
HAL Id: hal-03201766
https://hal.science/hal-03201766

Preprint submitted on 19 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bidirectional Interaction between Visual and Motor
Generative Models using Predictive Coding and Active

Inference
Louis Annabi, Alexandre Pitti, Mathias Quoy

To cite this version:
Louis Annabi, Alexandre Pitti, Mathias Quoy. Bidirectional Interaction between Visual and Motor
Generative Models using Predictive Coding and Active Inference. 2021. �hal-03201766�

https://hal.science/hal-03201766
https://hal.archives-ouvertes.fr


Bidirectional Interaction between Visual and Motor Generative Models using
Predictive Coding and Active Inference

Louis Annabi∗, Alexandre Pitti, Mathias Quoy
ETIS UMR 8051, CY University, ENSEA, CNRS

Abstract

In this work, we build upon the Active Inference (AIF) and Predictive Coding (PC) frameworks to propose
a neural architecture comprising a generative model for sensory prediction, and a distinct generative model
for motor trajectories. We highlight how sequences of sensory predictions can act as rails guiding learning,
control and online adaptation of motor trajectories. We furthermore inquire the effects of bidirectional
interactions between the motor and the visual modules. The architecture is tested on the control of a
simulated robotic arm learning to reproduce handwritten letters.

Keywords: visuo-motor control, predictive coding, active inference, developmental robotics, embodiment

1. Introduction

In this work, we tackle the problem of mo-
tor sequence learning for an embodied agent. A
wide range of approaches have been proposed
to model sequential data, using various types of
neural architectures (Recurrent Neural Networks
(RNNs), Long Short-Term Memories (LSTMs)
[1], Restricted Boltzmann Machines (RBMs) [2])
and various learning strategies (backpropaga-
tion through time (BPTT), Real-Time Recurrent
Learning (RTRL) [3], Reservoir Computing (RC)
[4, 5]).

In an embodied simulation, the agent continu-
ously performs motor commands, or actions, that
influence its environment, and continuously per-
ceives information about the state of its environ-
ment through sensory observations. Given a data
set of motor trajectories, one could train a genera-
tive model using the methods cited above to learn
a repertoire of motor trajectories. However, con-
sidering the constraint of embodiment, we cannot

?This work was funded by the CY Cergy-Paris University
Foundation (Facebook grant) and partially by Labex MME-
DII, France (ANR11-LBX-0023-01).
∗Corresponding author.
Email addresses: louis.annabi@ensea.fr (Louis

Annabi), alexandre.pitti@ensea.fr (Alexandre Pitti),
mathias.quoy@ensea.fr (Mathias Quoy)

assume the availability of supervision in the agent’s
motor space. Instead, supervision can be available
in the shape of desired sensory observations, for in-
stance provided by a teaching agent. In the case
of handwriting, these desired sensory observations
are visual observations of the target letters. In re-
inforcement learning, the preference for certain sen-
sory states is modeled by assigning rewards to the
desired states, and the agent learns a behavioral
policy maximizing its expected return (sum of re-
wards) over time. Alternatively, Active Inference
(AIF) [6, 7], derived from the Free Energy Princi-
ple (FEP) [8, 9], proposes to see acting as a way
of minimizing surprise, by choosing to perform ac-
tions that will produce sensory observations that
are probable under the agent’s generative model. In
other words, to perform actions leading to desired
sensory states, the agent must learn a generative
model naturally inclined towards predicting the de-
sired sensory states, and perform the actions that
fulfill these predictions.

In our work, we propose to learn a generative
model of the trajectories in the sensory space, that
we exploit in order to guide the generation of motor
trajectories using AIF. We present a neural network
architecture based on two distinct RNNs generat-
ing sequences in the sensory and motor spaces. We
apply our approach to the problem of learning joint
angle motor trajectories for handwriting with a sim-

April 19, 2021



ulated 3 DoF articulated arm. Target trajectories
are provided in the visual space, as sequences of 2D
pen positions, and the agent has to learn a reper-
toire of corresponding motor trajectories.

Our complete model incorporates different com-
ponents that can be trained in subsequent stages.
First, AIF requires a forward model, that is, a
model of how the agent’s actions affect its obser-
vations. Such models can be learned in early devel-
opmental stages via a random interaction with the
environment, also called motor babbling. This ap-
proach has been widely used to learn the relations
between motor commands and sensory observations
without any external supervision (e.g. [10, 11]).
Second, AIF requires a generative model for tra-
jectories in the visual space. This model can be
learned from the supervision provided by the target
trajectories. In this work we propose to implement
this generative model with an RNN design in line
with the FEP and Predictive Coding (PC) [12, 13],
inspired from [14, 15]. Finally, our architecture will
make use of these two subsystems to train a sec-
ond generative model in the motor space using AIF,
which we implement using another instance of the
PC inspired RNN model.

Several works advocate for the relevance of ran-
domly connected RNNs as a computational model
for cortical networks [16–18]. In particular, [18] sug-
gests RC as a candidate approach to generate move-
ments as neural trajectories in the motor cortex.
However, the authors propose to train these corti-
cal networks through a supervised learning scheme,
which would need target values in the motor space.

Instead, our approach relates to the internal
model theory, suggesting that efferent copies of mo-
tor commands in the brain are provided as inputs
to an internal forward model predicting the sen-
sory outcomes of performed actions [19]. The in-
teresting feature brought by AIF is that, in con-
trast with control theory where the heavy lifting is
done by the inverse models, the reciprocal top-down
and bottom-up information passing scheme allows
to infer proper actions using an error signal between
sensory predictions and predicted outcomes of ac-
tions. These types of internal models are thought
to be encoded in the intraparietal sulcus and supe-
rior parietal lobule regions of the posterior parietal
cortex, for reaching and grasping movements [20],
as well as drawing and handwriting [21].

On a higher level of abstraction, motor cognition
(planning, decision making) involves other brain
structures such as the cerebellum and the prefrontal

cortex, for the prediction of outcomes [22–24], and
the basal ganglia, for the selection of action poli-
cies [18, 24]. In [7], AIF is proposed as a candidate
model for goal-directed behaviour relating to the
brain structures cited above.

While our work does not aim at providing a com-
putational model of brain functions, the theories
emerging from research in computational neuro-
sciences still serve as an inspiration to build func-
tional models to be integrated on robotic platforms.
The contribution brought by this work is two-fold.
First, we show how AIF makes it possible to learn
a repertoire of motor trajectories without requir-
ing supervision in the motor space, inverse model
learning, or BPTT. Second, we show that the dy-
namic interactions between the sensory and motor
generative models, implemented with PC, provide
relevant properties for motor control : robustness
to external perturbations, adaptation to variations
of size or orientation of the target trajectory, inter-
mittent control according to a precision threshold.

We will first present related works in the fields of
RNNs and models for handwriting. Then, we will
describe our architecture, before reporting and an-
alyzing the results obtained in several experimental
setups.

2. Related work

2.1. Recurrent Neural Networks
Recurrent neural networks (RNNs) form a cate-

gory of models that can be used for sequence gener-
ation and recognition tasks. An RNN can be seen as
a dynamical system influenced by inputs. At each
time step, it updates its state based on its past state
and its current input. Additionally, the RNN can
include a readout layer, decoding the RNN state
sequence into an output sequence. There exist sev-
eral approaches to train RNNs. The input weights,
recurrent weights, and output weights of RNNs can
be learned through backpropagation through time.
However, it has been proved that this optimization
method can give rise to exponentially decaying or
exploding gradients [25], thus making the learning
either slow or unstable. Several solutions have been
proposed to address this issue, such as hessian free
optimization [26, 27], or gating mechanisms for cap-
turing long-term dependencies [1, 28]. Additionally,
the BPTT algorithm is arguably impossible to be
implemented in the brain, the main reason being
the non-locality of the information used for gradi-
ent computations.

April 19, 2021



(a) (b) (c) (d)

Figure 1: Different related approaches to learn motor trajectories. Synaptic weights are represented by marks on the arrows.
Variables for which target values are provided are contained in bold squares. a: Supervised learning of a generative model for
motor trajectories. b: Learning of a generative model for sensorimotor trajectories with supervision in the sensory space. c:
Learning of separate generative models for motor trajectories and sensory predictions. d: Connection between our experimental
setup and the model displayed in c. m = (θ0, θ1, θ2) and o = (x, y).

Other approaches to RNN training providing
more biologically plausible mechanisms for learn-
ing have been researched. Completely avoiding the
problem of learning recurrent weights is a family
of approaches that emerged in parallel from the
fields of computational neurosciences [29] and ma-
chine learning [30] and has been labeled later as
Reservoir Computing (RC) [5]. By carefully initial-
izing the recurrent weights of the RNN, RC meth-
ods completely put aside the problem of learning
these parameters. The recurrent connections are
set in order for the RNN to exhibit rich non-linear
and sometimes self-sustained dynamics, that are de-
coded by a learned readout layer. RC has been
used for generation tasks [31] and recognition tasks
[32]. [33] provides an experimental comparison of
RC and BPTT approaches for different sequential
tasks.

Finally, learning methods inspired from the Pre-
dictive Coding (PC) theory have been proposed as
an alternative for backpropagation [34, 35]. PC
[12, 13] is a theory of brain function in which the
brain is constantly and hierarchically generating
top-down predictions about its sensory states, and
updating its internal states based on a bottom-up
error signal originating from the sensory level. This
view is to some extent supported by neurophysio-
logical data [36], and aligns nicely with the Bayesian
brain hypothesis assuming that the brain imple-
ments a form of Bayesian inference [37, 38].

In neural implementations of PC, the genera-
tive model is intertwined with error neurons that

propagate the information in a bottom-up manner
through the hierarchy. An online estimation of the
error at each level of the generative model makes
it possible to learn the model parameters, and in-
fer the hidden states, using only local update rules.
Following this approach, [14] proposed a recurrent
neural network architecture that yields state of the
art performance on the bouncing MNIST task. In
[15], the authors propose a PC architecture where
the generative model incorporates hidden causes
in addition to hidden states. Contrary to hidden
states that are embedded with dynamics, hidden
causes are static variables in the generative model.
These variables also differ from model parameters
since they can be dynamically updated through on-
line inference (using the bottom-up error circuitry).
Their model conditions the dynamics of the hidden
states using these hidden causes. They show that
their approach allows synthetic birds to recognize
and categorize bird songs, using a generative model
based on a cascade of Lorenz attractors.

2.2. Handwriting

Handwriting and drawing require fundamental
cognitive abilities involving visual and motor skills,
that make it possible to translate abstract represen-
tations into visuomotor trajectories. Many compu-
tational models for handwriting and drawing sim-
ply consider this problem as that of generating se-
quences of pen positions. This category of imple-
mentations is represented in figure 1a and can use

April 19, 2021



the different approaches for RNN training cited be-
fore. [28, 39] propose LSTMs with mixture density
outputs trained with BPTT, [18] exposes a neu-
rocomputational model for the selection of motor
sequences implemented with RC, and [40] uses a
computational model based on PC and Bayesian
inference.

However, in an embodied simulation, it is un-
clear how direct supervision in the motor space
could occur. Instead, in the proposed task, super-
vision takes place in the sensory space, and mo-
tor sequences are generated in order to reproduce
target sequences of visual observations. Address-
ing this challenge are the approaches presented in
[10, 11]. In these works, the authors avoid the dif-
ficult problem of inverse model learning by train-
ing an RNN to jointly generate sensory and motor
trajectories, as represented in figure 1b. Their gen-
erative model is first trained on random pairs of
motor commands and visual observations obtained
with motor babbling. Later, they infer an initial
RNN state that properly predicts a target visual
trajectory. This initial RNN state is used to pre-
dict and perform the motor trajectory. Finally, the
model weights are tuned on the performed trajec-
tories to maintain the coherence between predicted
visual observations and motor commands. The re-
lation between motor and visual trajectories is here
embedded within the generative model, but is only
accurate on the learned trajectories, that can be
referred to as "habituated trajectories".

Another way to approach this constraint is to
take inspiration from the FEP and AIF [6, 7]. The
starting point of the FEP is that agents maintain
homeostasis with their environments, which is made
possible by minimizing surprise through both action
and perception. Free energy intervenes as an upper-
bound on surprise, that can be computed and thus
optimized more efficiently. FEP applied to action
casts motor control and decision making into the
same process of surprise minimization. The agent is
endowed with a generative model predicting sensory
observations that can be naturally biased towards
desired observations. Minimizing surprise through
action corresponds to the inference of an action that
will cause sensory states probable under this gener-
ative model.

This framework has gained popularity and there
are many implementations of AIF in the littera-
ture. [6] shows how AIF can reproduce behavioral
policies obtained using reinforcement learning and
dynamic programming methods. In [41], the au-

thors implement AIF to perform reaching with a
7-DoF simulated arm. [42] proposes a robotic im-
plementation of AIF on an iCub robot performing
reaching and active head object tracking. See [43]
for a recent and more complete review about mod-
els implementing AIF.

In previous works, we applied the FEP to the
control of long range neural synchrony in recur-
rent spiking networks [44]. The proposed model
was able to generate very long and precise spatio-
temporal sequences, using a random search algo-
rithm to optimize free energy. In [45], we pro-
posed a self-supervised algorithm in line with AIF
to learn repertoires of motor primitives for a sim-
ulated robotic arm. Free energy minimization was
used to regress adequate initial hidden states of the
RNN generating motor trajectories. In comparison,
the work we present here allows for an online con-
trol throughout the whole motor trajectory.

Our approach stands out by including a second
separate generative model for motor trajectories, as
represented in figure 1c. Contrary to direct imple-
mentations of active inference, it uses the gradient
descent on surprise only as a mechanism to update
its prior belief on the motor command. This ap-
proach makes it possible to simulate a bidirectional
interaction between action and perception genera-
tive models. This is consistent with studies from
developmental psychology suggesting that reading
training improves handwriting skills [46], and re-
versely, that handwriting training improves letter
recognition scores [47].

3. Methods

In this section we present our model for motor
trajectories learning. We first describe the overall
structure, before detailing each individual compo-
nent.

3.1. Architecture

Our embodied agent perceives information from
its environment via visual observations that we de-
note ot, and can influence the state of the envi-
ronment st via motor commands, denoted mt. We
separate motor and visual pathways into two dis-
tinct dynamical systems interacting with each other
only via a control mechanism minimizing predic-
tion error on the visual level. Figure 1c displays
an overview of our computational model for motor
sequence learning.

April 19, 2021



Figure 2: Recurrent neural network model used to model the sequence generation in the sensory and motor spaces. Predictions
are denoted x and target values are denoted x∗. The middle layer corresponds to the hidden state of the generative model,
denoted h. The upper layer corresponds to the hidden causes of the generative model, denoted c. Dashed arrows represent the
bottom-up pathway for online inference of hidden states and hidden causes. The variables ε and ε′ correspond to the prediction
errors at the different layers of the generative model. They are used to infer an a posteriori estimate of the hidden states
(denoted h∗) and hidden causes variables.

In early stage of its development, we assume that
our agent acquires a suitable forward model of its
environment, denoted f , predicting its visual obser-
vation based on its motor command and the previ-
ous state of the environment: ot = f(st−1,mt).
Since our work do not focus on the learning of such
a model, we omitted the dependency according to
st−1 to simplify the graph in figure 1c.

Our agent’s training is composed of the following
stages :

• Learning of a visual generative model, predict-
ing trajectories in the visual space.

• Learning of a motor generative model accord-
ing to the visual generative model and forward
model.

3.2. Predictive coding recurrent neural network

Figure 2 represents the RNN model we use for
the prediction and learning of the trajectories in the
visual and motor space. This RNN implementation
combines several ideas from [14, 15, 48].

Taking inspiration from [15], we make a distinc-
tion between hidden states h and hidden causes c
in our generative model. The hidden state is a dy-
namic variable, in our case corresponding to the
internal state of an RNN. The hidden causes is a
static variable that can influence the dynamics of
the hidden state variable. To model this influence,
we use a gain-field network (e.g. [49]) implemented

as a three-way weight tensor Wrec for the recurrent
connections in the RNN. We interpret this tensor
as a basis of size p of recurrent weights matrices
of shape (n × n). Here, n and p stand respec-
tively for the dimensions of the hidden state and
hidden causes. Multiplying this tensor with the hid-
den causes vector can thus be seen as computing a
recurrent weight matrix from this basis using the
hidden causes as coordinates. It ensues that differ-
ent hidden causes will provide different hidden state
dynamics.

To avoid scaling issues when dealing with three-
way tensors, [48] proposes to factor it into three ma-
trices, such that for all i, j, k, Wijk

rec =
∑
l<dW

il
p ·

Wjl
f ·Wkl

c . The model can scale better to large hid-
den state and hidden causes dimensions with this
factorization, since the dimension d can be adjusted
to control the number of model parameters. In our
experiments, we will always use d = n/2. The three
matrices Wp, Wf and Wc respectively model the
interaction of the past hidden state, future hidden
state, and hidden causes with the factor dimension.

Building upon the RNN model proposed by [14],
our model is able to learn to generate supervised
trajectories using only local learning rules, and thus
not requiring backpropagation of gradients through
time. Contrary to purely top-down generative mod-
els, only capable of prediction, our model is also ca-
pable of performing inference. This is achieved by
taking inspiration from the PC theory: the RNN

April 19, 2021



is augmented with error neurons, denoted ε and ε′,
measuring the shift between the predicted and the
target values at each layer. These error neurons are
mapped onto their upper layer via feedback con-
nections, to update either the hidden state h or the
hidden causes c of the RNN, thus performing a form
of Bayesian inference by updating beliefs based on
new evidence.

The following equations describe all the compu-
tations occurring for one time step in the RNN, in
the top-down pathway, for prediction:

ht = (1− 1

τ
)h∗t−1 +

1

τ
Wf

· ((Wc
ᵀ · ct−1)(Wp

ᵀ · tanh(h∗t−1)))
(1)

xt = Wout · tanh(ht) (2)

And in the bottom-up pathway, for inference:

εt = xt − x∗t (3)
h∗t = ht − αhWout

ᵀ · εt (4)
ε′t = ht − h∗t (5)

ct = ct−1 − αcWc

· ((Wf
ᵀ · ε′t)(Wp

ᵀ · tanh(h∗t−1)))
(6)

We introduced a time constant τ influencing the
pace of the hidden state dynamics, as well as pa-
rameters αh and αc, controlling for the weight of
the incoming bottom-up information in the a pos-
teriori estimation of the hidden states and hidden
causes. We can discuss the choice of reusing the
weights of the top-down pathway in the bottom-up
pathway. Other approaches consider using random
feedback weights [50, 51], or new sets of weights
that can be learned [14]. Reusing the top-down
weights provides a simple solution as the equations
4 and 6 correspond to gradient descent updates on
the hidden states and hidden causes. Compared to
random weights, it led in our experiments to better
accuracy during online inference, and faster conver-
gence during learning (results not shown).

Learning is performed in this RNN using only
local online gradient descent rules. The output
weights Wout are updated in order to minimize the
prediction error on the visual level, and the recur-
rent weights Wp, Wf and Wc are updated in or-
der to minimize the error between the prior hidden
state h and the posterior hidden state h∗.

∆Wout = −λoutεt · tanh(ht)
ᵀ (7)

∆Wp = −λp tanh(h∗t−1)

· ((Wc · ct−1)(Wf · ε′t))ᵀ
(8)

∆Wf = −λf ε′t
· ((Wc · ct−1)(Wp · tanh(h∗t−1)))ᵀ

(9)

∆Wc = −λcct−1
· ((Wf · ε′t)(Wp · tanh(h∗t−1)))ᵀ

(10)

Where λout, λp, λf , λc are the learning rates for
the different weight matrices of our model. The
model we present here is generic, and our complete
architecture features two parallel instances of this
model, for the prediction of visual observations and
the generation of motor commands, where the out-
put variables are respectively denoted by ov and m
instead of x.

3.3. Active inference control
As explained before, we do not have direct super-

vision for the generation of motor sequences. In-
stead, we will control at each time step the out-
put value mt of our RNN using active inference,
which will provide us with a corrected motor com-
mand m∗t . Active inference frames motor con-
trol as a minimization of prediction error (or sur-
prise). Here, the prediction error is the distance be-
tween the observation predicted by the visual RNN,
and the observation predicted through the forward
model f introduced earlier, as represented in figure
1c. To be able to infer which action might cause
this error to decrease, we use the forward model
that maps actions to predicted observations. The
corrected motor command m∗t is thus computed as
a gradient descent update on mt :

m∗t = mt − αm∇mt‖om
t − ov

t ‖22 (11)

= mt − αm∇mt‖f(mt)− ov
t ‖22 (12)

Where om
t denotes the observation predicted

from the motor pathway, and ov
t denotes the ob-

servation predicted from the visual pathway.

4. Experiments

In this section, we perform several experiments
to validate our approach. We start by testing the
RNN model presented in section 3.2 on the task
of modeling 2D handwriting trajectories, and high-
light the features of this model that could be inter-
esting for motor control. Second, we validate the

April 19, 2021



Figure 3: Predicted sequences of 2D positions at the end of training for the three given classes a (left), b (middle) and c (right).
Each predicted position is represented as a Gaussian centered on it. The heatmaps represent the sum of these Gaussians for
each trajectory.

whole model by demonstrating that our architec-
ture is able to learn to generate robust motor trajec-
tories for handwriting. We compare our model’s en-
coding capacity to the algorithm presented in [10].
We experiment with different situations that high-
light the interest of the online interaction of the two
modalities modeled in our architecture.

4.1. Predictive coding RNN
In this subsection, we experiment with isolated

instances of the RNN model presented in section
3.2. We first explore the properties of this model
used for the prediction and inference of visual tra-
jectories. Then, we investigate the relevance of this
model for the generation of motor trajectories.

4.1.1. Visual prediction of handwritten trajectories
We first report the results obtained for the pre-

diction of trajectories corresponding to handwrit-
ten letters. The model is trained using 2D trajec-
tories from the Character Trajectories Data Set of
the UCI Machine Learning Repository [52] as tar-
get observations o∗. We use up to 16 classes from
the data set, each class corresponding to a different
letter of the alphabet. We take 20 trajectories from
each class to form the training set, and 20 other
trajectories to form the testing set. All trajectories
are rescaled to last 60 time steps.

We used for this experiment a hidden state hv of
dimension 50, and hidden causes cv of dimension p,
where p is the number of trajectory classes to learn
(between 1 and 16 depending on the experiment).
Intuitively, we would expect the hidden causes vari-
able to correspond to a certain representation of
the predicted trajectories. In our supervised learn-
ing setup, we enforced the hidden causes value for

each trajectory as the one-hot vector corresponding
to the trajectory label (i.e. a vector of dimension p
filled with 0 except for a 1 on the index correspond-
ing to the trajectory label). This was made possi-
ble by initializing the hidden causes to this value
at the beginning of each trajectory, and cancelling
the hidden causes update by setting the value of αc
in equation 6 to 0. The initial hidden state is sam-
pled randomly from a normal distribution and is
shared for all trajectories. We trained our RNN on
three letter categories, corresponding to the labels
a, b, and c. When used for prediction, the back-
ward propagation of prediction error is cancelled
out by setting to 0 the values of αh and αc. The
predicted trajectory is completely conditioned by
the initial hidden state and hidden causes. Figure
3 displays the predicted trajectories as heatmaps,
for each possible initial hidden causes a, b, or c.
After training, the RNN is able to properly predict
the trajectory without any supervision.

Contrary to classical RNN models, the proposed
architecture can perform inference as well as pre-
diction. When used for inference, the hidden states
and hidden causes are updated by the backward
propagation of prediction error based on given vi-
sual observations o∗. After each update, we enforce
the hidden causes to encode a multinomial probabil-
ity distribution on the trajectory classes by clipping
the values between [0, 1] and normalizing the vector
to sum to 1. The initial hidden causes are chosen
to encode a uniform discrete distribution over the
possible classes by setting their values to 1

p .

Figure 4 displays the process of inference of the
category of a given trajectory, after training. The
target trajectories belong to the testing set, and

April 19, 2021



(a) Target trajectory provided
(black) and trajectories pre-
dicted by the RNN after 1, 3 and
5 presentations of the target.

(b) Evolution of the hidden
causes neuron activations for
the 4 categories, according to
the number of presentations of
the target trajectory.

(c) Target trajectory provided
(black) and trajectories pre-
dicted by the RNN after 1, 3 and
5 presentations of the target.

(d) Evolution of the hidden
causes neuron activations for
the 4 categories, according to
the number of presentations of
the target trajectory.

Figure 4: Inference of trajectory labels given targets. The inference process is demonstrated with the evolution of the predicted
trajectories (a, c) and the evolution of the hidden causes (b, d) during 5 presentation of the target trajectory.

(a) Controlled RNN trajectories, labels
correspond to the learning rate value αh

used in equation 4, weighting the influ-
ence on the bottom-up signal on state
update. The dashed line represents the
natural RNN trajectory.

(b) Evolution of the natural RNN trajec-
tories throughout learning, labels corre-
spond to training iterations. The dashed
line represents the natural RNN trajec-
tory before training. These trajectories
were obtained with αh = 0.025.

(c) Effect of a perturbation onto the tra-
jectory, after training, with or without
control. The perturbation is applied at
time step 20, and represented as a red
segment. The controlled trajectory is ob-
tained with αh = 0.2.

Figure 5: Results for motor control in the simplified setup. The "plus" shaped marker represents the target position used by
the active inference controller. All trajectories start with the same RNN hidden state and hidden causes.

represent the letters a and b. By repetitively pre-
senting the target visual trajectory to the network,
the hidden causes variable converges towards the
one-hot vector corresponding to the proper class.
This experiment shows that our RNN model can
learn to predict visual trajectories given associated
labels, but also infer labels given the associated vi-
sual trajectories. It can thus be used for both gen-
eration and classification.

4.1.2. Sandbox experiment for motor control
Now that we have demonstrated the relevance of

our model for the visual prediction and perceptual
inference of handwritten trajectories, we investigate
its relevance for motor control.

In this sandbox experiment, we highlight our

model’s ability to perform online adaptation given
a target. We start with a simplified situation, tem-
porarily ignoring the constraints put forward in the
introduction, and suppose that direct supervision
in the "motor" space is available. For visualization
purposes, we suppose that the motor space is a 2D
euclidean space, and that the target is constant.

First, the motor RNN weights are initialized
randomly. The RNN exhibits natural (i.e. un-
controlled, without feedback) trajectories as repre-
sented in dashed lines in figure 5a and 5b. The
target motor command m∗ is represented by the
"plus" shaped marker. Figure 5a shows that the
bottom-up prediction error signal is able to adjust
the trajectories towards the target, modulated by
the coefficient αh introduced in equation 4. This

April 19, 2021



Figure 6: Generated motor trajectories and predicted visual sequences of 2D positions at the end of training for the three given
classes a (left), b (middle) and c (right). Results obtained with n = 50 and p = 3.

online adaptation is an interesting feature for mo-
tor generative models, as it could allow it to resist
to noise or perturbations. In comparison to the
previous experiment where online update of hidden
states of the generative model was seen as a per-
ceptual inference process, we draw here a parallel
with motor control.

Figure 5b displays the evolution of the natural
trajectories the RNN exhibits throughout learning.
At the end of learning, the natural RNN trajectory
seems to be attracted towards the neighbourhood
of the target position. Figure 5c shows the effect of
a perturbation applied onto the RNN hidden state
during the generation of a trajectory, after learning.
In the controlled case, the trajectory still converges
towards the target position.

These first results show that our RNN generative
model can learn and control simple trajectories in
a 2D space.

4.2. Experiments on the complete architecture

In this subsection, we experiment with the com-
plete architecture presented in figure 1c. This ar-
chitecture is composed of two RNN models for the
generation of the motor commands and visual pre-
dictions, and a forward model f translating motor
commands m into expected resulting visual obser-
vations om.

Figure 1d represents our experimental setup for
this experiment. Our agent evolves in an environ-
ment with which it can interact through sensors and
actuators. Since we focus here on motor skill learn-
ing, we simplified the visual space of our agent by
already decoding the position of the agent’s end-
effector from its visual input. In other words, the
agent directly receives as visual input the position

of its end-effector in Cartesian coordinates. The
agent acts on the 2D environment by moving the 3
degrees of freedom simulated arm. The extremity of
the first joint (the shoulder) is fixed on the position
(-6, 6). The three joints are of respective lengths 6,
4 and 2. We don’t cover here the learning of the for-
ward model, and suppose that the agent has learned
through motor babbling how its actions influence
its observations. In our experiments, the forward
model is replaced by the real physical model out-
putting end-effector positions in Cartesian coordi-
nates according to joint orientations. Our architec-
ture’s training is thus composed of two stages:

1. Supervised learning of visual handwritten tra-
jectories : The RNN predicting trajectories in
the visual space (2 dimensions) is trained as
already showed in section 4.1.1.

2. Training of the motor RNN : The RNN gener-
ating trajectories in the motor space (3 dimen-
sions) is trained using the method described
in section 3.3, using the trajectories predicted
by the visual RNN as indirect supervision to
perform AIF.

4.2.1. Motor generation of handwritten trajectories
We now focus on the training of the motor RNN,

using the learned visual prediction RNN. The vi-
sual prediction RNN generates a trajectory of ob-
servations that the motor RNN tries to replicate.
We train the motor RNN according to the method
detailed in section 3.3. The motor RNN hidden
state and hidden causes are initialized following
the same procedure as the visual prediction RNN:
hidden states are initialized randomly and shared
across the different classes of trajectories. The ini-
tial hidden causes are one-hot vectors of dimension

April 19, 2021



p (where p is the number of classes) encoding the
trajectory label. Figure 6 displays learned motor
trajectories along with the corresponding predicted
visual trajectories. These results were obtained
with a hidden state dimension of n = 50 for both
RNNs and with p = 3 classes, after 40000 iterations
on the training set. Training is arguably long with
regard to the difficulty of the proposed task. We
suppose that this is due to the PC learning mech-
anism, that can only approximate backpropagation
properly if we let enough time for the inference of
each variable in the computation graph to converge
[35].

4.2.2. Model capacity

Figure 7: Comparison of the reconstruction error according
to the number of trajectory classes for three models : our
model with n = 50 and two instances of the MTRNN model
proposed in [10] with n = 50 and n = 100. The curves
display the average reconstruction error on the testing data
set. Areas in transparency indicate confidence intervals.

Before analyzing other behaviours of the pro-
posed model, we validate it by comparing its per-
formance with two benchmark models.

First, we compare our performance with the
method presented in [10], proposed on a similar
task. This method uses a Multiple Timescales RNN
(MTRNN) [53] model for the joint generation of vi-
sual and motor trajectories as represented in figure
1b. The model is first trained using visuomotor tra-
jectories obtained through motor babbling. Then,
optimization of the initial MTRNN hidden state
is performed for each target visual trajectory us-
ing BPTT. Finally, the MTRNN weights are tuned
to ensure coherence between the visual and motor
outputs. The detailed algorithm is presented in ap-
pendix A.

Second, we compare our model with a simple ar-
chitecture composed of an RNN generating motor
trajectories and a forward model (equivalent to the
one present in our model) translating this motor
output into visual trajectories. Indeed, we could
argue that using the forward model we introduced,
one could simply backpropagate gradients originat-
ing from an error signal in the visual space to learn
motor trajectories. We train such a model, that
we label RNN+FM, using BPTT, and compare its
performance with our model.

Performances of the three models are evaluated
according to their precision on the motor trajec-
tory reconstruction, and their capacity to encode a
large number of trajectories. Precision is measured
with the average reconstruction error on the test-
ing data set. Figure 7 displays the evolution of this
error measure for our model, two instances of the
MTRNN model, and the RNN+FM model of the
comparison model.

If we extract the motor RNN model from the ar-
chitecture, and compare it with a MTRNN model
with the same hidden state dimension, both models
have a comparable number of parameters. However,
we could argue that the same MTRNN can generate
trajectories in both visual and motor space, while
our motor RNN only generates trajectories in the
motor space. For fair comparison, we might want
to include into the parameter count the parame-
ters of the visual RNN in our architecture. For this
reason, we extend the comparison with a MTRNN
model with a state dimension of n = 100, with
twice as many parameters as our two RNNs com-
bined. Finally, note that our approach, contrary to
the MTRNN model, assumes that a perfect forward
model is available to perform AIF.

Still, the results displayed in figure 7 tend to show
that our architecture can compete with other algo-
rithms for motor trajectory learning with indirect
supervision.

4.2.3. Intermittent control
One of our model’s feature not discussed previ-

ously is the possibility to switch off the feedback
pathway when prediction error is under a certain
threshold. We experimented with this idea by vary-
ing such a threshold and observing when the feed-
back pathway would switch on and off. Figure 8
displays results that were obtained with a hidden
state dimension of n = 50 with p = 3 classes, after
training of the motor RNN.

April 19, 2021



Figure 8: Trajectories generated by the motor RNN, with a state dimension of 50, displayed into the visual space. The black
dashed line represents the visual trajectory predicted by the visual RNN. The trajectories generated by the motor RNN are
represented as successions of trajectory segments, differentiated by their color. Each new trajectory segment corresponds to an
activation of the active inference controller, and is represented by a plus shaped marker. The different figures correspond to
different activation threshold values for the controller, from left to right: 3.10−4, 1.10−3, 3.10−3, 1.10−2, 3.10−2.

For the lowest threshold value, the feedback path-
way is almost always active and the motor trajec-
tories are controlled to accurately match the pre-
dicted visual trajectories. For the highest thresh-
old value, the feedback pathway never activates and
the trajectory performed correspond to the natural
trajectory of the motor RNN. This mechanism is
interesting as it could be used to control the trade-
off between precision and smoothness of the gener-
ated trajectories in situations where the visual tar-
get trajectory isn’t smooth.

4.2.4. Perturbation robustness
As previously showed in section 4.1.2, the mo-

tor RNN should be able to dynamically adapt to
perturbations. In this experiment, we consider ap-
plying external perturbations of variable amplitude
onto the motor output of our model. Perturbations
sampled from a multivariate normal distribution of
variance σ2

pI3 are added to the motor output of the
generative model for all timesteps t > 10. Figure
9 displays examples of obtained trajectories with
or without control, and the evolution of the aver-

age prediction error with regard to the perturbation
amplitude σ2

p.
These results demonstrate that our model gener-

ates motor trajectories robust to external perturba-
tions.

4.2.5. Adaptation to rescaling and rotation
In this experiment, we consider the situation

where a transformation is applied on the predicted
visual trajectory. Changes of scales and rotations
are transformations that can be applied easily on
the visual output. However, generating the mo-
tor commands performing these transformed visual
trajectories is less trivial. We experiment here ap-
plying changes of scales and orientations to the vi-
sual prediction while controlling the motor trajec-
tory using the prediction error feedback. Results
of those experiments for different scales and orien-
tations are displayed respectively in figures 10 and
11.

Figure 10c displays the evolution of the error be-
tween the motor trajectories and the rescaled test
trajectories, with and without control. We first no-

April 19, 2021



(a) Motor trajectory corresponding to
the letter a with and without control
for σ2

p = 0.6.

(b) Motor trajectory corresponding
to the letter b with and without con-
trol for σ2

p = 0.6.

(c) Average prediction error according to the perturbation
amplitude σ2

p. Prediction errors are measured as average
distances with regard to corresponding test trajectories of
the same label.

Figure 9: Perturbation robustness experiment. At the 10th time step, we apply a random perturbation, represented in red, on
the motor output. Our model uses the visual prediction as a guide to correct the perturbed motor trajectory.

(a) Motor trajectory corresponding to
the letter a with and without control
for a scaling factor of 0.6.

(b) Motor trajectory corresponding
to the letter b with and without con-
trol for a scaling factor of 0.6.

(c) Average prediction error according to the scaling fac-
tor applied on the visual prediction. Prediction errors
are measured as average distances with regard to corre-
sponding rescaled test trajectories of the same label.

Figure 10: Adaptation to scaling experiment. We apply a change of scale on the visual prediction. Our model dynamically
adapts the motor trajectory to fulfill best the visual prediction.

tice that overall, reducing the scale seems to induce
lesser prediction errors than increasing the scale.
This is because the prediction error is computed
as a path integral of point to point distances, thus
sensible to the scale of the trajectories. Second,
we notice that the improvement brought by the
online control is less effective when increasing the
scale. This is due to the fact that the motor RNN
was trained to exhibit trajectories of limited ampli-
tudes. Inference of the hidden state of the RNN is
not sufficient to properly control the trajectory.

Figure 11c displays the evolution of the error be-
tween the motor trajectories and the rotated test
trajectories, with and without control. We notice
that the architecture manages to adapt better to
rotations in the counterclockwise direction. This

could be due to the fact that performing these tra-
jectories requires smaller modifications on the nat-
ural motor trajectory because of the arm configu-
ration.

4.2.6. Impairments of the visual prediction RNN
In all the previous experiments of this section,

we have considered only one feedback pathway be-
tween the two possible feedback loops in our archi-
tecture, represented in figure 13. Whether it was to
learn motor trajectories, for intermittent control, to
adapt to perturbations on the motor output, or to
adapt to transformations on the visual prediction,
we only used the visual to motor feedback pathways
(figure 13a). Since the motor RNN was trained us-
ing the visual prediction RNN, using the motor pre-

April 19, 2021



(a) Motor trajectory corresponding to
the letter a with and without control
for a rotation of angle π/4.

(b) Motor trajectory corresponding
to the letter b with and without con-
trol for a rotation of angle π/4.

(c) Average prediction error according to the angle of
the rotation applied to the visual prediction. Prediction
errors are measured as average distances with regard to
corresponding rotated test trajectories of the same label.

Figure 11: Adaptation to rotation experiment. We apply a rotation on the visual prediction. Our model dynamically adapts
the motor trajectory to fulfill best the visual prediction.

(a) Predicted visual trajectory corre-
sponding to the letter a with and with-
out correction for σ2

i = 0.1.

(b) Predicted visual trajectory corre-
sponding to the letter b with and with-
out correction for σ2

i = 0.1.

(c) Average prediction error according to the impairment
amplitude σ2

i . Prediction errors are measured as average
distances with regard to corresponding test trajectories
of the same label.

Figure 12: Impairments experiment. The visual RNN is impaired by applying a multiplicative noise of varying amplitude onto
its parameters. Our model uses the motor prediction as a guide to correct the visual trajectory.

dictions om to control for the visual predictions ov
would only result in less precise visual predictions.

However, the symmetry of the interaction be-
tween the two modalities can still be exploited in
situations where the visual prediction RNN per-
forms worse than the motor RNN. To create such
situations, we impaired the visual prediction RNN
by applying a multiplicative noise N (1, σ2

i ) to the
model’s parameters Wout, Wp, Wf , Wc. We ar-
gue that this situation can arise naturally if we con-
sider the lifelong learning of an agent. The impair-
ment we simulated here could correspond to the
forgetting of the visual prediction RNN, that could
be due to training on a different task.

Similarly to the previous experiments, we display
in figure 12 examples of predicted visual trajectories

with or without correction from the motor RNN,
and the evolution of the average prediction error
with regard to the impairment amplitude σ2

i . These
results demonstrate that knowledge in our architec-
ture can be transferred in both directions.

We have only considered the collaborative sit-
uation where the two RNN models had the same
prior belief about the trajectory being written, i.e.
the same initial hidden causes in our architecture.
We could also conceive the situation where both
systems compete to convince the other of its own
belief. In this hypothesised situation, not exper-
imented in this article, both feedback pathways
would be used at the same time.

April 19, 2021



(a) Visual to motor feed-
back pathway. Generated mo-
tor trajectories are controlled
based on the visual predic-
tion.

(b) Motor to visual feed-
back pathway. Predicted vi-
sual trajectories are corrected
based on the motor predic-
tion.

Figure 13: Prediction error feedback pathways.

5. Discussion

We have shown how an architecture can learn
motor trajectories from an indirect supervision in
the visual space. The adaptive behaviour result-
ing from the addition of prediction error bottom-
up pathways, and the bidirectional interactions be-
tween the vision prediction RNN and the motor
RNN, give our model the ability to dynamically
control motor trajectories according to visual pre-
dictions. We have evaluated our model in dif-
ferent experimental setups highlighting interesting
features such as intermittent control, robustness to
perturbation, and adaptation to scaling and rota-
tion.

These properties are reminiscent of the behaviors
sought by the line of research on Dynamical Move-
ment Primitives (DMP) [54], aiming at modeling
attractor behaviors for autonomous nonlinear dy-
namical systems. The essence of the approach is to
define a simple dynamical system, and tune it so
that it exhibits prescribed attractor dynamics by
means of a learnable forcing term. The online con-
trol performed by the prediction error minimization
process in our model gives rise to similar attractor
behaviors when confronted with external perturba-
tions.

The clear separation between the sensory path
and the motor path could allow our agent to learn
motor trajectories with different forward models
(for instance right hand and left hand), based on a
unique representation of the trajectory in the visual
space. This can also be useful in case of modifica-
tions of the robot’s limbs, for instance by removing
(amputation) or adding a joint (use of a tool).

The bidirectionality of the proposed architecture
can also allow a knowledge transfer from the motor
system to the visual system. A notable limitation
is that we had to manually set the different learn-
ing rate coefficients αvh, α

m
h , αvc and αhc to direct

the influence of the two networks onto each other.
A possible solution could be the estimation of the
variance of each random variable in the generative
models to account for different levels of certainty
of priors. The influence between the two networks
would then naturally be directed from the system
with the highest certainty to the one with the low-
est. This property, called precision weighting, can
naturally result from the modelisation of hidden
states as random variables distribution as proposed
in the free energy formulation of PC [15].

Another important limitation of this work is the
assumption that a perfect forward model is avail-
able. The natural solution to this limitation would
be to include the forward model learning into our
architecture. Interestingly, the forward model could
also incorporate hidden causes variables that could
be inferred dynamically, allowing for fast adapta-
tions to modifications of the forward model such as
limb amputation or tool use. Adaptation to vari-
ability of body layouts have been investigated pre-
viously in [49, 55].

The proposed model learns motor trajectories ac-
cording to corresponding trajectories in its sensory
space. In future work, we could imagine using the
same approach to learn motor trajectories in more
complex environments, for instance manipulation of
objects with a robotic arm using visual feedback,
or navigation in an environment with first-person
view.

Future work could also investigate more deeply
into the behavior of the RNN model proposed in
section 3.2. We have shown that the modelisation
of hidden causes gives our model the ability to dy-
namically perform inference of a representation of
the provided trajectories, making it a system capa-
ble of performing both generation and classification
of sequences. In particular, the fact that different
hidden causes generate different hidden state dy-
namics could allow this model to generate a large
variety of target trajectories, compared to standard
RNNs with fixed dynamics. Preliminary work in
this direction tends to show that this model could
exhibit interesting dynamics known as chaotic itin-
erancy [56, 57].

April 19, 2021



References

[1] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[2] I. Sutskever, G. E. Hinton, and G. W. Taylor, “The
recurrent temporal restricted boltzmann machine,” in
Advances in Neural Information Processing Systems,
vol. 21, pp. 1601–1608, 2009.

[3] R. J. Williams and D. Zipser, “Experimental analysis of
the real-time recurrent learning algorithm,” Connection
Science, vol. 1, no. 1, pp. 87–111, 1989.

[4] D. Verstraeten, B. Schrauwen, M. D’Haene, and
D. Stroobandt, “An experimental unification of reser-
voir computing methods,” Neural Network, vol. 20,
pp. 391–403, 2007.

[5] M. Lukoševičius and H. Jaeger, “Reservoir computing
approaches to recurrent neural network training,” Com-
puter Science Review, vol. 3, no. 3, pp. 127 – 149, 2009.

[6] K. Friston, J. Daunizeau, and S. Kiebel, “Reinforcement
learning or active inference?,” PLoS ONE, vol. 4, no. 7,
p. e6421, 2009.

[7] K. Friston, T. FitzGerald, F. Rigoli, P. Schwarten-
beck, J. O’Doherty, and G. Pezzulo, “Active inference
and learning,” Neuroscience & Biobehavioral Reviews,
vol. 68, pp. 862–879, 2016.

[8] K. Friston and J. Kilner, “A free energy principle for
the brain,” J. Physiol. Paris, vol. 100, pp. 70–87, 2006.

[9] C. L. Buckley, C. S. Kim, S. McGregor, and A. K. Seth,
“The free energy principle for action and perception: A
mathematical review,” Journal of Mathematical Psy-
chology, vol. 81, pp. 55 – 79, 2017.

[10] K. Mochizuki, S. Nishide, H. G. Okuno, and T. Ogata,
“Developmental human-robot imitation learning of
drawing with a neuro dynamical system,” in 2013 IEEE
International Conference on Systems, Man, and Cyber-
netics, pp. 2336–2341, 2013.

[11] K. Sasaki and T. Ogata, “Adaptive drawing behavior by
visuomotor learning using recurrent neural networks,”
IEEE Transactions on Cognitive and Developmental
Systems, vol. 11, no. 1, pp. 119–128, 2019.

[12] R. Rao and D. Ballard, “Predictive coding in the vi-
sual cortex a functional interpretation of some extra-
classical receptive-field effects,” Nat Neurosci, vol. 2,
pp. 79–87, 1999.

[13] A. Clark, “Whatever next? predictive brains, situated
agents, and the future of cognitive science,” Behavioral
and Brain Sciences, vol. 36, no. 3, p. 181–204, 2013.

[14] A. Ororbia, A. Mali, C. L. Giles, and D. Kifer, “Con-
tinual learning of recurrent neural networks by locally
aligning distributed representations,” IEEE Trans-
actions on Neural Networks and Learning Systems,
vol. 31, no. 10, pp. 4267–4278, 2020.

[15] K. Friston and S. Kiebel, “Predictive coding under
the free-energy principle,” Philosophical Transactions
of the Royal Society of London. Series B, Biological
Sciences, vol. 364, pp. 1211–21, 2009.

[16] W. Wang, S. S. Chan, D. A. Heldman, and D. W.
Moran, “Motor cortical representation of hand trans-
lation and rotation during reaching,” Journal of Neu-
roscience, vol. 30, no. 3, pp. 958–962, 2010.

[17] G. M. Hoerzer, R. Legenstein, and W. Maass, “Emer-
gence of Complex Computational Structures From
Chaotic Neural Networks Through Reward-Modulated

Hebbian Learning,” Cerebral Cortex, vol. 24, pp. 677–
690, 11 2012.

[18] F. Mannella and G. Baldassarre, “Selection of cortical
dynamics for motor behaviour by the basal ganglia,”
Biol. Cybern., vol. 109, p. 575–595, Dec. 2015.

[19] R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error
correction, sensory prediction, and adaptation in motor
control,” Annual Review of Neuroscience, vol. 33, no. 1,
pp. 89–108, 2010. PMID: 20367317.

[20] S. H. Creem-Regehr, “Sensory-motor and cognitive
functions of the human posterior parietal cortex in-
volved in manual actions,” Neurobiology of Learning
and Memory, vol. 91, no. 2, pp. 166 – 171, 2009. Special
Issue: Parietal Cortex.

[21] S. Planton, M. Longcamp, P. Péran, J.-F. Démonet, and
M. Jucla, “How specialized are writing-specific brain
regions? an fmri study of writing, drawing and oral
spelling,” Cortex, vol. 88, pp. 66 – 80, 2017.

[22] G. Pezzulo and P. Cisek, “Navigating the affordance
landscape: Feedback control as a process model of be-
havior and cognition,” Trends in Cognitive Sciences,
vol. 20, no. 6, pp. 414 – 424, 2016.

[23] H. Mushiake, N. Saito, K. Sakamoto, Y. Itoyama, and
J. Tanji, “Activity in the lateral prefrontal cortex re-
flects multiple steps of future events in action plans,”
Neuron, vol. 50, no. 4, pp. 631 – 641, 2006.

[24] M. Botvinick and J. An, “Goal-directed decision mak-
ing in prefrontal cortex: A computational framework,”
Advances in neural information processing systems,
vol. 21, p. 169—176, 2009.

[25] R. Pascanu, T. Mikolov, and Y. Bengio, “Under-
standing the exploding gradient problem,” CoRR,
vol. abs/1211.5063, 2012.

[26] J. Martens, “Deep learning via hessian-free optimiza-
tion,” in ICML, 2010.

[27] J. Martens and I. Sutskever, “Learning recurrent neural
networks with hessian-free optimization,” in Proceed-
ings of the 28th international conference on machine
learning (ICML-11), pp. 1033–1040, 2011.

[28] A. Graves, “Generating sequences with recurrent neural
networks,” CoRR, vol. abs/1308.0850, 2013.

[29] W. Maass, T. Natschläger, and H. Markram, “Real-
time computing without stable states: A new frame-
work for neural computation based on perturbations,”
Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[30] H. Jaeger, “The “echo state” approach to analysing and
training recurrent neural networks,” GMD-Report 148,
German National Research Institute for Computer Sci-
ence, 01 2001.

[31] R. Laje and D. Buonomano, “Robust timing and motor
patterns by taming chaos in recurrent neural networks,”
Nature Neuroscience, vol. 16, no. 7, pp. 925–935, 2013.

[32] F. Triefenbach, A. Jalalvand, B. Schrauwen, and J.-P.
Martens, “Phoneme recognition with large hierarchical
reservoirs,” in Advances in Neural Information Process-
ing Systems (J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, eds.), vol. 23, p. 9, Neural
Information Processing System Foundation, 2010.

[33] P. Vlachas, J. Pathak, B. Hunt, T. Sapsis, M. Girvan,
E. Ott, and P. Koumoutsakos, “Backpropagation algo-
rithms and reservoir computing in recurrent neural net-
works for the forecasting of complex spatiotemporal dy-
namics,” Neural Networks, vol. 126, pp. 191 – 217, 2020.

[34] J. C. R. Whittington and R. Bogacz, “An approxima-

April 19, 2021



tion of the error backpropagation algorithm in a predic-
tive coding network with local hebbian synaptic plastic-
ity,” Neural Computation, vol. 29, no. 5, pp. 1229–1262,
2017. PMID: 28333583.

[35] B. Millidge, A. Tschantz, and C. L. Buckley, “Predictive
coding approximates backprop along arbitrary compu-
tation graphs,” 2020.

[36] K. S. Walsh, D. P. McGovern, A. Clark, and R. G.
O’Connell, “Evaluating the neurophysiological evidence
for predictive processing as a model of perception,” An-
nals of the New York Academy of Sciences, vol. 1464,
no. 1, pp. 242–268, 2020.

[37] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel,
“The helmholtz machine,” Neural Computation, vol. 7,
no. 5, pp. 889–904, 1995.

[38] D. C. Knill and A. Pouget, “The bayesian brain: the
role of uncertainty in neural coding and computation,”
Trends in Neurosciences, vol. 27, no. 12, pp. 712 – 719,
2004.

[39] D. Ha and D. Eck, “A neural representation of sketch
drawings,” CoRR, vol. abs/1704.03477, 2017.

[40] A. Philippsen and Y. Nagai, “A predictive coding ac-
count for cognition in human children and chimpanzees:
A case study of drawing,” IEEE Transactions on Cog-
nitive and Developmental Systems, pp. 1–1, 2020.

[41] L. Pio-Lopez, A. Nizard, K. Friston, and G. Pezzulo,
“Active inference and robot control: a case study,” Jour-
nal of The Royal Society Interface, vol. 13, no. 122,
p. 20160616, 2016.

[42] G. Oliver, P. Lanillos, and G. Cheng, “Active infer-
ence body perception and action for humanoid robots,”
CoRR, vol. abs/1906.03022, 2019.

[43] A. Ciria, G. Schillaci, G. Pezzulo, V. V. Hafner, and
B. Lara, “Predictive processing in cognitive robotics: a
review,” 2021.

[44] A. Pitti, P. Gaussier, and M. Quoy, “Iterative free-
energy optimization for recurrent neural networks (in-
ferno),” PLOS ONE, vol. 12, pp. 1–33, 03 2017.

[45] L. Annabi, A. Pitti, and M. Quoy, “Autonomous learn-
ing and chaining of motor primitives using the free en-
ergy principle,” in 2020 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8, 2020.

[46] A. Vinter and E. Chartrel, “Effects of different types of
learning on handwriting movements in young children,”
Learning and Instruction, vol. 20, no. 6, pp. 476 – 486,
2010.

[47] M. Longcamp, M.-T. Zerbato-Poudou, and J.-L. Ve-
lay, “The influence of writing practice on letter recogni-
tion in preschool children: A comparison between hand-
writing and typing,” Acta Psychologica, vol. 119, no. 1,
pp. 67 – 79, 2005.

[48] G. W. Taylor and G. E. Hinton, “Factored conditional
restricted boltzmann machines for modeling motion
style,” in Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, (New
York, NY, USA), p. 1025–1032, Association for Com-
puting Machinery, 2009.

[49] J. Abrossimoff, A. Pitti, and P. Gaussier, “Visual learn-
ing for reaching and body-schema with gain-field net-
works,” in 2018 Joint IEEE 8th International Con-
ference on Development and Learning and Epigenetic
Robotics (ICDL-EpiRob), pp. 197–203, 2018.

[50] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J.
Akerman, “Random synaptic feedback weights support
error backpropagation for deep learning,” Nature com-

munications, vol. 7, p. 13276, November 2016.
[51] A. Nøkland, “Direct feedback alignment provides learn-

ing in deep neural networks,” in Advances in Neural
Information Processing Systems (D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29,
pp. 1037–1045, Curran Associates, Inc., 2016.

[52] D. Dua and C. Graff, “Uci machine learning repository,”
[http://archive.ics.uci.edu/ml]. Irvine, CA: University
of California, School of Information and Computer Sci-
ence, 2019.

[53] Y. Yamashita and J. Tani, “Emergence of functional
hierarchy in a multiple timescale neural network model:
A humanoid robot experiment,” PLOS Computational
Biology, vol. 4, pp. 1–18, 11 2008.

[54] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor,
and S. Schaal, “Dynamical movement primitives: Learn-
ing attractor models for motor behaviors,” Neural Com-
putation, vol. 25, no. 2, pp. 328–373, 2013. PMID:
23148415.

[55] R. Braud, A. Pitti, and P. Gaussier, “A modular dy-
namic sensorimotor model for affordances learning, se-
quences planning, and tool-use,” IEEE Transactions on
Cognitive and Developmental Systems, vol. 10, no. 1,
pp. 72–87, 2018.

[56] I. Tsuda, “Chaotic itinerancy and its roles in cogni-
tive neurodynamics,” Current Opinion in Neurobiology,
vol. 31, pp. 67 – 71, 2015. SI: Brain rhythms and dy-
namic coordination.

[57] K. Inoue, K. Nakajima, and Y. Kuniyoshi, “Design-
ing spontaneous behavioral switching via chaotic itin-
erancy,” 2020.

April 19, 2021



Appendices
A. MTRNN training procedure

The training procedure for the MTRNN described in [10] comprises two phases: a motor babbling phase
and an imitation learning phase. The motor babbling phase allows for a proper initialization of the MTRNN
weights using sensorimotor trajectories collected with random interactions with the environment. The
imitation learning phase trains the model in order to generate desired trajectories with a supervision in the
sensory (here visual) space. Here is how we implemented these two phases:

Algorithm 1: Motor babbling phase
Initialize the MTRNN ;
for 0 ≤ i < I1 do

Generate a motor trajectory with a random initial hidden state h0;
Perform the motor trajectory (mt)0≤t<T ;
Collect the corresponding visual trajectory (ot)0≤t<T ;
Train the MTRNN using the visual trajectory as target and the same initial hidden state h0;

end

Algorithm 2: Imitation learning phase
for 0 ≤ i < I2 do

for 0 ≤ k < p do
Infer through BPTT the initial hidden state h0 of the MTRNN generating the target visual
trajectory (o∗t,k)0≤t<T ;

Generate the motor trajectory with the obtained initial hidden state h0;
Perform the motor trajectory (mt)0≤t<T ;
Collect the corresponding visual trajectory (ot)0≤t<T ;
Train the MTRNN using the visual trajectory as target and the same initial hidden state h0;

end
end

In these algorithms, I1 and I2 respectively denote the number of training iterations in the babbling phase
and in the imitation phase, and p denotes the number of visual trajectories in the training data set that we
learn to reproduce. In our experiments, we varied p, and used I1 = 3000 and I2 = 2000.

Note that in the MTRNN model, there are actually several hidden states corresponding to the different
timescales of the model. In our experiments, we used a model with two timescales τf = 5 (fast) and τs = 10
(slow), with hidden state dimensions of nf = ns = n/2, where n is the total hidden state dimension.

B. Repository

The code for the implementation and training of our model is made available in the following repository:
https://github.com/sino7/bidirectional-interaction-between-visual-and-motor-generative-models.

C. Examples of generated trajectories

In this appendix, we display more examples of trajectories obtained in our experiments with perturbations
on the motor output, transformations of the visual predictions, and impairments on the visual RNN.

April 19, 2021



Figure 14: Examples of trajectories obtained in the perturbation experiment, for different perturbation amplitudes σ2
p ∈

{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Blue lines represent the uncontrolled motor trajectories displayed in the visual space. Green lines
represent the predicted visual trajectories. Gray lines represent the corrected motor trajectories displayed in the visual space.
These trajectories were obtained with an RNN hidden state dimension of 50 after training.

Figure 15: Examples of trajectories obtained in the scaling experiment, for different scales s ∈
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. Blue lines represent the uncontrolled motor trajectories displayed in the vi-
sual space. Green lines represent the rescaled visual trajectories. Gray lines represent the corrected motor trajectories
displayed in the visual space. These trajectories were obtained with an RNN hidden state dimension of 50 after training.

April 19, 2021



Figure 16: Examples of trajectories obtained in the rotation experiment, for different rotation angles θ ∈
{−π/4,−π/6,−π/12, 0, π/12, π/6, π/4}. Blue lines represent the uncontrolled motor trajectories displayed in the visual space.
Green lines represent the rotated visual trajectories. Gray lines represent the corrected motor trajectories displayed in the
visual space. These trajectories were obtained with an RNN hidden state dimension of 50 after training.

Figure 17: Examples of trajectories obtained in the visual impairment experiment, for different impairment amplitudes σ2
i ∈

{0.0, 0.02, 0.04, 0.06, 0.08, 0.1}. Blue lines represent the uncontrolled motor trajectories displayed in the visual space. Green lines
represent the visual trajectories predicted by the impaired visual RNN. Gray lines represent the corrected visual trajectories.
These trajectories were obtained with an RNN hidden state dimension of 50 after training.

April 19, 2021


