for 1 ≤ c ≤ n, g(c) = zero implies
v(c) = 0. We write ∗−→ to denote the reflexive and transitive closure of −→ and the
reachability set of M is Reach(M)

def
= {〈q, v〉 | 〈q0, 0〉

∗−→ 〈q, v〉}. Observe that this
reachability set implicitly depends on the initial configuration 〈q0, 0〉: this is all what
we need in the sequel. A finite (resp. infinite) run in TS(M) is a finite (resp. infinite)
sequence ρ = 〈q0, 0〉 −→ 〈q1, v1〉 −→ . . .. A counter machine M is deterministic (also
known as single-path) whenever for each 〈q, v〉 ∈ Reach(M), there is at most one
configuration 〈q′, v′〉 such that 〈q, v〉 −→ 〈q′, v′〉. In the sequel, we shall use Minsky
machines that form a special class of deterministic 2-counter machines.

We present below two types of decision problems when C is a class of counter ma-
chines. The reachability problem for the class C is defined as follows: given a machine
M ∈ C and a configuration 〈q, v〉, does 〈q0, 0〉

∗−→ 〈q, v〉 ? Similarly, the generalized
repeated reachability problem for the class C is defined as follows: given a counter ma-
chine M ∈ C and N sets F1, . . . , FN of control states, is there a run of M such that for
1 ≤ i ≤ N , there is a control state in Fi that is repeated infinitely often?
1CM. One-counter machines are naturally defined as counter machines of dimension
one. Various logical formalisms have been introduced to specify the behavior of one-
counter machines, including Freeze LTL [15] and EF logic [21]. When one-counter
machines are enriched by a finite alphabet (so that transitions are labelled), the univer-
sality problem is undecidable [26], witnessing that this simple operational model can
lead to natural undecidable problems.
VASS. Vector addition systems with states (a.k.a. VASS) are known to be equivalent to
Petri nets, see e.g. [32], and they correspond to counter machines without zero-tests,
i.e. each guard has no component equal to zero. To be precise, we are a bit less liberal
than the usual definition since we only consider actions in {−1, 0, 1}n (instead of Zn)
but this does not make a real difference for all the developments made in this paper.
Flat counter machines. A directed graph G = 〈V,E〉 (with V ⊆ E × E) is said
to be flat whenever each vertex belongs to at most one cycle (path for which the ini-
tial and final vertices coincide). A counter machine 〈n,Q,∆, q0〉 is flat whenever (1)
between two control states there is at most one transition and (2) the directed graph
〈Q, {〈q, q′〉 ∈ Q2 : 〈q, g, a, q′〉 ∈ ∆}〉 is flat. Reachability problems have been con-
sidered for flat counter machines in [4,18]; for instance it is proved that flat counter
machines have an effectively computable semilinear set [4,18], see also [8].

2.2 Reversal-bounded counter machines

The class of reversal-bounded counter machines has been introduced in [25] by consid-
ering the following restriction: each counter performs only a bounded number of alter-
nations between increasing and decreasing mode. This class of counter machines is par-
ticularly interesting because it has been shown that each reversal-bounded counter ma-
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chine has a semilinear reachability set which can be effectively computed. We present
now a more general class of counter machines proposed in [19]. Given a bound b ∈ N,
we consider the number of alternations between increasing and decreasing mode when
the value of the considered counter is above b; if for each counter this number of alter-
nations is bounded by a constant k ∈ N, we say that the counter machine is k-reversal-
b-bounded. From now on, we say that a counter machineM is reversal-bounded if there
exist k, b ∈ N such that M is k-reversal-b-bounded and in the sequel, when reversal-
bounded counter machines are part of the instances of some decision problems, we
assume that they come with their k and b. As mentioned in [19], the above-defined
class of reversal-bounded counter machines contains those defined in [25] and it also
contains the counter machines for which the set of reachable configurations is finite.
To make the distinction, we will call the machines introduced in [25] Ibarra reversal-
bounded counter machines.
In [19], the authors prove that the reachability problem is decidable for reversal-bounded
counter machines (in fact their reachability set is also an effectively computable semi-
linear set) and in [33] it is proved that the generalized repeated reachability problem for
this class of machines is also decidable when considering only one set of control states
to be repeated infinitely often. The proof of this last result relies on the fact that this
problem is decidable for Ibarra reversal-bounded counter machines [11]. Note that we
can easily reduce the generalized reachability problem withN ≥ 1 sets of control states
to its restriction to only one set (the same way the emptiness problem for generalized
Bûchi automata can be reduced to the emptiness problem for Büchi automata).

Theorem 1. The generalized repeated reachability problem for reversal-bounded coun-
ter machines is decidable.

3 LTL with the Freeze Operator

In this section, we present a variant of temporal logic LTL with registers (also known
as Freeze LTL) in order to reason about runs from counter machines. In [15], LTL with
registers is used to specify properties about one-counter machines. The datum stored
in a register is the current counter value and equality tests are performed between a
register value and the current counter value. When dealing with counter machines, a
register can store the value of a counter c and test it later against the value of counter
c′ with possibly c 6= c′. Below, we present different ways to restrict the equality tests
between registers and counters.

Given a finite set Q of control states (possibly empty) and n ≥ 1, the formulae of
the logic LTL↓[Q,n] are defined as follows:

φ ::= q | ↑cr | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | φRφ | Xφ | ↓cr φ

where q ∈ Q, c ∈ {1, . . . , n} and r ∈ (N \ {0}). Intuitively, the modality ↓cr is used
to store the value of the counter c into the register r; the atomic formula ↑cr holds true
if the value stored in the register r is equal to the current value of the counter c. An
occurrence of ↑cr within the scope of some freeze quantifier ↓cr is bound by it; otherwise
it is free. A sentence is a formula with no free occurrence of any ↑cr.
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Models of LTL↓[Q,n] are runs of transition systems from counter machines of
dimension n and with a set of control states containing Q. Given a counter machine
〈n,Q′, ∆, q0〉 with Q ⊆ Q′ and a run ρ, we write |ρ| to denote its length in ω + 1
and the ith configuration (0 ≤ i < |ρ|) is denoted by 〈qi, vi〉. A counter valuation f
is a finite partial map from N \ {0} to N. Note that whenever f(r) is undefined, the
atomic formula ↑cr is interpreted as false. Given a run ρ and a position 0 ≤ i < |ρ|, the
satisfaction relation |= is defined as follows (Boolean clauses are omitted):

ρ, i |=f q
def⇔ qi = q

ρ, i |=f ↑cr
def⇔ r ∈ dom(f) and f(r) = vi(c)

ρ, i |=f Xφ
def⇔ i+ 1 < |ρ| and ρ, i+ 1 |=f φ

ρ, i |=f φ1Uφ2
def⇔ for some i ≤ j < |ρ|, ρ, j |=f φ2

and for all i ≤ j′ < j, we have ρ, j′ |=f φ1

ρ, i |=f φ1Rφ2
def⇔ for all i ≤ j < |ρ|, ρ, j |=f φ2

or for some i ≤ j < |ρ|, ρ, j |=f φ1
and for all i ≤ k ≤ j, ρ, k |=f φ2

ρ, i |=f ↓cr φ
def⇔ ρ, i |=f [r 7→vi(c)] φ

f [r 7→ vi(c)] denotes the register valuation equal to f except that the register r is
mapped to vi(c). In the sequel, we omit the subscript “f” in |=f when sentences are
involved. We use the standard abbreviations for the temporal operators (G, F, . . . ) and
for the Boolean operators and constants (⇒, >, ⊥, . . . ).

We defined below fragments of LTL↓[Q,n] by restricting the use of the freeze
operators. The strict fragment, written LTL↓,s[Q,n], consists in associating a unique
counter to each register (to store and to test). More precisely, a formula φ in LTL↓,s[Q,n]
verifies the following syntactic property: if ↓cr ψ is a subformula of φ, then φ has not
subformulae of the form either ↑c′r or ↓c′r ψ′ with c 6= c′. We also write LTL[Q] to
denote the fragment of LTL↓[Q,n] in which the atomic formulae of the form ↑cr are
forbidden (and therefore ↓cr becomes also useless).
Model-checking problems. The infinitary (existential) model-checking problem over
counter machines, written MCω(LTL↓[·, ·]), is defined as follows: given a counter ma-
chine M = 〈n,Q′, ∆, q0〉 and a sentence φ ∈ LTL↓[Q,n] with Q ⊆ Q′, is there an
infinite run ρ such that ρ, 0 |= φ? If the answer is “yes”, we write M |=ω φ. The
subproblem of MCω(LTL↓[·, ·]) with formulae restricted to LTL↓,s[Q,n] is written
MCω(LTL↓,s[·, ·]). Given n ≥ 1, we write MCω(LTL↓[·,n]) to denote the subprob-
lem of MCω(LTL↓[·, ·]) with counter machines of dimension at most n. Similarly, we
write MCω(LTL↓[∅, ·]) to denote the subproblem of MCω(LTL↓[·, ·]) with no atomic
formula made of control states. Similar notations are used with other fragments of
LTL↓[Q,n]. In this existential version of model checking, this problem can be viewed
as a variant of satisfiability in which satisfaction of a formula can be only witnessed
within a specific class of data words, namely the runs of the counter machine. Note that
results for the universal version of model checking will follow easily from those for the
existential version when considering fragments closed under negation or deterministic
counter machines.
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Flat formulae. We say that the occurrence of a subformula in a formula is positive
if it occurs under an even number of negations, otherwise it is negative. Let L be a
fragment of LTL↓[Q,n]. The flat fragment of L, written flat-L, is the restriction of
L where, for any occurrence of φ1Uφ2 [resp. φ2Rφ1], if it is positive then the freeze
operator ↓ does not occur in φ1, and if it is negative then the freeze operator ↓ does
not occur in φ2. A formula is positively flat when it is flat and no occurrence of the
freeze operator ↑ occurs in the scope of an odd number of negations. For example, the
formula below belongs to the positively flat fragment and it states that sometimes there
is a value of the counter 1 such that (1) infinitely often counter 2 takes that value if
and only if infinitely often counter 3 takes that value and (2) from some future position,
the counter 4 has always that value: F ↓11 [(GF ↑21⇔ GF ↑31) ∧ FG ↑41]. Considering flat
fragments remains a standard means to regain decidability: for instance flat fragments
of LTL variants have been studied in [9,7] (see also in [27, Section 5] the design of a
flat logical temporal language for model-checking pushdown machines). Section 7 shall
illustrate that flatness can lead to decidability but this is not always the case.

4 Preliminary Results

In this section, we present preliminary results that will be helpful to strenghten forth-
coming results and we present results for flat counter machines and one-counter ma-
chines based on existing works. We shall study the effects of restricting the set of atomic
formulae, for instance by allowing only atomic formulae that are control states [resp.
that are of the form ↑cr].

4.1 Purification, or how to get rid of control states

Control states can be viewed as an internal piece of information about the counter
machines and therefore, it is interesting to understand whether the absence of control
states among the set of atomic formulae (called herein purification) makes a difference.
Lemma 2 below roughly shows that control states can be always encoded by patterns
for various classes of counter machines.

Lemma 2.
Given a counter machine M = 〈n,Q,∆, q0〉 and a sentence φ in LTL↓[Q,n], one
can build in logspace a counter machine MP = 〈n + 1, QP , ∆P , q0〉 and a formula
φP ∈ LTL↓[∅, n+ 1] such that M |=ω φ iff MP |=ω φP . Moreover, M is deterministic
[resp. reversal-bounded, flat] iff MP is deterministic [resp. reversal-bounded, flat] and
φ ∈ LTL↓,s[Q,n] iff φP ∈ LTL↓,s[∅, n+ 1].

The proof consists in introducing an additional counter whose behavior in MP en-
codes the control states from M . The reduction in the proof of Lemma 2 does not
preserve the number of counters; however, a purification lemma can be also established
for the class of one-counter machines as shown in [15]. By the way, the construction
in [15] could be also adapted to encode control states by patterns however, it does not
preserve reversal-boundedness.
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4.2 Restricting the atomic formulae to control states

Before considering decidability issues with the freeze operator, it is legitimate to won-
der what happens when the atomic formulae are restricted to control states. We show
below that for all subclasses of counter machines considered in this paper, this restric-
tion leads to decidability (for flat counter machines, the proof is postponed to the next
subsection). Basically, the proof is a consequence of the two following properties: LTL
formulae can be translated into equivalent Büchi automata (see e.g. [35]) and repeated
reachability problem is decidable for the concerned subclasses of counter machines.

Theorem 3. MCω(LTL[·]) restricted to one-counter machines, VASS, and reversal-
bounded counter machines is decidable.

4.3 Existing results for two subclasses

In this paper, we wish to provide a complete classification with respect to the above-
mentioned subclasses. The two following results are known results recasted in our con-
text. First, we observe that LTL↓[Q,n] can be viewed as a fragment of the temporal
logic FOCTL?(Pr) [12] which extends the logic CTL? by allowing the use of Presburger
formulae as atomic propositions to describe sets of configurations for a counter ma-
chine. Since model-checking FOCTL?(Pr) over flat counter machines is decidable [12],
we establish the following theorem.

Theorem 4. MCω(LTL↓[·, ·]) restricted to flat counter machines is decidable.

Moreover, in [15], the authors obtain the following results concerning the model-checking
of LTL with registers over one-counter machines.

Theorem 5. [15] (I) MCω(LTL↓[·, 1]) is undecidable. (II) MCω(LTL↓[·, 1]) restricted
to deterministic one-counter machines is PSPACE-complete.

5 Nondeterministic Counter Machines

Herein, we consider the model-checking problems over LTL↓[Q,n] for nondeterminis-
tic counter machines. We have seen that for the class of one-counter machines the prob-
lem is undecidable (see Theorem 5(I)) whereas it is decidable for flat counter machines
(see Theorem 4). First, we observe that zero-tests can be easily encoded in LTL↓[Q,n]
by first storing the initial value of counters in some register r0 and then performing a
zero-test on counter c with the atomic formula ↑cr0 .

Theorem 6. MCω(LTL↓[·, ·]) restricted to VASS and to positively flat formulae with at
most one register is undecidable.

The proof is based on a simple encoding of zero-tests. For what concerns reversal-
bounded counter machines, we have the following result:

Theorem 7. MCω(LTL↓[·, 4]) restricted to reversal-bounded counter machines and to
formulae with at most one register is undecidable.
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To prove this result, we present a reduction from the halting problem for Minsky ma-
chines; note that a similar reduction is used in [28] in order to prove that in reversal-
bounded counter machines extended with equality tests between distinct counters, the
reachability problem is undecidable.

Proof. (sketch) Let M = 〈2, Q,∆, q0〉 be a Minsky machine (deterministic counter
machine with two counters) and qF ∈ Q be a final control state with no transition from
it. Without any loss of generality, we can assume that if 〈q, g, a, q′〉 ∈ ∆ performs a
decrementation, then the transition is of the form 〈q, true,−ec, q′〉 for some c ∈ {1, 2}.
Moreover, for q, q′ ∈ Q, the set {〈g, a〉 : 〈q, g, a, q′〉 ∈ ∆} contains at most one
element. Let us build the reversal-bounded counter machine M = 〈4, Q′, ∆′, (q0)∅〉 as
follows:

– Q′ = {qX : q ∈ Q, X ⊆ {1, 2}} (X records on which counter of M zero-test is
needed next),

– ∆′ is the smallest set of transitions satisfying the conditions below:
• for X ⊆ {1, 2}, 〈(q0)∅, true, 0, (q0)X〉 ∈ ∆′,
• for all 〈q, g, a, q′〉 ∈ ∆, we have 〈q1, true, a′, q′1〉 ∈ ∆′ assuming that
∗ q1 = qX with X = {c ∈ {1, 2} : g(c) = zero},
∗ for c ∈ {1, 2},
· a(c) = 1 implies a′(c) = 1 and a′(c+ 2) = 0,
· a(c) = −1 implies a′(c) = 0 and a′(c+ 2) = 1,
· a(c) = 0 implies a′(c) = a′(c+ 2) = 0.

• for X ⊆ {1, 2}, 〈(qF )X , true, 0, (qF )X〉 ∈ ∆ (final loops).

By construction, the counter machine M ′ is reversal-bounded since the four coun-
ters only increase. The idea behind this construction is that the first [resp. second] and
the third [resp. fourth] counters ofM ′ respectively count the number of incrementations
and decrementations of the first [resp. second] counter of M . No zero-test is performed
inM ′; in order to simulate a zero-test inM , we would need to test equality between two
counters, which is not allowed in our models. Consequently, we encode these equality
tests by formulae.

Let us build a formula φ in LTL↓[Q′, 4] such that M ′ |=ω φ iff the control state qF
can be reached from the initial configuration of M . We consider the following auxiliary
formulae (c ∈ {1, 2}):

φc
def
=

∨
q∈Q

∨
{c}⊆X⊆{1,2}

qX and φq
def
=

∨
X⊆{1,2}

qX .

We are now in position to define φ:

φ
def
= FφqF ∧

∧
c∈{1,2}

G(φc ⇒↓c1↑c+2
1 )∧

∧
c∈{1,2}

G(
∧

〈q,true,−ec,q′〉∈∆

q∅∧Xφq′ ⇒↓c1 ¬ ↑c+2
1 )

It remains to show that M ′ |=ω φ iff the control state qF can be reached in M . ut
The result of Theorem 7 can be refined by showing the undecidability of the strict
fragment MCω(LTL↓,s[·, 4]) restricted to reversal-bounded counter machines. Observe
that we shall modify the above developments while we are dealing with a strict fragment
for which each register is associated with a unique counter.

8



Theorem 8. MCω(LTL↓,s[·, 4]) restricted to reversal-bounded counter machines is
undecidable.

The proof takes advantage of a refinement in the contruction of the counter machineM ′

from the proof of Theorem 7 and it is interesting for its own sake. So far, it is still open
whether the problem is Σ1

1 -hard since we are “only” able to reduce the halting problem
to it.

6 Deterministic Counter Machines

In this section, we restrict ourselves to classes of deterministic counter machines. A
class C of deterministic counter machines has the PA-property def⇔ for each counter
machine M ∈ C, one can effectively build a formula φM (x0, . . . , xn+1) in Presburger
arithmetic such that for all j0, . . . , jn+1 ∈ N, 〈j0, 〈j1, . . . , jn〉〉 is the jn+1th configu-
ration of the unique run of M iff 〈j0, . . . , jn+1〉 |= φM (x0, . . . , xn+1) (assuming that
M has dimension n and its set of control states is viewed as a finite subset of N).

We show below that model-checking restricted to counter machines can be some-
times reduced to the decidable satisfiability problem for Presburger arithmetic.

Lemma 9. Let C be a class of deterministic counter machines. If C has the PA-property,
then the model-checking problem MCω(LTL↓[·, ·]) over counter machines in C is de-
cidable.

The proof of Lemma 9 is based on an internalization of the satisfaction relation in
Presburger arithmetic.

Lemma 10. Deterministic reversal-bounded counter machines and deterministic VASS
have the PA-property.

Corollary 11. MCω(LTL↓[·, ·]) is decidable when restricted to deterministic reversal-
bounded counter machines and deterministic VASS.

Checking whether a VASS is deterministic can be decided by using instances of the
covering problem (the problem is actually PSPACE-complete [24]). Checking whether
a reversal-bounded counter machine is deterministic is also decidable adding a counter
which counts each step and using the fact that the reachability set can be expressed
in Presburger arithmetic. By contrast, checking whether a counter machine is reversal-
bounded is undecidable [19].

7 Flat Freeze LTL

In this section, we consider the restriction of the model-checking problem to flat for-
mulae only. By Theorem 4, we already know that MCω(flat− LTL↓[·, ·]) restricted to
flat counter machines is decidable and that MCω(flat− LTL↓[·, ·]) restricted to VASS
is undecidable (the proof of Theorem 6 involves only flat formulae). It is worth ob-
serving that flat LTL↓[Q,n] strictly contains LTL[Q], and therefore we refine below
decidability results from Section 4.2.
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7.1 A detour to counter machines with parameterized tests

We introduce here parameterized counter machines in order to solve later model-che-
cking problems restricted to flat formulae. First, let us fix some definitions. A counter
machine with parameterized tests (shortly parameterized counter machine) is defined
as a counter machine M = 〈n,Q,∆, q0, Z〉 extended with a finite set Z of integer vari-
ables such that the guards g are among ({zero, true} ∪ {=(z), 6=(z), >(z), <(z) |
z ∈ Z})n. A concretization C of M is a map C : Z → N. Given a parameter-
ized counter machine M and a concretization C, we introduce the transition system
TS(M,C) = 〈Q × Nn,−→〉 where −→⊆ (Q × Nn) × (Q × Nn) is defined as follows:
for 〈q, v〉, 〈q′, v′〉 ∈ Q × Nn, we have 〈q, v〉 −→ 〈q′, v′〉 def⇔ there exists a transition
t = 〈q, g, a, q′〉 ∈ ∆ such that v′ = v + a, and for 1 ≤ c ≤ n, g(c) equals zero

implies v(c) = 0, g(c) is equal to =(z) implies v(c) = C(z), g(c) is equal to 6=(z)
implies v(c) 6= C(z), g(c) is equal to >(z) implies v(c) > C(z) and, g(c) is equal to
<(z) implies v(c) < C(z). A finite [resp. infinite] run in TS(M,C) is a finite [resp.
infinite] sequence ρ = 〈q0, 0〉 −→ 〈q1, v1〉 −→ . . .. The parameterized reachability prob-
lem for counter machines is defined as follows: given a parameterized counter machine
M and a configuration 〈q, v〉, is there a concretization C such that 〈q0, 0〉

∗−→ 〈q, v〉 in
TS(M,C)? Even if the parameterized reachability problem is obviously undecidable,
we will see in this section that some restrictions lead to decidability. We will say that a
parameterized counter machine is Ibarra reversal-bounded if the classical counter ma-
chine obtained by replacing each parameterized test by true is Ibarra reversal-bounded.
We have then the following result.

Theorem 12. [28] The parameterized reachability problem for Ibarra reversal-boun-
ded parameterized counter machines is decidable.

If a parameterized counter machine has no guard of the form either 6=(z) or <(z),
we say it is restricted. In [23], parametric one-counter machines are defined as ex-
tensions of one-counter machines extended with actions consisting in incrementing or
decrementing the unique counter with some parameterized integer constants. In [23], it
is shown that the reachability problem for this class of one-counter machines is decid-
able. Here is a corollary.

Lemma 13. The parameterized reachability problem for restricted parameterized one-
counter machines is decidable.

The proof of Lemma 13 consists in substituting each test of the form =(z) by the
following sequence of instructions: decrement by z, perform a zero-test and increment
by z. In order to encode the test >(z), we use the same technique except that we do not
introduce a zero-test between the decrementation (in fact we also add a decrementation
by 1 and an incrementation by 1) and the incrementation. Note that this method does
not work if we allow guards of the form either 6=(z) or <(z), because the value of
the counter cannot be negative, hence the decidability of the parameterized reachability
problem for one-counter machines remains an open problem.

We introduce here a new problem which is needed to reduce the considered model-
checking problem. The parameterized generalized repeated reachability problem for
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parameterized counter machines is defined as follows: given a parameterized counter
machine M , N sets F1, . . . , FN of control states, are there a concretization C and an
infinite run of TS(M,C) such that for 1 ≤ i ≤ N , one control state in Fi is repeated
infinitely often?

From the previous theorem and lemma, we deduce the following corollary.

Corollary 14. The parameterized generalized repeated reachability problem is decid-
able when considering Ibarra reversal-bounded parameterized counter machines and
restricted parameterized one-counter machines.

7.2 Flat formulae and parameterized counter machines

For MCω(LTL↓[·, ·]) restricted to flat formulae, we have the following result.

Theorem 15. There is a reduction from MCω(LTL↓[·, ·]) restricted to flat formulae to
the parameterized generalized repeated reachability problem for counter machines.

Proof. (sketch) Let M = 〈n,Q,∆, q0〉 be a counter machine and φ be a flat sentence
belonging to LTL↓[Q,n]. Without any loss of generality, we can assume that φ is in
negation normal form (which means that all the occurrences of negation appear only in
front of atomic formulae). Moreover, we can assume that if ↓cr ψ and ↓c′r′ ψ are distinct
occurrences of subformulae in φ, then r 6= r′ (this may just linearly increase the num-
ber of registers). Consequently, if ψ1Uψ2 [resp. ψ1Rψ2] is a subformula of φ, then the
freeze operator ↓ cannot occur in ψ1 [resp. ψ2]. We shall effectively build a parameter-
ized counter machine M ′ = 〈n,Q′, ∆′, q0, Z ′〉 and sets F1, . . . , FN ⊆ Q′ for which
there is a concretization C and an infinite run of TS(M ′,C) such that for 1 ≤ i ≤ N ,
one control state in Fi is repeated infinitely often iff M |=ω φ.
Let us fix some notations. As usual, the formula φ can be encoded as a finite tree whose
leaves are labelled by atomic formulae and internal nodes are labelled by (Boolean,
temporal or freeze) connectives. Each node of the formula tree corresponds naturally
to a subformula and the set of nodes can be viewed as a finite prefix-closed subset
occ(φ) ⊆ (N \ {0})∗ (finite sequence of natural numbers). Each element in occ(φ) cor-
responds to the occurrence of a subformula in φ; hence two occurrences may correspond
to the same subformula. The use of occurrences instead of subformulae is motivated by
the need to provide formal and clear statements in which occurrences are crucial. For
each occurrence u ∈ occ(φ), we write φ(u) to denote the corresponding subformula in
φ; for instance φ(ε) = φ. Moreover, when u is a prefix of u′, written u ≤pre u

′, we
know that φ(u′) is a subformula of φ(u). We write occ↓(φ) [resp. occ↑(φ)] to denote
the set of occurrences corresponding to formulae whose outermost connective is of the
form ↓cr [resp. ↑cr]. Let m = card(occ↓(φ)). Observe that if m = 0, then we are in the
case of MCω(LTL[·]) which has been treated in Section 4.2. In the sequel, we assume
that m > 0. Given u ∈ occ↑(φ) with φ(u) =↑cr, we write bind(u) to denote the longest
prefix of u (with respect to ≤pre) in occ↓(φ) such that φ(bind(u)) is of the form ↓c′r ψ
(i.e., with the same register). An atom X is a subset of occ(φ) satisfying the conditions
below (we abusively use subformulae to denote occurrences corresponding to formulae
with the appropriate outermost connective): (1) if ψ1 ∧ ψ2 ∈ X , then ψ1, ψ2 ∈ X;
(2) for all atomic formulae ψ ∈ X , {ψ,¬ψ} 6⊆ X; (3) if ψ1 ∨ ψ2 ∈ X , then either
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ψ1 ∈ X or ψ2 ∈ X; (4) if ↓cr ψ ∈ X , then ψ ∈ X . The set of atoms of φ is denoted
by AT(φ). A pair of atoms 〈X,X ′〉 is said to be one-step consistent iff the conditions
below hold true: (I) if ψ1Uψ2 ∈ X , then either ψ2 ∈ X or (ψ1 ∈ X and ψ1Uψ2 ∈ X ′);
(II) if ψ1Rψ2 ∈ X , then ψ2 ∈ X and (ψ1 ∈ X or ψ1Rψ2 ∈ X ′); (III) if Xψ ∈ X ,
then ψ ∈ X ′; (IV) No atom X ′′ strictly included in X ′ satisfies the conditions (I)–(III)
(by replacing X ′ by X ′′). We will now describe the construction of the parameterized
counter machine M ′ which will use m integer variables z1, . . . , zm. Intuitively, each
integer variable will be used to store the value of a register. In order to make explicit
this dependancy, we shall use a one-to-one map reg : occ↓(φ) → {1, . . . ,m}. We
define also a function counter : occ↓(φ) ∪ occ↑(φ) → {1, . . . , n} that indicates the
counter involved in the subformula. Given u ∈ occ↓(φ) such that φ(u) =↓cr ψ, we have
counter(u) = c and given u ∈ occ↑(φ) such that φ(u) =↑cr, we have counter(u) = c.
The set Q′ of control states is equal to {q0} ]Q × AT(φ) plus some auxiliary control
states that are introduced to perform tests. The relation ∆′ is defined as follows. First,
〈q0, true, 0, 〈q0, Y 〉〉 ∈ ∆′ whenever ε ∈ Y and no atom strictly included in Y contains
ε (init). Then, for each transition 〈q, g, a, q′〉 ∈ ∆ there is in ∆′ the following sequence
of transitions 〈q, Y 〉 · · · qaux1 · · · qauxT

g,a−→ 〈q′, Y ′〉 assuming that:

1. occ↓(φ) ∩ Y contains T1 elements, say u1, . . . , uT1
; occ↑(φ) ∩ Y contains T2

elements, say uT1+1, . . . , uT1+T2
; {u ∈ Y | u·1 ∈ occ↑(φ) and φ(u) is a negation}

contains T3 elements, say uT1+T2+1, . . . , uT1+T2+T3
with T = T1 + T2 + T3,

2. 〈Y, Y ′〉 is a one-step consistent pair,
3. {φ(u) : u ∈ Y } ∩Q ⊆ {q} and ¬q 6∈ {φ(u) : u ∈ Y },
4. for i ∈ {1, . . . , T1} [resp. i ∈ {1, . . . , T2}, i ∈ {1, . . . , T3}], before reach-

ing the control state qauxi [resp. qauxT1+i
, qauxT1+T2+i

], there exists a transition test-
ing equality [resp. equality, inequality] between zk and the counter counter(ui)
[resp. counter(uT1+i), counter(uT1+T2+i)] with the identity k = reg(ui) [resp.
k = reg(bind(uT1+i)), k = reg(bind(uT1+T2+i))].

Finally, let u1, . . . , uN be the occurrences in occ(φ) such that the outermost tem-
poral connective of φ(ui) is the until operator U. Then, for 1 ≤ i ≤ N , Fi = {〈q, Y 〉 :
ui 6∈ Y or (ui ·2) ∈ Y }. It remains to show thatM |=ω φ iff there exist a concretization
C and an infinite run of TS(M ′,C) such that for 1 ≤ i ≤ N , one control state in Fi is
repeated infinitely often. ut

7.3 Decidability results

Remark that if the counter machine M is Ibarra reversal-bounded, then the parame-
terized counter machine M ′ built from M and the flat formula φ is Ibarra reversal-
bounded. Using Corollary 14 and Theorem 15, we conclude that MCω(LTL↓[·, ·]) re-
stricted to Ibarra reversal-bounded counter machines and to flat formulae is decidable.
Furthermore this can be extended to the class of reversal-bounded counter machines,
using Lemma 16 below.

Lemma 16. There is an exponential-time reduction from MCω(LTL↓[·, ·]) restricted to
reversal-bounded counter machines into MCω(LTL↓[·, ·]) restricted to Ibarra reversal-
bounded counter machines. Furthermore this reduction preserves flatness of the formu-
lae.
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Corollary 17. MCω(LTL↓[·, ·]) restricted to reversal-bounded counter machines and
to flat formulae is decidable.

Finally, assume the formula φ is a positively flat formula (see Section 3). For all
atoms Y ∈ AT(φ), the set {u ∈ Y | u · 1 ∈ occ↑(φ) and φ(u) is a negation} is empty.
So, in the construction of M ′ from M and φ, we only use parameterized tests of the
form =(z). Hence, if M is a one-counter machine and φ is a positively flat formula, we
deduce that M ′ is a restricted parameterized one-counter machine. Using Corollary 14
and Theorem 15, we get the result below.

Theorem 18. MCω(LTL↓[·, ·]) restricted to one-counter machines and to positively
flat formulae is decidable.

In order to extend Theorem 18 to the full flat fragment, one needs to perform inequality
tests in parameterized one-counter machines, which is so far unclear how to perform
while preserving decidabibility of the corresponding parameterized reachability prob-
lem. This generalization is left as an open problem.

8 Concluding Remarks

In this paper, we have studied the decidability status of model-checking freeze LTL over
various subclasses of counter machines for which the reachability problem is known to
be decidable. Our most remarkable technical contributions concern reversal-bounded
counter machines and flat formulae. Besides, we have established an original link be-
tween reachability problems for parameterized counter machines and model-checking
counter machines over the flat fragment of freeze LTL. The table below contains a sum-
mary of the main results (D stands for decidability, U for undecidability) in which
the columns referred to restriction either on the counter machines or on the formulae.
Sometimes, an additional restriction between parentheses is indicated in order to em-
phasize that the result holds true for a stricter fragment. Bibliographical references in
the table indicate that the related result is mainly due to the referred work.

Det. NDet. Flat formulae No ↑cr
RB D U (strictness) D D

Cor. 11 Theo. 8 Cor. 17 [11]
1CM PSPACE-C. U (1 reg.) open |D for pos. flatness PSPACE-C.

[15] [15] Theo. 18 [34,13]
Flat CM D D D D

Theo. 4
VASS D U (1 reg.) U D

Cor. 11 Theo. 6 Theo. 6 [29]

Here are a few rules of thumb: determinism, flat counter machines and no freeze lead
to decidability. However, flat formulae often guarantee decidability (except for VASS)
whereas reversal-boundedness can lead to decidability (but the restriction with a single
register leads to undecidability). Finally, throwing away the atomic formulae made of
control states does not help for decidability. Even though we have established various
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decidability results, the complexity of the decision problems is far from being known,
mainly because we use reductions to Presburger arithmetic. Such characterizations are
part of future work.
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