
HAL Id: hal-03201846
https://hal.science/hal-03201846

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Global sensitivity based estimability analysis for the
parameter identification of Pitzer’s thermodynamic

model
Ilias Bouchkira, Abderrazak Latifi, Lhachmi Khamar, Saad Benjelloun

To cite this version:
Ilias Bouchkira, Abderrazak Latifi, Lhachmi Khamar, Saad Benjelloun. Global sensitivity based
estimability analysis for the parameter identification of Pitzer’s thermodynamic model. Reliability
Engineering and System Safety, 2021, 207, pp.107263. �10.1016/j.ress.2020.107263�. �hal-03201846�

https://hal.science/hal-03201846
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Global sensitivity based estimability analysis for the parameter
identification of Pitzer’s thermodynamic model

Ilias Bouchkiraa,b, Abderrazak M. Latifia,b,∗, Lhachmi Khamara, Saad Benjellouna

aMohammed VI Polytechnic University , Lot 990 Hay Moulay Rachid, Benguerir 43150, Morocco
bLaboratoire Réactions et Génie des Procédés, CNRS-ENSIC, Université de Lorraine, 1 rue Grandville, BP20451, 54001, Nancy Cedex,

France

Abstract

This paper deals with parameter estimability analysis and identification of the Pitzer model used in the prediction
of thermodynamic properties and phase equilibria of electrolytic solutions. The estimability analysis method used is
based on the orthogonalization of a sensitivity matrix to rank the unknown parameters from the most estimable to
the least estimable. Although the obtained results are interesting, the algorithm shows its limits since it is based
on the local sensitivities of the outputs with respect to the unknown parameters of the model and may significantly
affect the reliability of the model. In this work, the algorithm is improved by computing the sensitivities by means of
the method of global sensitivity analysis. For demonstration purposes, different sets of experimental measurements of
sulfuric acid solutions are carried out at different temperatures and acid concentrations. They mainly consist of pH,
density, conductivity and molality measurements. The improved algorithm is then applied to each of the experimental
sets. The most estimable parameters are determined and identified using a branch-and-reduce optimization method and
their accuracy is assessed by means of confidence intervals. Finally, the quality of the model is quantified by computing
the Pearson product-moment coefficient, its high values show a very good agreement between the predictions and the
measurements.

Keywords: Estimability analysis, Global sensitivity analysis, Thermodynamics, Pitzer model, Sulfuric acid solutions.

1. Introduction

In process engineering, different models are developed
for prediction, design, optimization, and control of a
single unit operation or a set of (inter) connected unit
operations (i.e. plant). They are very often first principle
models and consist of momentum, mass and energy
balances along with equations describing thermodynamic,
kinetic, and hydrodynamic phenomena. These models
inevitably involve several unknown parameters that are
often deduced from experimental measurements by means
of a parameter identification method.

In the literature, most studies assume that the available
experimental measurements contain the necessary infor-
mation to accurately identify all the unknown parameters
involved in the models. However, it is well recognized
that it is not always the case. Indeed, due to limited data,
noisy measurements, or sometimes correlated designs of
experiments, the estimation of the unknown parameters
may not be accurate [14] and the underlying question is
to know which parameters are estimable from the avail-
able measurements and whether it is possible to design
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appropriate experiments to determine the least estimable
ones. To answer these questions, several research works
have been devoted to the development of parametric
estimability analysis methods [35-41]. They allow to
rank the unknown parameters from the most estimable
to the least estimable using the available experimental
measurements.

One of the most interesting estimability analysis
method was developed by Yao et al. [28]. It is a direct
selection method based on the building of a sensitivity
matrix of the model outputs with respect to the unknown
parameters and its use within an orthogonalization algo-
rithm. The method has proven to be effective provided
that the estimability threshold value used is optimal.
However, the method exhibits two major limitations.
The first one deals with the choice of the estimability
threshold value, which is actually made almost arbitrary.
Therefore, the number of estimable parameters depends
significantly on its chosen value. The second limitation
concerns the sensitivity matrix whose formation is based
on the computation of local sensitivities which depend
on the initial values used for the unknown parameters.
The resulting order of estimability of parameters may
therefore change from one set of initial values to another.
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Nomenclature

AΦ Debye-Hückel constant
C Covariance matrix
C.I. Confidence interval
cjj jth diagonal element of the matrix
d Number of model parameters
E Mathematical expectation
F (P ) Objective function
Gex Free energy of Gibbs
I Ionic strength (mol/kgw)
J Jacobian matrix
Ki Equilibrium constant at Ti
Ki0 Equilibrium constant at 25◦C
L Number of the most estimable paremeters
mi Molale concentration of component i
N Number of P samples
n Number of data points
P Vector of parameters
Pi,j Pitzer interaction parameter
P ∗ Vector of optimal parameters
Pj Average parameter j
pH pH of the aqueous phase
r Pearson product-moment coefficient
R Gas constant Jmol−1K−1

Si,j Total Sobol sensitivity of Parameter j with
respect to the measurement i

S∗i,j Normalized sensitivity index
S
e

i,j Average of experimental measurements
S
m

i,j Average of model predictions
T Temperature (K)
V Total variance of a model output
V̂ Standard deviation of the model outputs
W Weighing matrix
Wn Mole fraction of water
yi Average of the ith model output
Z Sensitivity matrix
zi Electrical charge of component i

Greek letters

γi Activity coefficient of a component i
βi,j Pitzer binary interaction parameters

δi,j Number of elements j in component i

∆H Enthalpy of reaction (kJ)

θ(P ) Residue vector

λi,j Pitzer binary interaction parameters

ψi,j,k Pitzer ternary interaction parameter

To overcome the arbitrary choice of the estimabil-
ity threshold value, Wu et al. [14] and Eghtesadi and
McAuley [15] have further developed the algorithm of Yao
et al. [28] by proposing a forward selection methodology
based on a mean-square error for simultaneous ranking
and selection of parameters. Although the obtained
results are very promising, the methodology is still
dependent on how the elements of the sensitivity matrix
are computed. In most cases, and particularly in some
of our recent works [30-31], they are approximated by
means of a centered finite difference method at a given set
of initial values of the parameters (local sensitivities). A
computation method of sensitivities which is independent
of initial values of the parameters would significantly
improve the estimability analysis method.

This is the objective of this paper which aims to
develop an estimability analysis approach based on global
sensitivities which are no longer influenced by the initial
values of the model parameters. More specifically, the
Sobol method [9] based on the decomposition of the total
variance into a sum of different partial variances will be
used. The case study deals with the prediction of physical
properties and phase equilibria of concentrated sulfuric
acid solutions using the Pitzer thermodynamic model.
The latter is included as a thermodynamic property
prediction method in several flowsheeting computation
codes such as Aspen Hysys [34], Pro/II [17], PhreeqC
[32] etc. Accurate estimation of its unknown parameters
would definitely improve the design and operation of
processes involving electrolytic solutions.

The paper is organized as follows. Section 2 describes
the thermodynamic modeling of sulfuric acid solutions.
The sensitivity and estimability analysis approaches are
presented in Section 3, while the results are discussed in
Section 4. Finally, a conclusion and perspectives of the
work are provided in Section 5.

2. Pitzer’s thermodynamic model

The Pitzer thermodynamic model [24] is widely used
to describe the interactions between dissolved ions and
solvent (water). Its use therefore depends on the chem-
ical species present in solution (i.e. speciation) as well
as their molalities. This section first presents the chem-
ical speciation of sulfuric acid solutions, then the mass
and charge balances, the Pitzer model equations as well
as its unknown parameters, and finally the experimental
measurements to identify them and to validate the model
predictions.
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Table 1: Matrix of components

j index 1 2 3 charge zi
i index components S H O

1 H+ 0 1 0 +1
2 HSO−4 1 1 4 -1
3 SO2−

4 1 0 4 -2

2.1. Chemical speciation of sulfuric acid solutions

In water, sulfuric acid may dissociate into different ions
depending on operating conditions such as temperature,
pressure and total molality [1-6] as :

H2SO4 −−→ HSO4
− + H+ (1)

HSO4
− K1−−⇀↽−− SO4

2− + H+ (2)

The first equation is considered complete, i.e. the
sulfuric acid undergoes total speciation, whereas the
second equation is in equilibrium. The chemical species
present in the aqueous solution are therefore H+, HSO−4
and SO2−

4 ions.

The Arrhenius-type equation is used to compute the
equilibrium constants at different temperatures as [22]:

log(Ki) = log(Ki0) +
∆H

R

(
1

Ti
− 1

T0

)
(3)

where Ki0 and ∆H are the reference equilibrium con-
stant and enthalpy respectively. Their values are taken
from the Minteq thermodynamic database [23].

2.2. Mass and electroneutrality balances and ionic strength

The development of mass and electroneutrality balances
is based on the matrix of chemical components present in
the aqueous medium. Table 1 lists the number of chemical
elements (i.e. sulfur (S), hydrogen (H) and oxygen (O))
contained in each component involved in the reactions of
sulfuric acid dissociation (Eqs.1 and 2). The charge zi of
each component i is also reported.

Mass and electroneutrality balances are given by the
following equations :

(S)Total =

i=3∑
i=1

δi,1mi (4)

(H)Total =

i=3∑
i=1

δi,2mi (5)

(O)Total =

i=3∑
i=1

δi,3mi (6)

i=3∑
i=1

qizimi =

i=3∑
i=1

nizimi (7)

where mi is the molality of the component i, δi,j is the
number of the chemical element j in the component i. qi
is equal to 1 if the ith component is charged + and to 0
otherwise. Likewise, ni is equal to 0 if the ith component is
charged + and to 1 otherwise. The ionic strength, denoted
I, is expressed as:

I =
1

2

i=3∑
i=1

miz
2
i (8)

In order to solve the resulting model equations which
consist of equilibrium constants, material and electroneu-
trality balances and ionic strength, it is important to
compute the activity coefficients of the ions present in
the aqueous phase. It is noteworthy that for electrolytic
systems where the ionic strength is very low, some
empirical expressions can accurately approximate these
activity coefficients such as the Debye-Huckel equation [7].
However, when the ionic strength is high, it is necessary
to use a suitable thermodynamic model.

In this work, we consider the Pitzer model [24, 27] as
one of the most used, flexible and accurate models that can
be used to compute the activity coefficients of the ions.

2.3. Pitzer model equations

The Pitzer model equations [24] allow computing impor-
tant properties such as osmotic and activity coefficients of
ions based on the basic viriel development of excess free
enthalpy as:

Gex

WnRT
= f(I) +

∑
i,j

mimjλi,j +
∑
i,j,k

mimjψi,j,k + ... (9)

The derivative of this expression of Gibbs free energy with
respect to the mole fraction of an ion allows to compute
its activity coefficient in the aqueous phase as [24]:

ln(γi) = fγ(I) + 2
∑
j

mjλi,j(I) + z2
i

∑
j

∑
k

mjmkλ
′

i,j(I)

+3
∑
j

∑
k

mjmkψi,j,k + ... (10)

where fγ(I) is the derivative of the Debye-Huckel term.
λi,j(I) and λ

′

i,j(I) are the binary interaction parameters
and their derivatives with respect to ionic strength respec-
tively, and expressed as :

λi,j(I) = β
(0)
i,j + β

(1)
i,j

2

1.2

(
1− (1 + α

√
I)e−α

√
I
)

(11)

λ
′

i,j(I) =
β

(1)
i,j

α2I

(
−1 + (1 + α

√
I + αI)e−α

√
I
)

(12)
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The resulting model involves many unknown pa-
rameters that should be identified from experimental
measurements. In our case, the Pitzer model involves
binary interaction parameters β(0)

i,j and β(1)
i,j , and a ternary

interaction parameter ψi,j,k between H+, HSO−4 and
SO2−

4 ions. The binary interaction parameters β(0)
i,j and

β
(1)
i,j between these different ions are involved in (Eqs 11

and 12). It is assumed that βi,j = βj,i and the binary
interaction parameters between the same ions are equal
to zero [24].

The number of interaction parameters is therefore 7,
i.e. 6 binary and 1 ternary parameters (Table 2). Since
they are temperature dependent, all the parameters are
expressed as functions of temperature as [20]:

β
(0)
i,j (T ) = a

(0)
i,j + b

(0)
i,j .T +

c
(0)
i,j

T
(13)

β
(1)
i,j (T ) = a

(1)
i,j + b

(1)
i,j .T +

c
(1)
i,j

T
(14)

ψi,j,k(T ) = a
(2)
i,j,k + b

(2)
i,j,k.T +

c
(2)
i,j,k

T
(15)

As a result, the total number of 21 parameters (listed
in Table 2) are to be determined from the experimental
measurements. However, it is essential to have access to a
database of experimental measurement in order to identify
these unknown model parameters.

2.4. Experimental methods and measurements

For demonstration purposes, different sets of experi-
mental measurements of sulfuric acid solutions are carried
out. They consist of pH, density, electrical conductivity
and total concentrations measurements obtained as fol-
lows : (i) the pH measurements are carried out by means
of a glass electrode pH meter which was calibrated using a
KCl solution at different temperatures, (ii) a pycnometer
of known volume and mass is used to measure the density
of the samples, (iii) the total molal concentrations of
the ions present in the acid solutions are calculated
using a specific conductivity based method developed by
McCleskey et al. [33].

For all experiments, a pure (98w%) sulfuric acid
purchased from Sigma Aldrich is used to prepare different
samples of 100 ml. The temperature and concentration of
the samples vary from 298 K to 353 K and from infinite
dilution to 4 moles/kgw respectively.

The question that arises is to know whether the available
experimental data contain the necessary information to
identify all the unknown parameters or only some of them.
To answer this question, an estimability analysis method
is developed and described in the next section.

Table 2: Unknown parameters of the investigated model

β
(0)
i,j

1 a
(0)

HSO
−
4 ,SO

2−
4

8 b
(0)

HSO
−
4 ,SO

2−
4

15 c
(0)

HSO
−
4 ,SO

2−
4

2 a
(0)

HSO
−
4 ,H+

9 b
(0)

HSO
−
4 ,H+

16 c
(0)

HSO
−
4 ,H+

3 a
(0)

SO
2−
4 ,H+

10 b
(0)

SO
2−
4 ,H+

17 c
(0)

SO
2−
4 ,H+

β
(1)
i,j

4 a
(1)

HSO
−
4 ,SO

2−
4

11 b
(1)

HSO
−
4 ,SO

2−
4

18 c
(1)

HSO
−
4 ,SO

2−
4

5 a
(1)

HSO
−
4 ,H+

12 b
(1)

HSO
−
4 ,H+

19 c
(1)

HSO
−
4 ,H+

6 a
(1)

SO
2−
4 ,H+

13 b
(1)

SO
2−
4 ,H+

20 c
(1)

SO
2−
4 ,H+

ψi,j,k

7 a
(2)

HSO
−
4 ,SO

2−
4 ,H+

14 b
(2)

HSO
−
4 ,SO

2−
4 ,H+

21 c
(2)

HSO
−
4 ,SO

2−
4 ,H+

3. Estimability analysis method

The estimability analysis method used in this work is
based on the computation of sensitivities of the measured
outputs with respect to the unknown parameters of the
model and implemented within an orthogonalization algo-
rithm described below.

3.1. Orthogonalization-based methods

Among the parameter selection methods developed in
the literature, the orthogonalization based methods have
proven to be particularly relevant to rank the parameters
from the most to the least estimable. The method used
in this work is based on the use of a sensitivity coefficient
matrix Z that is computed from the individual sensitivity
coefficients Sij as [16, 18, 28] :

Z =


S1,1 |m1,T1 · · · S1,d |m1,T1

...
. . .

...

Sn,1 |mn,Tn · · · Sn,d |mn,Tn


where Ti is the operating temperature, mi is the total mo-
lality of H2SO4, d is the number of unknown parameters
and n is the number of experimental measurements. In
the Z matrix, the individual sensitivity coefficients Si,j
are usually approximated by means of a finite difference
method as:

Si,j ≈
∆Yi
∆Pj

, i ∈ [1;n], j ∈ [1; d] (16)

where Yi is the ith model output (e.g., ion concentration
or water activity) and Pj is the jth unknown parameter.
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The components of the vector P of the unknown param-
eters are defined by the coefficients listed in Table 2. The
elements Si,j are then multiplied by scaling factors, i.e.
Pj and Yi, in order to ensure dimensional consistency and
guarantee the same order of magnitude of the elements:

S∗i,j =
Pj

Yi
Si,j (17)

The Z matrix is then implemented within the estimabil-
ity algorithm developed by Yao et al. [28] in order to rank
the parameters. Moreover, the implementation of this
method requires the definition of an estimability threshold
whose value is chosen almost arbitrarily. The number of
the most estimable parameters therefore depends on the
chosen value of the threshold and thus makes the method
less robust.

To overcome this arbitrary choice, Wu et al. [14] proposed
a method based on the computation of the mean-square
errors. The algorithm of their method is presented below.
To overcome this arbitrary choice, Wu et al.

• Rank the parameters from the most to the least es-
timable using the orthogonalization algorithm of Yao
et al. [28] as detailed in (Appendix A):

• Identify the first estimable parameter by minimizing
the square errors Jmse between the experimental mea-
surements and the model predictions. Next, identify
the first two estimable parameters, then the first three
and so on until all the estimable parameters are identi-
fied. The least estimable parameters are set constant.
The mean-square errors Jmse are computed as:

min Jmse =

n∑
i=1

k∑
j=1

(
yexpi,j − ymodi,j

ωi

)2

where yexpi,j and ymodi,j are the experimental measure-
ments and the model outputs respectively, and ωi are
weighing factors.

• Note the value of the objective function for the iden-
tification of the L most estimable parameters, while
setting the remaining d− L parameters constant.

• Compute the critical ratio rc,L for L = 1, ..., d as :

rc,L =
JmseL − Jmsed

d− L
where JmseL defines the objective function for the iden-
tification of the L most estimable parameters. This
critical ratio represents the ratio of the squared bias
over the variance when L parameters are estimated
rather than all d parameters.

• Compute the corrected critical ratio rcc,L as :

rcc,L =
d− L
nk

(rcKub,L − 1)

where:

rcKub,L = max

(
rc,L − 1,

2

d− L+ 2
rc,L

)
rcc,L is used to compare several simplified models with
different numbers of parameters.

• Deduce the value of L which minimizes the rcc,L. L
corresponds to the number of estimable parameters to
be identified from the available measurements.

Although the algorithm allows to avoid the arbitrary
choice of the estimability threshold value, the parameter
ranking is still dependent on the calculation method of the
Z matrix. The latter changes with the initial values of the
parameters used to compute its elements, i.e. local sensi-
tivities. To overcome this problem, we propose to fill the Z
matrix with global sensitivities computed using the Sobol
approach.

3.2. Global sensitivity computation method

In sensitivity analysis, Sobol indices [9] are used to
quantify the influence of anXi model input on the variance
of a model output Y . A popular variance-based method to
calculate the total sensitivity index STi was developed by
Homma and Saltelli [13]. The STi index accounts for the
total contribution to the output variation due to the input
Xi, i.e. its first-order effect plus all higher-order effects
due to interactions. It is expressed as :

STi = 1− E (V (Y |X∼i))
V(Y )

(18)

where V and E are respectively the variance and the math-
ematical expectation of the output. X∼i denotes all the
model inputs except Xi. However, almost all the practi-
tioners use the following algorithm to estimate total Sobol
sensitivity indices :

ˆSTi = 1− U∼i− f̂2
0

V̂
(19)

where:

U∼i =
1

N

N∑
k=1

YA,k.YCi,k (20)

f̂0 =
1

N

N∑
k=1

YA,k (21)

V̂ =
1

N

N∑
k=1

Y 2
A,k − f̂0

2
(22)

and:
YA,k = f(X

(A)
k,1 , ..., X

(A)
k,i , ..., X

(A)
k,d ) (23)

YCi,k = f(X
(A)
k,1 , ..., X

(B)
k,i , ...X

(A)
k,d ) (24)
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The input vectors X
(A)
i,j and X

(B)
i,j are generated by

means of a Monte-Carlo sampling method and used as the
elements of the following matrices A and B as :

A =


X

(A)
1,1 ... X

(A)
1,i ... X

(A)
1,d

...
. . .

...

X
(A)
N,1 ... X

(A)
N,i ... X

(A)
N,d



B =


X

(B)
1,1 ... X

(B)
1,i ... X

(B)
1,d

...
. . .

...

X
(B)
N,1 ... X

(B)
N,i ... X

(B)
N,d


kkk
These matrices are used in turn to generate the Ci ma-
trices which are specific to each unknown parameter i as:

Ci =


X

(A)
1,1 ... X

(B)
1,i ... X

(A)
1,d

...
. . .

...

X
(A)
N,1 ... X

(B)
N,i ... X

(A)
N,d


fkk
where N is the number of samples and d is the number
unknown parameters. The method is further explained by
Iooss et al. [10] and Saltelli et al. [11-13]. The Z sen-
sitivity matrix is then filled using total sensitivity indices
as in Rodriguez-Fernandez et al. [46] who used first the
sensitivity indices to fill the Fisher Information matrix in
order to develop an optimal design of experiments.

4. Results and discussions

4.1. Global sensitivity analysis

The results of the sensitivity analysis are investigated
for two main purposes. The first objective is to ensure
that all interactions between the ions considered in the
aqueous medium are important. This is achieved by
computing the global sensitivities of the 21 interaction
parameters and comparing them to a cutoff criterion
proposed by Zhang et al. [29] who assumed that a
parameter with a global sensitivity greater than 0.05 must
be necessarily taken into account. The second objective is
to use these computed global sensitivity indices to fill the
Z estimability matrix.

Figure 1 shows the Sobol global sensitivity indices
of the measured model outputs, i.e. water activity
and ions molalities. The sensitivities are computed
using a Monte-Carlo sequence with random sampling
to generate 10,000 uniformly distributed samples of size
21 (number of parameters) each. Taking into account
the sensitivity computation algorithm described above,
230,000 simulations are carried out to calculate the global
sensitivity indices. The CPU time needed to perform
all the simulations is estimated to 64 hours using a Dell
Precision T7810 Bi-Xeon 12 x Core 64GB work station.

It can be seen that the model outputs are very sensitive
to the variation of the model parameters (Fig. 1). The
elimination of one or more of these parameters would
produce large uncertainties on the model outputs. The
estimability analysis will therefore allow us to know
which parameters are estimable from the available data
and those whose values should be fixed either from the
literature or from previous works.

4.2. Global estimability analysis results

The orthogonalization method proposed in [28] requires
to fill the estimability matrix with the sensitivities of
the unknown parameters. In several works [16, 18, 19,
42], the authors computed the elements of the Z matrix
by means of a finite difference approximation which
makes the method less powerful, and the reliability of
the results depends in particular on the initial values of
the parameters. Here, the global sensitivities computed
previously are used to fill the Z-matrix.

Fig. 2A presents the estimability results of the 21
unknown parameters based on 56 water activity measured
values at four different temperatures and 14 total sulfuric
acid concentrations. In this case, the Z sensitivity matrix
consists of 21 columns (parameters) and 56 data points
(experiments). It is noteworthy that the magnitude
of 13 parameters is very low, which may be due to
the fact that the water activity alone does not contain
enough information to estimate them. Moreover, most
of the parameters that have a large magnitude value
are temperature-independent. This is consistent with
many literature works such as [25] where the authors
used only water activity as experimental measurements
and considered only the temperature-independent param-
eters in the modeling of similar binary electrolytic systems.

In Fig. 2B, the molalities of the different components
are considered, i.e. H+, HSO−4 , and SO4. They are
measured in the same operating conditions as in the case
of water activity with a total number of 168 measure-
ments. In this case, the Z sensitivity matrix consists of
21 columns and 168 data points. The analysis of Fig.2B
shows that the magnitudes of the unknown parameters
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Figure 1: Soblol’s global sensitivity indices of the 21 model parameters computed using a set of 10,000 samples. (A), (B), (C) and (D) are
the global sensitivities with respect to HSO−

4 molality, SO2−
4 molality, water activity and H+ molality respectively.

are higher compared to the results of the first case, thus
showing that this set of measurements contains more
information to identify more unknown parameters.

Fig. 2C presents the case where the measurements of
both water activity and components molalities are simul-
taneously taken into account. In this case, the Z sensitivity
matrix consists of 21 columns and 224 data points. In Fig.
2C, all the magnitudes of the parameters are higher com-
pared to the previous cases. This is consistent with the
fact that by adding more measurements, the number of
estimable parameters should in principle increase due to
the increase of the level of information they contain.

4.3. Optimal value of the estimability threshold

Based on the previous results obtained for each of the
three considered cases, sets of mean-square errors (mse)
are defined and consist of the following elements:

Jmse =
∑
k

∑
T

∑
m

(
kexpm,T − kmodm,T

ωi

)2

(25)

where k corresponds to the measured variable, i.e. water
activity and component molalities, ωi are weighing factors,
T and m refer to the temperature and total concentration
of sulfuric acid respectively.

The first mse set contains only the most estimable
parameter as an unknown parameter, and all the other
parameters are fixed at their nominal values. The second
mse set contains the first and second most estimable
parameters and so on until the last mse set where all
the unknown parameters are estimated. Each mse set is
minimized using GAMS optimization environment. More
specifically, Baron optimizer based on a branch-and-
reduce approach [21] is used to solve the identification
problems to global optimality.

Figure 3 presents the effect of the number of estimated
parameters on the value of the objective function, i.e.
Jmse. It can be seen that as expected, the inclusion
of more parameters in the identification process leads
to a decrease in the value of the objective function.
However, the main objective is to know which param-
eters are estimable in each of the considered cases.
An optimal estimability threshold value for each case
should therefore be determined. For this purpose, the
corrected critical ratio Jcc,L is computed and presented
in Fig. 4 versus the objective function Jmse for each
of the three sets of experimental measurements. The
coordinates of the minimum of the curve correspond to
the number of the most estimable parameters and to
the optimal value of the estimabilty threshold respectively.
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Figure 2: Ranking of the 21 unknown parameters using the orthogonalization method based on total sensitivity indices of Sobol. (A): case of
water activity, (B): case of ions molalities, (C) case of water activity and ions molalities.

Figure 3: Value of Jmse for each mse case. (A): water activity, (B): molalities of components, (C) water activity and molalities of components.

Figure 4: Value of Jcc,L for each mse case. (A): water activity, (B): molalities of components, (C) water activity and molalities of components.
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Fig. 4A shows that 7 parameters are estimable
when only water activity measurements are used. The
corresponding estimability threshold is about 0.03 (the
ordinate of parameter 7 in Fig. 2A) meaning that for a
parameter to be estimable, a variation of 10% of its value
should cause at least a variation of 1.75% of the model
outputs.

When only the measurements of components molalities
are used, the number of the most estimable parameters
as well as the corresponding value of the estimability
threshold are higher than in the previous case and are
equal to 11 and 0.07 respectively (Fig. 4B). This means
that the components molalities contain more information
than the water activity and the minimum variations of the
model outputs caused by a 10% of an estimable parameter
are about 2.65%.

Finally, as expected, when the two sets of measure-
ments, i.e. water activity and components molalities, are
simultaneously used, the number of the most estimable
parameters is even higher and equals 17 (Fig. 4C). The
corresponding estimability threshold value lies between
the values of the two previous cases and is about 0.05.
Likewise, the minimum variation of the model outputs
caused by a 10% variation of an estimable parameter is
between the values of the two previous cases and is equal
to 2.24%.

It is noteworthy that unlike the algorithm of Yao
et al. [28] which arbitrarily fixes the value of the es-
timability threshold at 0.04, the method of Wu et al.
[14] allows us to determine the optimal threshold value
and consequently the number of the most estimable
parameters for each set of measurements. This is consis-
tent with the fact that the level of information contained
in the sets of measurements differs from one set to another.

In our case, the threshold values are respectively 0.03,
0.07 and 0.05 for the measurements of water activity, mo-
lalities of components, and water activity and molalities of
components, and their corresponding number of estimable
parameters are 7, 11 and 17 respectively. With the algo-
rithm of Yao et al. [28], the number of estimable param-
eters is underestimated to 6 in the case of water activity
measurements, and is overestimated to 18 and 21 in the
two sets of measurements of molalities of components, and
of water activity and molalities of components respectively.
Although the number of estimable parameters is not op-
timal in the two cases, an overestimated number is more
critical to the accuracy of parameter identification.

4.4. Identification of the most estimable parameters

The most estimable unknown parameters previously de-
termined are then identified using the three sets of avail-
able measurements, and their accuracy is assessed by

means of confidence intervals computed below [26]. In
parametric identification, the objective function can be ex-
pressed as:

F (P ) = θ(P )T .W.θ(P ) (26)

where θ(P ) is the residue vector, i.e. the difference be-
tween the predictions of the model and the measured val-
ues of the outputs, W is a weighing matrix and P corre-
sponds to the vector of the unknown parameters. Assum-
ing that the measurement errors are normally distributed
and independent, the covariance matrix C of the least
squares problem is approximated as:

C ≈ F (P ∗)

d− n
(JTWJ)−1JTW 2J(JTWJ)−1 (27)

where P ∗ is the vector of parameters which minimize the
objective function F (P ), J is the Jacobian matrix of the
θ(P ) vector. This approximation is more precise when
non-linearities are not strong. In this work, all the mea-
surements have the same weight equal to 1 in the objective
function, therefore W is equal to the identity matrix. The
Jacobian matrix is then given by:

J =



∂θ1
∂P1

· · · ∂θ1
∂Pj

...
. . .

...

∂θi
∂P1

· · · ∂θi
∂Pj


...

Subscripts i and j correspond to the number of outputs
and the number of unknown parameters respectively. The
Jacobian matrix is computed using a local one-at-a-time
(OAT) method. It consists in disturbing the value of each
parameter P ∗j by 10% forward and backward, then, the
centred finite difference method is used to approximate
the elements of J .

This requires 9,408 simulations in the case where the
three sets of experimental measurements are simultane-
ously used (21 parameters x 224 measurements x 2), 7,056
simulations when only the molalities of components are
used (21 parameters x 168 measurements x 2), and 2,352
simulations in the case where only water activity is used
(21 parameters x 56 experience x 2).

The uncertainty on a parameter j is calculated as :

εPj
= ±
√
cjjt1−α/2,ν

P ∗j
.100% (28)

where cjj is the jth diagonal element of the C matrix,
t1−α/2,ν is deduced from the Student t-distribution with ν
degrees of freedom and corresponds to the probability of
1 − α/2 that the true value of the parameter lies within
the confidence interval given as:

Pj ∈
[
P ∗j −

√
cjjt1−α/2,ν ;P ∗j +

√
cjjt1−α/2,ν

]
(29)
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In this work the probability 1−α/2 is taken equal to 95%.

On the other hand, the quality of the model predictions
compared to the experimental measurements is quantified
by means of the Pearson product-moment coefficient com-
puted as [26]:

r =

∑
i,j

(
Smodij − Smodij

)(
Sexpij − S

exp
ij

)
√(∑

i,j(S
mod
ij − Smodij )

)2 (∑
i,j(S

exp
ij − S

exp
ij )

)2

(30)
where Smodij is the model prediction, Sexpij is the

corresponding experimental value and S̄ij is the average
value with respect to the total number of available
measurements carried out at different molalities and
temperatures. Subscripts i and j refer to the molalities
and temperatures respectively.

The results of the identification of the most estimable
parameters as well as their confidence intervals are
presented in tables 3A-C. Table 3.A shows the results of
the case where all the experimental measurements are
considered. These results are used to compare the model
outputs to the experimental measurements (Figs. 5A-E).
The Pearson product-moment coefficient r is higher than
0.98 showing the good quality of the model predictions as
well as the accuracy of the identification of parameters.
Table 3.B shows the identified parameters along with
their confidence intervals for the case where the molalities
are used. The high value of the Pearson product-moment
coefficient r points out the quality of the model predic-
tions (Figs. 5G-J). Finally, the results of the third and
last case where only water activity measurements are used
are presented in Table 3.C. The model predictions are
compared to the experimental measurements on Fig. 5F
with a high value of r. Here again the model predictions
are in very good agreement with the measurements.

It is noteworthy that although the confidence intervals
are an approximation of the accuracy of the identified pa-
rameters, particularly when strong non-linearities are in-
volved in the model, they show that the parameters are
determined with good accuracy.

5. Conclusions

The estimability analysis approach developed in this
work for the identification of the unknown parameters
of Pitzer’s model is based on the orthogonalization
method developed by Yao et al. [28] and modified by
Wu et al. [14]. The modification was necessary in
order to determine the optimal value of the estimability
threshold and therefore the number of the most estimable
unknown parameters. In this paper, the modified algo-
rithm was further improved by computing the elements
of the sensitivity matrix Z by means of Sobol global
sensitivity method. With this improvement, the initial
values of the unknown parameters used in the calcula-
tion of local sensitivities no longer have any influence
on the calculation of the elements of the sensitivity matrix.

The improved algorithm was implemented and applied
to the thermodynamic modeling of sulfuric acid solutions.
More specifically, three sets of experimental measure-
ments of water activity and components molalities carried
out at different values of temperature and sulfuric acid
concentration were tested.

Although the results of the ranking of parameters are
very promising, it should be noted that the efficiency
of the approach developed in this paper can still be
improved, in particular through some interesting issues
which will be addressed in future works. Among them,
the development of surrogate models as suggested by
Sudret [8] using the Polynomial Chaos extensions, and
the shift from random sampling to quasi-Monte Carlo
sampling based on Sobol sequences, could considerably
reduce the computation time which remains very high
[44, 45].

Another important improvement is to use the Bayesian
calibration method [47] which is fundamentally different
from conventional calibration methods where the differ-
ence between the observed data and the model outputs
is minimized. Bayesian calibration is an iterative pro-
cess where the uncertainty distributions of the model pa-
rameters are updated consistently with the observed data.
The main advantages of this method are: (i) it accounts
for all sources of uncertainty, i.e. parameter uncertainty,
data uncertainty, and uncertainty in the structure of the
model, (ii) and the posterior probabilities are a natural
measure of uncertainty. In addition, a practical by-product
of Bayesian calibration is an estimate of the best fit to ex-
perimental data.
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Table 3: Unknown interaction parameters (298 K to 353K) and their confidence intervals: parameters without confidence intervals are not
estimable, their values are fixed from previous identifications or from literature [32]. a, b and c are the coefficients of Eqs. (13-15).

(A)

a C.I b C.I c C.I

β
(0)

HSO
−
4 ,SO

2−
4

-2.471 [-3.00;-1.934] 0.007 [0.004;0.010] 0.01 -

β
(0)

HSO
−
4 ,H+

1.046 [0.518;1.573] -0.002 [-0.003;-0.001] 0.01 -

β
(0)

SO
2−
4 ,H+

-8.001 [-9.665;-6.336] 0.01 - 1684.0 [1221.1;2147.04]

β
(1)

HSO
−
4 ,SO

2−
4

-254.8 [-312.8;-196.8] 0.405 [0.341;0.468] 3.9.104 [3.1.104;4.8.104]

β
(1)

HSO
−
4 ,H+

-296.9 [-489.1;-104.8] 0.453 [0.341;0.564] 4.8.104 [2.7.104;7.0.104]

β
(1)

SO
2−
4 ,H+

8.039 [4.879;11.19] -0.023 [-0.032;-0.013] 0.01 -

ψ
HSO

−
4 ,SO

2−
4 ,H+ 1.696 [1.142;2.249] -0.003 [-0.004;-0.001] -277.209 [-335.9;-218.4]

(B)

a C.I b C.I c C.I

β
(0)

HSO
−
4 ,SO

2−
4

-4.449 [-5.716;-3.181] 0.011 [0.009;0.013] 0.01

β
(0)

HSO
−
4 ,H+

1.046 - -0.002 [-0.003;-0.001] 0.01 -

β
(0)

SO
2−
4 ,H+

-7.533 [-9.881;-5.184] 0.01 - 1684.0 -

β
(1)

HSO
−
4 ,SO

2−
4

-254.7 [-323.1;-186.2] 0.405 - 3.9.104 -

β
(1)

HSO
−
4 ,H+

-288.3 [-383.8;-192.8] 0.453 - 4.5.104 [2.7.104;6.4.104]

β
(1)

SO
2−
4 ,H+

1.053 [0.654;1.451] -0.023 - 0.01 -

ψ
HSO

−
4 ,SO

2−
4 ,H+ 1.155 [0.812;1.497] -0.002 [-0.003;-0.001] -173.5 [-228.3;-118.8]

(C)

a C.I b C.I c C.I

β
(0)

HSO
−
4 ,SO

2−
4

-2.47 - 0.007 - 0.01 -

β
(0)

HSO
−
4 ,H+

1.445 [0.828;2.062] -3.10−3 [-4.24.10−3;-1.76.10−3] 0.01 -

β
(0)

SO
2−
4 ,H+

-8.001 - 0.01 - 1684.0 -

β
(1)

HSO
−
4 ,SO

2−
4

-1.028 [-1.309;-0.747] 4.44.10−5 [2.03.10−5;6.83.10−5] 4.414 [1.190;7.637]

β
(1)

HSO
−
4 ,H+

-297.5 [-372.9;-222.2] 0.453 - 4.87.104 -

β
(1)

SO
2−
4 ,H+

8.039 - -0.023 - 0.01 -

ψ
HSO

−
4 ,SO

2−
4 ,H+ 1.827 [1.027;2.627] -0.003 - -277.2 -
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Figure 5: Model predictions compared to the experimental measurements, (A-E): case of water activity and molalities of components, (F):
case of water activity, (G-J): case of molalities of components
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Appendix A

The orthogonalization algorithm developed by Yao et al.
[28] is based on the sensitivity matrix Z, and is presented
below:

1. Calculate the magnitude of each column of Z.

2. Select the parameter whose column in Z has the
largest magnitude (the sum of squares of the elements)
as the first estimable parameter.

3. Mark the corresponding column as XL (L = 1 for the
first iteration).

4. Calculate ZL the prediction of the full sensitivity ma-
trix Z, using the subset of columns XL:

ZL = XL(XT
LXL)−1XT

LZ (A.1)

5. Compute the residual matrix RL as:

RL = Z − ZL (A.2)

6. Calculate the sum of squares of the residuals in each
column of RL. The column with the largest magni-
tude corresponds to the next estimable parameter.

7. Select the corresponding column in Z, and augment
the matrix XL by including the new column. Denote
the augmented matrix as XL+1.

8. Advance the iteration counter by one and repeat steps
4 to 7 until the column of largest magnitude in the
residual matrix is smaller than a prescribed cut-off
value.
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