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Abstract9

In this paper, we consider two-component mixture distributions having one known com-10

ponent. This type of model is of particular interest when a known random phenomenon11

is contaminated by an unknown random effect. We propose in this setup to compare the12

unknown random sources involved in two separate samples. For this purpose, we introduce13

the so-called IBM (Inversion-Best Matching) approach resulting in a relaxed semiparametric14

Cramér-von Mises type two-sample test requiring very minimal assumptions (shape constraint15

free) about the unknown distributions. The accomplishment of our work lies in the fact that16

we establish a functional central limit theorem on the proportion parameters along with the17

unknown cumulative distribution functions of the model when Patra and Sen [22] prove that18

the
√
n-rate cannot be achieved on these quantities in the basic one-sample case. An in-19

tensive numerical study is carried out from a large range of simulation setups to illustrate20

the asymptotic properties of our test. Finally, our testing procedure is applied to a real-life21

application through pairwise post-covid mortality effect testing across a panel of European22

countries.23

AMS 2000 subject classifications. Primary 62G05, 62G20; secondary 62E10.24

Key words. finite mixture model, semiparametric estimation, Cramér-von Mises, mortality.25

1



1 Introduction26

Let us consider the semiparametric two-component mixture model with cumulative distribution
function (cdf)

L(x) = (1− p)G(x) + pF (x), x ∈ R, (1)

where G is a known cdf and where the unknown parameters are the mixture proportion p ∈]0, 1[27

and the cdf F which is not supposed to belong to any parametric family. This model, sometimes28

so-called contamination or admixture model, has been widely investigated in the last decades, see29

for instance Bordes and Vandekherkove [4], Matias and Nguyen [21], Cai and Jin [6] or Celisse30

and Robin [7] among others. Numerous applications of model (1) can be found in topics such31

as: i) genetics regarding the analysis of gene expressions from microarray experiments as done32

in Broët et al. [5]; ii) the false discovery rate problem (used to assess and control multiple error33

rates such as in Efron and Tibshirani [9]), see McLachlan et al. [19]; iii) astronomy, in which34

this model arises when observing variables such as metallicity and radial velocity of stars as in35

Walker et al. [26]; iv) biology to model trees diameters, see Podlaski and Roesch [23]; v) kinetics36

to model plasma data, see Klingenberg et al. [14], vi) genomics to represent populations formed by37

admixture between ancestral founding populations as in Chakraborty and Weiss [8], among many38

other fields of applications. We recommend also the excellent survey on semiparametric mixture39

models by Xiang et al [28] to have a panoramic view on this last generation of mixture models.40

In this paper, the data of interest is made of two i.i.d. samples X1 = (X1,1, . . . , X1,n1) and
X2 = (X2,1, . . . , X2,n2) with respective cdfs:{

L1(x) = (1− p1)G1(x) + p1F1(x), x ∈ R
L2(x) = (1− p2)G2(x) + p2F2(x), x ∈ R, (2)

where p1, p2 are the unknown mixture proportions and F1, F2 are unknown cdfs component we41

propose to name nodular distributions. For simplicity matters, we denote n = n1 and consider42

that n2 = κn where κ ≥ 1. In this work, similarly to Patra and Sen [22], we will consider situations43

where the Gi’s and Fi’s distributions are: i) absolutely continuous with respect to the Lebesgue44

measure, supported over R, R+ or intervals of R; ii) finite discrete or N-discrete distributions such45

as Binomial or Poisson; iii) a mixture of a discrete and an absolutely continuous distribution. All46

our results will be still valid in such frameworks. Given the above model, our goal is now to answer47

the following statistical problem:48

H0 : F1 is equal to F2 against H1 : F1 is different from F2 (3)

without assigning any specific parametric family to the Fi’s.49

Such a problem arises in various applications. For instance, studying the genetic make up of50

populations has been the subject of much attention. The admixture behaviour is of paramount51

importance in comparing the populations with known ancestors and exhibits linkage relationships52

between them, see Loh et al. [17]. In a more general sense, such a testing problem arises when a53

known random phenomenon is contaminated by an unknown “nodular” random effect, which may54

correspond to non-observed heterogeneity. This can be also the case, for example, during crisis55
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where some populations are clearly impacted when others are not concerned yet. The objective56

of the test is then to compare two independent populations that are contaminated. The case of57

the coronavirus disease’s example is appealing in the sense that the excess of mortality is clearly58

affecting populations over the world in a different manner. Its nodular impact, among others, can59

be treated under the statistical problem exposed in (3), where the known component refers the60

baseline mortality observed during the recent years.61

The testing strategy we propose here is very different from the one proposed in Milhaud et62

al. [20] where a semiparametric penalized χ2-type test is used. The latter test is based on a63 √
n-consistent estimation p̂n = (p̂1,n, p̂2,n) of p = (p1, p2) along with a pairwise comparison of64

the Fi’s p̂n-plugged in orthogonal polynomial basis expansion coefficients estimation. The
√
n-65

consistency of p̂n is satisfied under both H0 or H1 when the zero-symmetry of the fi’s, pdf of66

the Fi’s is assumed, according to Bordes and Vandekerkhove [4]. However when considering the67

general Patra and Sen setup (see [22], Theorem 3), the
√
n-consistency is not theoretically achieved.68

Despite that, Milhaud et al. [20] proposed interestingly to plug-in the p̂n estimate of Patra and69

Sen [22] in their testing approach to study its numerical performance in practice. To overcome the70

lack of
√
n-consistency under H0 or H1 in the Patra and Sen [22] setup, and after all get a complete71

valid asymptotic theory, we decided to rethink from scratch the two-sample testing problem (3).72

Our idea relies basically on the definition of two parametric function families:73

Fi =

{
Fi(x, Li, pi) :=

Li(x)− (1− pi)Gi(x)

pi
, pi ∈ Θi, x ∈ R

}
, i = 1, 2, (4)

where Θi is a compact set of R+ \ {0}. For simplicity matters and without loss of generality we74

will consider Θ1 = Θ2 = [δ1, δ2], where 0 < δ1 < 1 < δ2 < +∞. It is important to notice here that75

the Fi’s are not constrained to contain exclusively cumulative distribution functions and that the76

parametric space Θi associated to the pi’s is not necessarily a [δ, 1 − δ]-type subset, 0 < δ < 1,77

of the natural ]0, 1[ mixture proportion support anymore. On the other hand, the key point is78

that the true Fi’s belong respectively to these classes by picking the true value of the parameters79

p∗i ∈ Θi, when δ ≥ δ1 > 0 are taken small enough, i.e.80

Fi(x) = Fi(x, Li, p
∗
i ), x ∈ R. (5)

For convenience we introduce F the set of all the probability cumulative distribution functions.81

Consider now the following discrepancy measure82

d(θ) =

∫
R
(F1(x, L1, p1)− F2(x, L2, p2))2dU(x), (6)

with θ = (p1, p2) ∈ Θ = [δ1, δ2]2 (because these quantities are not specifically viewed as mix-83

ture proportions anymore), measuring possible departures between the functions F1(·, L1, p1) and84

F2(·, L2, p2). We denote θ = (p1, p2) contrarily to p previously to stress out the fact that the fitting85

in (p1, p2) is done jointly now when it was done Fi-wisely, i = 1, 2, in Patra and Sen setup [22] or86

Bordes and Vandekerkhove [4]. The integrating cdf U should obviously be ideally chosen in order87

to focus (highly weight) on domains where the Fi(·, Li, pi)’s cleary depart from each other to help88

on the final test decision. Nevertheless since the structure of the Fi’s is constantly changing as the89

3



pi’s vary in the parametric space, we propose in practice to consider for U rather flat distributions90

encompassing the support of the observations.91

It is worth to notice that under H0, there exists p1 = p∗1 and p2 = p∗2 such that d(θ∗) = d(p∗1, p
∗
2) = 0.92

Suppose now that under some regularity and identifiability-type conditions we could prove that:93 {
arg minθ∈Θ d(θ) = θ∗

d(θ∗) = 0,
under H0, and

{
arg minθ∈Θ d(θ) = θc

d(θc) > 0,
under H1, (7)

we would directly have under H1:94

inf
θ∈[δ,1−δ]2: Fi(·,Li,pi)∈F ,i=1,2

d(θ) ≥ inf
θ∈Θ

d(θ) = d(θc) > 0. (8)

Note that the search of the infimum in the left hand side of (8) matches what we would normally95

expect in a classical semiparametric estimation problem (mixing proportions in ]δ, 1− δ[, for δ > 096

small enough, and Fi’s in the cdfs range), when the second infimum have much more relaxed97

constraints (mixing proportions in a compact set Θ of (R+)2 embedding ]δ, 1− δ[2 and no specific98

constraints on the Fi’s) that we claim to be sufficient to solve our two sample testing problem.99

This relaxation in the optimisation problem, see (7–8), that was a blocking point to achieve the100 √
n-consistency of the estimator p̂n in Patra and Sen [22] –method returning a parameter p ∈]0, 1[101

and a true isotonic regression-based cdf estimate for F , is the first key idea of our paper. It is102

important to notice at this stage that if we let the parameters pi, i = 1, 2, go together to infinity103

in the parametric expressions (4), the functions Fi(·, Li, pi) mecanically flatten to 0 which makes104

the discrepancy measure d(θ) → 0, see expression (6). As illustrated in Appendix B, we then105

have to face two types of situations: i) there exists a local minima of d(θ), θ∗ under H0 or θc106

under H1, in the interior of the parametric space, and then the testing problem is non-trivial and107

should be addressed, or ii) the optimization of d(θ) shows that we bump into the boundaries of the108

parametric space, i.e. one of the component of θc is equal to δ2 because the main way to reduce109

the contrast d(θ) is to make θ large, and then the testing problem is not even worth to be adressed110

because there is no “reasonable” θc = (pc1, p
c
2) close to the probability weights domain [0, 1]2 that111

make F1(x, L1, p
c
1) close to F2(x, L2, p

c
2).112

Now the empirical estimate dn(·) of d(·) obtained by replacing the Li’s by the accessible em-113

pirical cdfs L̂i in (6), would naturally lead us to find, respectively under H0 or H1, the true value114

of the parameter θ∗, respectively the (F1,F2)-models distance minimizer θc, by looking at:115

θ̂n = arg min
θ∈Θ

dn(θ). (9)

We propose to call IBM-method the semiparametric estimation strategy based on the ”Inversion”116

step (4) and the ”Best Matching” step (9) between the F1 and F2 families to look at the closest117

they can possibly be. At this stage of the reasoning it still looks hard to figure out how the finding118

of an “only” H0-consistent estimation method could solve our two-sample testing problem (3). The119

next part of the intuition consists in looking at the asymptotic behavior of the stochastic process120

(andn(θ̂n))n≥1, for a well chosen increasing sequence of real numbers (an)n≥1 such that an → +∞121

as n→ +∞. This way we could ideally expect a clear hypothesis separation coming from:122

andn(θ̂n) = an[dn(θ̂n)− d(θ∗)]
L→ Z0, under H0

andn(θ̂n) = an[dn(θ̂n)− d(θc)] + and(θc)
a.s.→ +∞ under H1,
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with Z0 an identified limiting random variable (which distribution could be at least tabulated).123

Unfortunately since under H1 we could not probably get access to the limiting distribution of a Z0-124

reference distribution to build-up our test we could try to figure out a way to exhibit a distribution125

under H1 that could be in the regime of a Z0 distribution (to decide which magnitude of deviation126

from 0 could be considered as excessive or not in a test perspective). This is the second key idea127

of our paper. By taking an = n and by making a closer analysis of ndn(θ̂n) under H1 we observe128

the following asymptotic behavior (see also the end of Appendix A):129

ndn(θ̂n) = U0
n
L→ Z(θ∗, L1, L2), under H0

ndn(θ̂n) = U1
n + V1

n, with U1
n
L→ Z(θc, L1, L2) and V1

n
a.s.→ +∞, under H1,

where the random variables Z(θ∗, L1, L2) and Z(θc, L1, L2), corresponding to a parametrized closed130

form stochastic integral, could be consistently sampled (and thus tabulated) under both H0 or H1131

by generating Z(θ̂n, L̂1, L̂2)-type random variables. It is important to mention that these last132

limiting random variables are strictly connected to the inner convergence phenomenon arising133

either under H0 or H1, as expressed in Theorem 2, see convergences (18-19), based on notation134

(14).135

Finally, by considering an empirical sample-based (1 − α)-quantile of the stochastic integral136

Z(θ̂n, L̂1, L̂2), denoted q̂1−α, we decide to consider the following H0-rejection rule:137

ndn(θ̂n) ≥ q̂1−α ⇒ H0 is rejected. (10)

The above decision rule expresses the following principle: if the test statistic ndn(θ̂n) is too far138

from the inner convergence regime we could legitimately suspect a difference between F1 and F2,139

as illustrated in the right side of Fig. 1, and then reject H0.140

Our paper is organized as follows: In Section 2 we analyze the model (2) identifiability, and141

suggest an IBM-parameter picking principle relevant under both H0 and H1. Section 3 is dedicated142

to assumptions and asymptotic results showing the theoretical validity of our testing procedure143

under the condition G1 6= G2. In Section 3.2 we numerically validate the finite sample size144

properties of the central limit theorem stated in Theorem 2. In section 4 we investigate the145

empirical levels and powers of our test through Monte Carlo simulations. In Section 5 we present146

an original application in which we compare pairwise the excess of mortality due to COVID-19147

across a panel of European countries. Finally, Section 6 contains a discussion where we present two148

further leads of research based on dependent two-sample models: i) we introduce the contaminant149

distribution independence component testing along with the complete concordance/discordance150

testing problem arising in z-scores modeling, ii) we introduce the homogeneity testing problem151

in the so-called blending process (temporal contamination model). All the proofs and technical152

material are relegated in Appendix sections A–E. Note that Appendix E is devoted to the non153

identifiable situation where G1 = G2, in which the testing problem (3) can still surprisingly be154

addressed by using a parametrization trick.155
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2 Identifiability under G1 6= G2156

Consider models (2) with generic proportions parameter θ = (p1, p2) ∈ Θ and denote by θ∗ =157

(p∗1, p
∗
2) ∈ ]0, 1[2 the true proportions parameter value. By isolating the expressions of F1 and F2158

under θ we obtain for all x ∈ R:159

F1(x, L1, p1) =
L1(x)− (1− p1)G1(x)

p1

and F2(x, L2, p2) =
L2(x)− (1− p2)G2(x)

p2

. (11)

Let us investigate now the situations where possibly F1(x, p1) = F2(x, p2) :160

F1(x, L1, p1) = F2(x, L2, p2) ⇔ L1(x)− (1− p1)G1(x)

p1

=
L2(x)− (1− p2)G2(x)

p2

⇔ (p1 − p∗1)G1(x) + p∗1F1(x)

p1

=
(p2 − p∗2)G2(x) + p∗2F2(x)

p2

⇔ p1 − p∗1
p1

G1(x) =
p2 − p∗2
p2

G2(x) +
p∗2
p2

F2(x)− p∗1
p1

F1(x). (12)

Under H0, F1 = F2 = F , we simply obtain

p1 − p∗1
p1

G1(x) =
p2 − p∗2
p2

G2(x) +

(
p∗2
p2

− p∗1
p1

)
F (x).

Hence, if G1 /∈ span(G2, F ), which at least requires G1 6= G2 and frames our present study, we161

necessarily have p1 = p∗1 and p2 = p∗2. On the other hand, under H1, F1 6= F2, if the cdfs family162

{G1, G2, F1, F2} is linearly independent, equation (12) is impossible since it would imply p∗1 = 0163

and p∗2 = 0 which is in contradiction with θ∗ ∈]0, 1[2, and therefore F1(x, p1) 6= F2(x, p2) for all164

θ ∈ Θ. That being said, in order to consistently pick the right θ∗ under H0 and select under H1 a165

θ such that F1(x, p1) 6= F2(x, p2) (the property being actually true for all θ ∈ Θ), we propose to166

investigate the location of the minimum contrast parameter θc :167

θc = arg min
θ∈Θ

d(θ), where d(θ) =

∫
R
D2(x, L1, L2, θ)dU(x), (13)

with168

D(x, L1, L2, θ) = F1(x, L1, p1)− F2(x, L2, p2), and Fi(x, Li, pi) =
Li(x)− (1− pi)Gi(x)

pi
, i = 1, 2,(14)

where U is a continuous distribution which support encompasses the support of the Li’s. For169

simplicity, we will denote hereafter D(x, θ) = D(x, L1, L2, θ) and Fi(x, pi) = Fi(x, Li, pi), i = 1, 2,170

except when the role of the Li’s is central in our study.171

3 Asymptotic results172

To look at the proofs related to our theoretical results, the reader is referred to Appendix A. We173

introduce here two assumptions connected to the identifiability and definite positiveness of the174
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d-Hessian matrix.175

176

(I) The cdfs family E1 = {G1, F1, G2, F2} is linearly independent.177

178

(II) The family of functions E2 = {G1G2, F1F2, G
2
i , F

2
i , GiFi; i = 1, 2} is linearly independent.179

180

We consider in the above assumptions that, by convention, under H0 (F1 = F2 = F ) the cdfs181

family E1 reduces to {G1, F,G2} and E2 reduces to {G1G2, F
2, G2

i , GiF ; i = 1, 2}. We assume now182

the following technical assumption:183

184

(A) θ∗ under H0 (θc = θ∗), or θc under H1 (θc 6= θ∗), belongs to
o

Θ the interior of the compact185

parametric space Θ.186

187

In order to consistently estimate θ∗ under H0 and make sure that under H1 (F1 6= F2) the188

functions F1(·, p1) and F2(·, p2) will also differ from each other for any value of θ ∈ Θ, we consider189

the following estimator:190

θ̂n = arg min
θ∈Θ

dn(θ), (15)

where191

dn(θ) =

∫
R
D2(x, L̂1, L̂2, θ)dU(x), with L̂i(x) =

1

ni

ni∑
k=1

IXi,k≤x i = 1, 2.

3.1 Theoretical results192

In the sequel, we denote by ˙̀(ϑ) and ῭(ϑ) the gradient vector and hessian matrix of any real193

function ` (when it makes sense) with respect to argument ϑ ∈ R2. The notation AT refers to the194

transpose matrix of matrix A.195

Lemma 1. (i) The mapping θ 7→ d(θ) is C2 over Θ both under H0 or H1.196

(ii) Assume that conditions (I) and (A) hold. If U is strictly increasing on an interval IU that197

encompasses the support of the Li’s and Gi’s, i = 1, 2, then under H0, d is a contrast function,198

i.e. for all θ ∈ Θ, d(θ) ≥ 0 and d(θ) = 0 if and only if θ = θ∗ ∈
o

Θ.199

(iii) Assume that conditions (I) and (A) hold. If U is strictly increasing on an interval IU that200

encompasses the support of the Li’s and Gi’s, i = 1, 2, and if for any given case under H1201

there exists one single point θc ∈
o

Θ such that θc = arg minθ∈Θ d(θ), then d(θc) > 0.202

(iv) We have under H0 or H1 that:203

sup
θ∈Θ
|dn(θ)− d(θ)| = oa.s.(n

−1/2+α), for all α > 0. (16)
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(v) Assume that conditions (I), (II), and (A) hold. Then under H0 we have:204

d̈(θ∗) = 2

∫
R
Ḋ(x, θ∗)ḊT (x, θ∗)dU(x) > 0. (17)

(vi) Assume that conditions (I), (II), and (A) hold. Then under H1 we have:205

d̈(θc) = 2

∫
R
D̈(x, θc)D(x, θc) + Ḋ(x, θc)Ḋ(x, θc)TdU(x) > 0.

Let us denote ‖ · ‖2 the Euclidean distance in R2, and θc = θ∗ if the assumption H0 is specified.206

Theorem 1. If conditions (I), (II) and (A) hold, we have under H0 or H1 that ‖θ̂n − θc‖2 =207

oa.s.(n
−1/4+α) for all α > 0.208

Theorem 2. i) If conditions (I), (II) and (A) hold, we have under H0 or H1:209

√
n

 p̂1 − pc1
p̂2 − pc2

Dn(·)−D(·)

 L→ W (θc, ·), as n→ +∞, (18)

where Dn(·) = D(·, L̂1, L̂2, θ̂n), and W (θc, ·) = (W1(θc),W2(θc),W3(θc, ·))T is a centered 3-dimensional210

Gaussian process with covariance matrix ΣW = M(θc, ·)ΣL(·, ·)M(θc, ·)T where M(θc, ·) is defined211

in (38) and ΣL(·, ·) in (41).212

213

ii) If conditions (I), (II) and (A) hold, we have respectively as n→ +∞:214

ndn(θ̂n) = U0
n
L→ Z(θ∗) =

∫
R
(W3(θ∗, x))2dU(x), under H0, (19)

ndn(θ̂n) = U1
n + V1

n, with U1
n
L→ Z(θc) =

∫
R
(W3(θc, x))2dU(x) and V1

n = Oa.s.(n), under H1.(20)

Let us remind that the above stochastic integrals distribution can be simulated by standard215

Monte Carlo methods, see for instance [13], and thus fully tabulated. As detailed in the Introduc-216

tion the use of the above theorem in our testing perspective consists in rejecting H0 if the statistic217

ndn(θ̂n) exceeds q̂1−α, where q̂1−α is the approximated (1 − α)-quantile of the limiting random218

variable
∫
R(W3(θc, x))2dU(x) (given that by convention θc = θ∗ under H0). We propose, in order219

to prevent from obvious not competing situations, to check if a θc (1 − α)-domain of confidence,220

denoted I1−α(θc), intersects somehow the ]0, 1[2 proportions domain. Let us consider221

I1−α(θc) = I1−α/2(pc1)× I1−α/2(pc2), where I1−α/2(pci) =
[
I−i,1−α/2, I

+
i,1−α/2

]
,(21)

with I−i,1−α/2 = p̂i −

√
ΣW (θ̂n)[i, i]
√
n

φ
(

1− α

4

)
and I+

i,1−α/2 = p̂i +

√
ΣW (θ̂n)[i, i]
√
n

φ
(

1− α

4

)
,
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where φ(·) denotes the quantile function of the N (0, 1) distribution, and Σ[i, i] the i-th diagonal222

term of matrix Σ. In the sequel we denote either A the complimentary of a generic probability223

event A and I the complimentary of a generic domain I of Rd, d ≤ 2. Noticing that according to224

Therorem 2 we have P (I1−α/2(pci)) ≈ 1− α/2 as n→ +∞, i = 1, 2, we can write225

P (θc ∈ I1−α(θc)) = P (θc ∈ I1−α(θc))

≤ P (pc1 ∈ I1−α/2(pc1)) + P (pc2 ∈ I1−α/2(pc2))

= P (pc1 ∈ I1−α/2(pc1)) + P (pc2 ∈ I1−α/2(pc2))

≈ α,

which leads to226

P (θc ∈ I1−α(θc)) ≥ 1− α approximately as n→ +∞. (22)

Finally a simple “green light” criterion to proceed to the test could be the checking of the condition:227

I−i,1−α/2 < 1, i = 1, 2 (green light testing criterion). (23)

Remark 3. Although the same underlying idea can be used, the case where G1 = G2 is slightly228

different and requires a “picking trick” as the parameters are no longer identifiable even under H0229

(see Appendix E for further details).230

3.2 Convergence Monte Carlo assessment231

Introduce the random vector (P1, P2, Dz)
T =
√
n (p̂1−pc1, p̂2−pc2, Dn(z)−D(z))T at any point z ∈232

support(X1, X2). Recall that z represents one location point of the empirical process trajectory.233

Theorem 2 states that this vector is asymptotically Gaussian, and that its first two components234

are consistent towards θc (both under H0 or H1). Our goal is to check this by comparing numerical235

approximations of our theoretical expressions to Monte Carlo experiments. To this aim, we consider236

K = 200 simulations of two samples X1 and X2 with cdfs given by (2), both following two-237

component mixtures of Gaussian distributions. More precisely, the k-th simulation provides Xk
1238

and Xk
2 (k = 1, ..., K), where Xk

1 and Xk
2 are respectively drawn from mixtures with parameters239

n1 = n2 = 5,000, p∗1 = 0.4, p∗2 = 0.6, F1 = F2 are N (1, 1) cdfs, when G1, G2 are respectively240

N (2, 0.7) and N (3, 1.2) cdfs. Note that we are here under the null, but remember that such241

comparisons were also made on very different setups involving H1-type frameworks, with n1 6= n2242

and distributions supported over R+, N or bounded intervals of R.243

Estimating θ = (p1, p2) by (15) from each of the K simulated couples (X1, X2), we obtain244

(0.402, 0.601) as empirical mean of θ̂n = (p̂1, p̂2), illustrating the asymptotic consistency of our245

estimators. Kolmogorov-Smirnov tests on the components of the vector (P1, P2, Dz)
T validate246

that the three estimators are asymptotically Gaussian, with p-values always greater than 0.7. To247

validate the explicit covariance structure between the estimators, it is necessary to fix z and to248

compare the empirical covariances (computed from the Monte Carlo simulations) to the theoretical249

ones. Appendix C shows the obtained results in the aforementioned parametric setup for z = 2.250
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Figure 1: On the left panel, theoretical distribution Z(θ∗) (solid) and empirical version U0
n (dotted).

On the right, distribution Z(θc) (solid) and empirical contrast distribution U1
n + V 1

n (dotted).

Clearly, all the tests made through these comparisons for different values of z show the validity of251

formulas (38)-(41), which confirms the theoretical consistency given in part i) of Theorem 2.252

It now remains to have a closer look at the behaviour of the statistic ndn(θ̂n), see formulas (19)253

and (20). The theorem states that the empirical distribution of U0
n under H0 (obtained through the254

Monte Carlo procedure providing as many realizations of ndn(θ̂n) as the K experiments) should255

converge to some explicit random variable Z(θ∗). Also, the same kind of regime for U1
n should be256

observed under H1. However, in the latter case, the discrepancy measure dramatically increases257

due to the term V 1
n , exhibiting the departure from the null hypothesis. This phenomenon is258

well illustrated by Figure 1, where one can see that the empirical distributions suit the expected259

behaviours provided by the random variables Z(θ∗) and Z(θc). Indeed, under H1, the empirical260

distribution of ndn(θ̂n) is far from Z(θc), showing the impact of the drift V 1
n . This way, the261

tabulated distributions Z(θ∗) and Z(θc) and their appropriate (1 − α)-quantile can be used to262

fruitfully answer our testing problem.263

4 Test performance264

In this section, we study the empirical levels and powers of the test in various situations. To265

this aim, we generate X1 and X2 from (2) on various supports, and the behaviour of the test266

is investigated in more or less challenging setups. Depending on the case under study, mixture267

components can be easily detected or not, either because of the importance of the mixture weight268

pi, i = 1, 2, or due to the specified mixture components features. The idea is to get some insights269

about the strengths and weaknesses of our testing procedure. Each time we evaluate the empirical270

level (respectively power) of the test, the 95-th percentile of the test was previously assessed271

using 150 trajectories in the computation of the stochastic integral appearing on the right-hand272

side of (19) and (20). Then the testing procedure (10) is performed K times to get the result,273

through the K simulations of the k-th samples Xk
1 and Xk

2 and the associated test statistic ndn(θ̂kn)274

(k = 1, ..., K). Here, we take K = 100, fix similar sample sizes n1 = n2 = n for conciseness, and275

make n vary.276
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4.1 Empirical levels (F1 = F2 = F )277

In terms of distributions depending on the support, we consider Gaussian-Gaussian mixtures on278

R, Gamma-Exponential ones on R+, Negative-Binomial-Poisson on N, and Logit-Uniform on [0, 1].279

To check the significance of the test in real-life situations, we have chosen to make the component280

weights (pi)i=1,2 vary from 10% to 60%. The asymptotic properties of the test can be checked281

by considering different values for the number n of observations (ranging from 500 to 10,000).282

However, our experiments show that the number of observations does not have a big impact on283

the level of the test, provided that there are at least around 300 observations for the mixture284

component to test. That is why we have chosen to present here only the results corresponding to285

n = 2, 000 observations, which lightens our results presentation.286

For each support (R,R+,N, [0, 1]), four very different frameworks are studied (see Figure 9 in287

Appendix F.1, with corresponding mixture parameters stored in Table 2). We will denote from288

(a) to (d) these four different cases, corresponding to: (a) G1 not so different from G2, and G1289

and G2 close to F ; (b) G1 very different from G2, with both distributions close to F ; (c) G1 not290

so different from G2, with both distributions far from F ; (d) G1 very different from G2, with291

G1 close to F and G2 far from F . The global simulation scheme thus encompasses 144 different292

setups in all (4 supports, 4 cases, and 9 combinations for p1 and p2). We remind that for each of293

these 144 possibilities, the testing procedure (10) is performed 100 times, which leads to give an294

approximation of the empirical level of the test in all of the aforementioned situations.295

The overall results are summarized thanks to the heatmap in Figure 2, with dark zones indi-296
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Figure 2: Heatmap of empirical level (under H0) for different supports, different components
weights, and different parameters for component distributions. For each support, cases (a) to (d)
are given from top left to bottom right.
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cating unsatisfactory results. For one given support, the four panels from top left to bottom right297

correspond to cases (a) to (d). For instance, case (c) with mixtures of Gaussian distributions is298

the bottom left 3x3 square of the heatmap. One can see that most of the setups under study299

lead to satisfactory empirical levels of the test, close to the theoretical 5%. Indeed, since each300

simulation enables to compare the empirical test statistic to the 95th percentile of the calibrated301

distribution U0, it is expected that the level of the test fluctuates around 5%. In practice only302

12 over 144 approximations of the level exceed 10%, which means that less than 9% of the setups303

under study provide mixed conclusions. Looking more carefully at the results, the problematical304

situations mostly arise when at least one of the proportions pi equals 10%. It is very likely that305

the main reason explaining this drop of efficiency is the lack of observations to perform the test306

about the unknown components. The low component weight affected to the unknown part of the307

distribution leads to underrepresent the observations useful for the test to be efficient. In some308

very rare frameworks, although p1 and p2 equal at least 30%, the empirical level remains “high”309

(e.g. the case of mixing Negative Binomial and Poisson distributions, case (d), with p1 = 0.3 and310

p2 = 0.6, where the empirical level equals 12%). In such cases, the choice of the mixture compo-311

nents parameters (Table 2 in Appendix F.1) has a crucial impact and can affect the estimation of312

the component weights, which spreads to the overall quality of the test.313

4.2 Empirical powers314

In the same spirit, one can analyse the heatmap that illustrates the empirical power of the test in315

Figure 3, still considering the same mixture distributions as previously (Gaussian-Gaussian on R,316

Gamma-Exponential on R+, Negative-Binomial-Poisson on N, and Logit-Uniform on [0, 1]).317

However, the difference lies in the different frameworks studied, illustrated by Figure 10 in318

Appendix F.2. Hereafter, we denote them as follows: case (a) F1 and F2 have the same distribution,319

with very different means; case (b) F1 and F2 have the same distribution, with close means; case320

(c) F1 and F2 have the same distribution, with same means but very different variances; case (d)321

F1 and F2 have the same distribution, with same means and close variances. We obviously expect322

here that the most difficult case to detect is the latter one. Here, the sample size has a major323

impact on the results, which explains why the heatmap is provided for results corresponding to a324

sensitively higher sample size n = 3, 000. To understand how crucial the number of observations325

is, Figure 4 depicts the connection between the empirical power of the test and n. In fact we326

can observe very heterogeneous behaviours depending on the support and component weights,327

especially in the case where alternatives are very difficult to distinguish, that is, in the case where328

F1 and F2 have the same two first order moments (see case (e) in Table 3 of Appendix F.2 for329

further details about mixture distributions and parameters). Not surprisingly, departures from330

the null hypothesis can be detected provided that the number of observations is large enough,331

otherwise the power of the test remains low (especially when F1 and F2 are very similar, see cases332

(b) and (d)). Indeed, low proportions pi (i = 1, 2) leads to deteriorate the accuracy of the estimates333

p̂i, which favour situations where θ̂n can be “far” from θc (minimization of the contrast is solved334

by escaping from ]0, 1[2). The natural consequence of this phenomenon is that extreme quantiles335

(e.g. 95th percentile) of the tabulated random variable U1 tend to be larger, which mechanically336

lowers the power of the test.337

12



p2
=0
.1

p2
=0
.3

p2
=0
.6

p2
=0
.1

p2
=0
.3

p2
=0
.6

p2
=0
.1

p2
=0
.3

p2
=0
.6

p2
=0
.1

p2
=0
.3

p2
=0
.6

p2
=0
.1

p2
=0
.3

p2
=0
.6

p2
=0
.1

p2
=0
.3

p2
=0
.6

p2
=0
.1

p2
=0
.3

p2
=0
.6

p2
=0
.1

p2
=0
.3

p2
=0
.6

p1=0.6

p1=0.3

p1=0.1

p1=0.6

p1=0.3

p1=0.1

Real                                        Positive                             Integer                                  Bounded

1 1 1 0.73 1 1 0.66 1 1 0.71 0.89 0.97 0.94 1 1 0.1 1 1 1 1 1 1 1 1

1 1 1 0.45 0.99 1 0.39 1 1 0.55 0.82 0.99 0.39 1 1 0.12 0.93 1 1 1 1 0.96 1 1

0.45 1 1 0.28 0.42 0.77 0.09 0.47 0.61 0.43 0.64 0.73 0.38 0.44 1 0.04 0.06 0.08 1 1 1 0.37 1 1

1 1 1 0.63 1 1 1 1 1 0.92 1 1 1 1 1 0.72 0.84 0.92 1 1 1 0.76 1 1

1 1 1 0.49 0.98 1 1 1 1 0.8 1 1 1 1 1 0.49 0.62 0.79 1 1 1 0.38 1 1

1 1 1 0.3 0.71 1 1 1 1 0.42 0.97 0.94 1 1 1 0.3 0.43 0.68 1 1 1 0.14 0.5 0.9

0 0.2 0.4 0.6 0.8 1
Empirical power

Figure 3: Heatmap of empirical power (under H1) for different supports, different components
weights, and different parameters for component distributions. For each support, cases (a) to (d)
are given from top left to bottom right.

6 7 8 9 10

20
40

60
80

10
0

Laplace alternative

log(size)

p1=p2=5%
p1=p2=10%
p1=p2=15%

6 7 8 9 10

20
40

60
80

10
0

Gompertz alternative

log(size)

p1=p2=5%
p1=p2=10%
p1=p2=15%

6 7 8 9 10

20
40

60
80

Binomial alternative

log(size)

p1=p2=5%
p1=p2=10%
p1=p2=15%

6 7 8 9 10

20
40

60
80

10
0

Logit-Normal alternative

log(size)

p1=p2=5%
p1=p2=10%
p1=p2=15%

Figure 4: Empirical power depending on the sample size (n = 300; 3,000; 10,000; 25,000 in
logarithmic scale), on various supports (R, R+, N, [0, 1]), when F1 and F2 have same mean and
variance (other parameters are listed in Table 3 of Appendix F.2, case (e), see also Fig. 11).

5 Application to COVID-19 excess mortality338

There is an abundant literature investigating the impact of the 2019 coronavirus disease (COVID-339

19) on the mortality across countries, see for instance Beaney et al. [1]. We generally witness a340

wide variation in mortality across countries, leading to questioning the extent to which one can341

proceed to pairwise comparative studies. In our application, we will be looking at the nodular342
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impact of the COVID-19 and compare the latter across a panel of European countries. Formally,343

we investigate the age distribution of deaths (the distribution of the proportion of deaths per age344

group among all deaths) and we study the changes between 2019 and 2020 for France, Belgium,345

Germany, Italy, Netherlands and Spain from the Short-Term Mortality Fluctuations (STMF) data346

series compiled by the Human Mortality Database (HMD). The datasets contain death records347

aggregated over age groups: 0-14, 15-64, 65-74, 75-85 and 85+. We restrain our study to the first348

25 weeks (and ages over 15 years-old) of each considered year as shown in Figure 5. Figure 6349

shows the distribution of the proportion of deaths per age class for years 2019 and 2020 (total of350

proportions equals to 1), indicating the empirical probability for a death to be in each age class.351

It is assumed that the differences in the observed mortality between 2019 and 2020 is imputed352

(directly or indirectly) to the COVID-19. The 2020 population is then a two-component mixture353

composed by the previous 2019 population plus a latent population subject to the impact of the354

COVID-19 crisis. In other words, model (1) has an appealing application to capture the excess of355

mortality due the COVID-19. It is then legitimate to assume a second unknown nodular component356

driving the mortality due to the COVID-19 during the considered period. More precisely, we will357

assume that the known cdf is the one observed over 2019, i.e. the multinomial distribution G, and358

look to compare the distribution F of the excess mortality across countries. This excess mortality359

can be regarded as a measure that encompasses all causes of death and provides a metric of the360

overall mortality impact in 2020.361
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Figure 5: Total death records of individuals aged over 15 years-old across years 2017, 2018, 2019
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In Table 1 we report the outputs of the testing procedure developed in this paper for the362

aforementioned countries. The known component Gi is described as the multinomial distribution363

computed in 2019 for each country. We shall stress out that in this application we are clearly in364

presence of two distinct known cdfs, i.e. G1 6= G2, which is our basic assumption to implement365

our procedure. Also, in this case, we choose the discrete uniform distribution for the integrating366

cdf U , see (13). In order to avoid any departure of the estimated proportion pi to the infinity367

and thus make the discrepancy measure go to 0, we bounded the parametric space over which we368

optimize. Here, we set the upper bound equal to δ2 = 3, which seems to be large enough given the369

Population
p1 p2 Green light Test statistic 95% quantile p-value Decision

1 2

Spain Italy 0.1404 0.3058 1.3471 14.6930 0.75 H0

Spain France 3 0.7388 - - - H1

Spain Germany 3 0.0997 - - - H1

Spain Netherlands 0.6701 3 - - - H1

Spain Belgium 3 3 - - - H1

Netherlands Italy 0.0722 0.1523 20.3887 90.3917 0.65 H0

Netherlands France 3 0.3031 - - - H1

Netherlands Germany 0.94 0.1638 14.9862 2.8878 - H1

Netherlands Belgium 3 0.6364 - - - H1

Italy France 0.32 3 - - - H1

Italy Germany 3 0.1710 - - - H1

Italy Belgium 3 3 - - - H1

Belgium France 3 3 - - - H1

Belgium Germany 0.5742 0.1908354 1.7297 1.344 - H1

Table 1: Pairwise testing of the excess of mortality behavior across some European countries.
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simulation results. First, we can see from Table 1 that some estimated proportions in the pairwise370

analysis bump into this boundary, which clearly indicates to reject the null hypothesis H0. Among371

these countries, we see that only Spain and Italy (with p-value equal to 76%), on one hand, and372

Netherlands and Italy (56%), on the other hand, shares the same excess mortality profile. However,373

the equality between Spain and Netherlands is rejected. This result can be interpreted as follows:374

the estimation procedure tends to find a common cdf, that is F1 = F2 = F , under the null. In375

the Spain-Italy comparison case, this common component represents 30.58% of the Italian deaths376

population and 14.04% of the Spanish population’s deaths. Their representations are given in377

Figure 7 where we can see the very close patterns of these two multinomial distributions. In the378

Netherlands-Italy comparison case, the common component is slightly different. It represents only379

15.23% of the Italian deaths population and 7.22% of the Netherlands one. Their estimations are380

given in Figure 7 where it can be seen a slight difference between the two last classes which are less381

numerous and therefore more sensible with a larger variability. We also have to take into account382

that the Netherlands second component estimation is based on only 7.22% of the observations.383

In conclusion, the excess mortality Italian profile seems to be very similar to the Spain one with384

a very large p-value. A part of this excess mortality seems to be similar to the Netherlands one,385

with a lower p-value. But our test procedure do not retain the equality between Netherlands and386

Spain excess mortalities.387

Eventually, the proportion for Spain and Italy approximate respectively 30.58% and 14.04%,388

which is consistent with the reported statistics [1, 18]. The discussion of such a behaviour is,389

however, beyond the scope of this paper. Instead, we can refer to the various discussions in390

the literature that intended to understand the differential impact of the COVID-19 crisis over391

countries looking at the socio-economic and demographic variables. In our case, we depict the392

mortality during this first wave of the pandemic for countries validating the null hypothesis H0393

(Spain, Italy and Netherlands), see the left panel of Figure 7. We see that these countries exhibit394

a comparable behavior but which cannot be visually validated.395
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6 IBM-method and further models396

In the next two sections we propose to highlight on the range of our method, to describe challeng-397

ing situations (involving dependencies) in which our semiparametric IBM-method could provide398

interesting results. These are ongoing works which are beyond the scope of the current paper.399

6.1 Independence, concordance and discordance400

Let us consider for simplicity a bivariate contamination model (extension to the d-variate setup,401

d ≥ 3, being straightforward):402

L(x1, x2) = pG(x1, x2) + (1− p)F (x1, x2), (x1, x2) ∈ R2, (24)

where L is the common cdf of an i.i.d. sample (X1, . . . , Xn), G is a known cdf when the mixture403

proportion p and the cdf F are both unknown. By splitting the observation vector X into 2404

components X = (X1, X2)T , we have respective marginal cdfs405

Li(x) = pGi(x) + (1− p)Fi(x), x ∈ R, i = 1, 2. (25)

An interesting problem is then to test the mutual independence of the nodular components X1406

and X2, i.e.407

H0 : F = F1 ⊗ F2 against H0 : F 6= F1 ⊗ F2, (26)

where G 6= G1⊗G2 on a µ-non null set to avoid trivial testing situations (otherwise independence408

on the L-components would then reflect the independence on the F -components). Given the above409

remarks we can define two parametric families (Inversion step):410

F1 =

{
F (u1, u2; p) =

L(u1, u2)− pG(u1, u2)

1− p
, p ∈]0, 1[

}
, and

F2 =

{
F1×2(u1, u2; p) = F1(u1; p)F2(u2; p), Fi(·; p) =

Li(·)− pGi(·)
1− p

, i = 1, 2, p ∈]0, 1[

}
,

and build a contrast function (Best Matching step) in the spirit of (13–14)411

d(p) =

∫
R×R

(F (u1, u2; p)− F1×2(u1, u2; p))2dU(u1, u2).

Using copula techniques to handle global and marginal empirical processes, as it is classically done412

in the “direct” (not mixture component testing) Cramér-von Mises independence testing literature,413

see Genest et al. [10] for recent results and bibliography, we reasonably think that asymptotic414

decision results similar to ii) in Theorem 2 could be established on the test statistic ndn(p̂n) where415

dn is the empirical version of d and p̂n is the minimum argument of dn over ]0, 1[. Note that416

such accomplishment would also help in answering/testing the complete concordance/discordance417
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problem arising in z-score analysis, see Lai et al. [15] and Lai et al. [16], where basically model418

(24) can take (among others) two basic forms:419

L = pG1(x1)⊗G2(x2) + (1− p)F1 ⊗ F2, (complete concordance),

L = (p1G1 + (1− p1)F1)⊗ (p2G2 + (1− p2)F2), (complete discordance).

In fact in the above models, slightly more complex contrast functions d, based on F -inversions and420

comparison inspired from the previous independence testing strategy, can also be proposed and421

proved to provide a fully tractable Cramér-von Mises test in the spirit of Theorem 2.422

6.2 Blending process423

As mentioned earlier, the testing methodology we introduce in this paper can be extended to424

temporal contamination models we propose to name blending process. This type of model are425

especially interesting to analyze situations in which a phenomenon has been observed with a426

good stability for a long period of time but turns out to be contaminated by a new trend which427

importance becomes more and more prominent. This type of model would be especially relevant428

to analyze temporal mortality datasets during the COVID-19 crisis as described in Section 5429

(collections of mortality datasets over time would be required instead of one single sample collected430

during a given period of time). By denoting G the cdf of the well known phenomenon and by pt,431

respectively Ft, the proportion, resp. the cdf, of the new trend at time t, the distribution of a432

generic i.i.d sample X t = (X t
1, . . . , X

t
nt

) at time t ∈ N could be expressed as follows:433

Lt(x) = p(t)G(x) + (1− p(t))Ft(x), x ∈ R. (27)

In that setup it could be interesting, following the identifiability and parameter picking strategy434

presented in Section E when G1 = G2, to test the consistency in time of the trend distribution,435

i.e.436

H0(ti, tj) : Fti = Ftj against H1(ti, tj) : Fti 6= Ftj , i 6= j ∈ {1, . . . , T} . (28)

Note that if the testing problem (28) is very mostly answered positively we could possibly assess437

that F is independent from t and then estimate nonparametrically the mixing proportion function438

p(t) based on the condition Ft = F , t ∈ N and Remark 5 of Section E. The main technical439

difficulty here is to handle correctly the possible dependencies between samples X ti and X tj ,440

for i 6= j, especially when ti and tj are close. Note that the analog of (59) and (66) need to441

established with a limiting bivariate Gaussian process B with no longer independent coordinates442

since the source samples X ti and X tj are dependent. The paper by Gribovka and Lopez [12] on443

non-parametric copula estimation under bivariate censoring loooks to provide interesting ideas to444

solve this problem.445
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7 Conclusion446

In this work, we address the comparison testing of the unknown components of a two sample447

contamination model. We introduce the so-called IBM (Inversion-Best Matching) approach that448

results into a relaxed semi-parametric Cramér-von Mises type two-sample test with very minimal449

assumptions about the unknown components. Indeed, we do not require any shape constraints on450

the unknown distributions, such as symmetry, tail conditions etc. which are very often key technical451

identifiability conditions arising in univariate semiparametric mixture models. We establish in452

particular a functional joint central limit theorem on the proportion parameters (with consistency453

under H0) along with the best fitted differences between the unknown cdfs, which is unachievable454

in the basic univariate case as shown by Patra and Sen [22]. An intensive numerical study has been455

carried out from a large range of simulation setups to illustrate the asymptotic properties of our456

test. This includes examples using Gaussian distributions but also more challenging distributions457

supported on R+, N or [0, 1] which are considered as very non-standard in the mixture models458

literature. Finally, our testing procedure is applied to a real-life case attempting to fill the gap in459

understanding the disparities of the excess of mortality during the COVID-19 crisis, which allows460

to test pairwise the excess of mortality across a panel of European countries.461

This work could be extended in many interesting ways, among which the case of paired samples462

which would particularly be interesting for time-varying models consideration (as in [11]). We463

should, indeed, consider realizations of such samples while tackling the problem of the underlying464

dependence structure. Also, coming back to the COVID-19 case, it is fortunate to develop a465

more adapted scheme to pairwise testing for the underlying populations. In fact, a clustering466

procedure would be beneficial along with a K-sample testing procedure based on the result of this467

paper. This could bring in a new challenging problem. Finally, given the ability of the test to468

accommodate very different frameworks, an upcoming R package implementing a wide variety of469

two-sample testing methods for contaminated models will be very soon available to researchers as470

well as practitioners.471
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A Proofs544

Proof of Lemma 1. Note that, since pi ∈ Θi = [δ1, δ2], 0 < δ1 < 1 < δ2 < +∞, we have:545

|Fi(x, pi)| ≤
1 + δ̃

δ1

, (x, pi) ∈ R×Θi, i = 1, 2 where δ̃ = max(|1− δ1|, |1− δ2|). (29)

(i) Noticing that according to (29) the mapping θ 7→ |D(x, θ)| is bounded over Θ by 2(1+ δ̃)/δ1546

and continuous at any point θ ∈ Θ for all fixed x ∈ R, the wanted result is a direct consequence547

of the Lebesgue dominated convergence Theorem. The same type of proof, straightforward but548

painfull, hold on the gradient and the Hessian of D(x, θ), see Section D for close form expressions.549

550

(ii) Under H0, if θ = θ∗ then we have d(θ) = 0. To prove the reciprocal let us remark
that d(θ) = 0 implies that F1(·, θ) = F2(·, θ) µ-almost everywhere (µ-a.e.) because U is strictly
increasing over IU that includes the support of the Li’s and Gi’s. Now according to (I) and (12)
we necessarily have: 

(p1 − p1∗)/p1 = 0

(p2 − p∗2)/p2 = 0

p∗2/p2 − p∗1/p1 = 0,

⇔ p1 = p∗1 and p2 = p∗2,

which concludes the proof.551

552

(iii) Under H1 (F1 6= F2), if we assume that F1(·, p1) = F2(·, p2) then we similarly obtain:
(p1 − p∗1)/p1 = 0

(p2 − p∗2)/p2 = 0

p∗2/p2 = 0

p∗1/p1 = 0,

which is impossible since the pi’s and p∗i ’s are supposed to be strictly greater than 0. Hence, for553

any θ ∈ Θ, we have d(θ) > 0 which implies the wanted result.554

555

iv) Let consider θ and θ′ two distinct points in Θ. We have according to (29):556

|d(θ)− d(θ′)| ≤
∫
R
|D(x, θ) +D(x, θ′)| × |D(x, θ)−D(x, θ′)| dU(x)

≤ 4(1 + δ̃)

δ1

∫
R
|D(x, θ)−D(x, θ′)| dU(x).

Since for i = 1, 2 we have557

|Fi(x, pi)− Fi(x, p′i)| = |Li −Gi|
∣∣∣∣p′i − pipip′i

∣∣∣∣ ≤ 2

δ2
1

|pi − p′i|,
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it comes558

|D(x, θ)−D(x, θ′)| ≤
2∑
i=1

|Fi(x, pi)− Fi(x, p′i)| ≤
2

δ2
1

2∑
i=1

|pi − p′i| ≤
4

δ2
1

‖θ − θ′‖2 ,

which leads to559

|d(θ)− d(θ′)| ≤ 16(1 + δ̃)

δ3
1

‖θ − θ′‖2 ,

and proves the Lipschitz property for θ 7→ d(θ) over Θ. Let us denote D̂(x, θ) = D(x, L̂1, L̂2, θ)560

where D(·) is defined in (14), and notice that561

|dn(θ)− d(θ)| ≤
∫
R

∣∣∣D̂2(x, θ)−D2(x, θ)
∣∣∣ dU(x).

For all x ∈ R, we have:562 ∣∣∣D̂2(x, θ)−D2(x, θ)
∣∣∣ ≤ ∣∣∣D̂(x, θ) +D(x, θ)

∣∣∣× ∣∣∣D̂(x, θ)−D(x, θ)
∣∣∣

≤ 2(1 + δ̃)

δ1

∣∣∣D̂(x, θ)−D(x, θ)
∣∣∣

≤ 2(1 + δ̃)

δ1

2∑
i=1

∣∣∣L̂i(x, θ)− Li(x, θ)∣∣∣ ,
which leads to563

|dn(θ)− d(θ)| ≤ 2(1 + δ̃)

δ1

2∑
i=1

∥∥∥L̂i(·, θ)− Li(·, θ)∥∥∥
∞
.

Noticing that, for i = 1, 2, ‖L̂i(·, θ)− Li(·, θ)‖∞ = Oa.s.(
√
ni−1 log log(ni)) (see Shorack and Well-564

ner [25], p. 766), we obtain the wanted result.565

566

v) For any θ ∈ Θ, we have567

d̈(θ) = 2

∫
R
D̈(x, θ)D(x, θ) + Ḋ(x, θ)Ḋ(x, θ)TdU(x)

= 2

∫
R
M(x, θ)dU(x),

where, as detailed in Appendix D, M(x, θ) is a 2× 2 symmetric real-valued matrix for all x fixed568

in R. As a consequence, we have for all x ∈ R and any vector v ∈ R2:569

vTM(x, θ)v ≥ 0 ⇒ vT d̈(θ)v = 2

∫
R
vTM(x, θ)vdU(x) ≥ 0,
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but also570

vT d̈(θ)v = 0 ⇒ M1,1(x, θ)v2
1 + 2M1,2(x, θ)v2v1 +M2,2(x, θ)v2

2 = 0 µ− a.e.

Now according to assumption (II) and decomposition (48), the above nullity condition implies in571

particular that the coefficients associated to F 2
i ’s are null, i.e. a3(pi, vi)(p

∗
i )

2 = 3v2
i (p
∗
i )

2/p4
i = 0,572

i = 1, 2, which implies v1 = v2 = 0 and concludes the proof of the definite-positiveness of d̈(θ) for573

any θ ∈ Θ.574

575

Proof of Theorem 1 By Lemma 1 v) or vi) there exists γ > 0 such that for all v ∈ R2,576

vT d̈(θc)v > γ||v||22. By a two order Taylor expansion of d at point θc ∈
o

Θ we can find η > 0 such577

that for all v satisfying ‖v‖ < η and θc + v ∈
◦
Θ, we have578

d(θc + v) ≥ γ

4
‖v‖2

2. (30)

Let us consider now B(θc, ηn) the Euclidean ball centered at point θc with radius ηn > 0. Following579

the proof in Bordes et al. [3] we show the following events inclusion:580

lim sup
n

{
θ̂n /∈ B(θc, ηn)

}
⊆ lim sup

n

{
inf

θ∈Θ\B(θc,ηn)
d(θ) < ξn

}
∪ lim sup

n

{
ξn ≤ 2 sup

θ∈Θ
|dn(θ)− d(θ)|

}
,

for any arbitrary sequence ξn. Choosing now ξn = n−1/2+α and ηn = n−1/4+β/2, with 0 < α < β581

taken arbitrarily small, it follows from (30) and the uniform almost sure rate of dn given in Lemma582

1 (iv), that583

P

(
lim sup

n

{
inf

θ∈Θ\B(θc,ηn)
d(θ) < ξn

})
= 0,

and584

P

(
lim sup

n

{
ξn ≤ 2 sup

θ∈Θ
|dn(θ)− d(θ)|

})
= 0.

In conclusion, θ̂n converges almost surely towards θc at rate n−1/4+α, α > 0 chosen arbitrarily small.585

586

Proof of Theorem 2. i) By a Taylor expansion of ḋn about θc ∈
o

Θ we have:587

d̈n(θ̃n)
√
n(θ̂n − θc) = −

√
nḋn(θc), (31)

where θ̃n lies in the line segment with extremities θ̂n and θc. Now writing that ḋ(θ) = (ḋ1(θ), ḋ2(θ))T ,588

ḋ1(θ) = 2EU

(
(2− p1)G1L1

p3
1

− (1− p1)G2
1

p3
1

− L2
1

p3
1

− G1L2

p2
1p2

+
(1− p2)G1G2

p2
1p2

+
L1L2

p2
1p2
− (1− p2)L1G2

p2
1p2

)
ḋ2(θ) = 2EU

(
(2− p2)G2L2

p3
2

− (1− p2)G2
2

p3
2

− L2
2

p3
2

− G2L1

p2
2p1

+
(1− p1)G2G1

p2
2p1

+
L2L1

p2
2p1
− (1− p1)L2G1

p2
2p1

)
,
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we look at589

ḋ1,n(θ)− ḋ1(θ) = 2

(
2− p1

p3
1

T1,1 −
1− p1

p3
1

T1,2 −
1

p3
1

T1,3 −
1

p2
1p2

T1,4 +
1− p2

p2
1p2

T1,5 +
1

p2
1p2

T1,6 −
1− p2

p2
1p2

T1,7

)
ḋ2,n(θ)− ḋ2(θ) = 2

(
2− p2

p3
2

T2,1 −
1− p2

p3
2

T2,2 −
1

p3
2

T2,3 −
1

p2
2p1

T2,4 +
1− p1

p2
2p1

T2,5 +
1

p2
2p1

T2,6 −
1− p1

p2
2p1

T2,7

)
,

where590

T1,1(G1, L1) = EU

(
G1

(
L̂1 − L1

))
T1,2(G1) = EU

(
G2

1 −G2
1

)
= 0

T1,3(L1) = EU

(
L̂2

1 − L2
1

)
= EU

(
(L̂1 − L1)(L̂1 + L1)

)
= EU

(
(L̂1 − L1)(2L1 + oa.s.(1))

)
T1,4(G1, L2) = EU (G1(L̂2 − L2))

T1,5(G1, G2) = EU (G1G2)− EU (G1G2) = 0

T1,6(L1, L2) = EU

(
L̂1L̂2 − L1L2

)
= EU

(
L̂1(L̂2 − L2) + L2(L̂1 − L1)

)
= EU

(
(L1 + oa.s.(1)(L̂2 − L2)

)
+ EU

(
L2(L̂1 − L1)

)
T1,7(G2, L1) = EU

(
G2(L̂1 − L1)

)
= T1,4(G2, L1)

T2,1(G2, L2) = EU

(
G2(L̂2 − L2)

)
= T1,1(G2, L2)

T2,2(G2) = EU
(
G2

2

)
− EU

(
G2

2

)
= 0

T2,3(L2) = EU

(
(L̂2 − L2)(L̂2 + L2)

)
= EU

(
(L̂2 − L2)(2L2 + oa.s.(1))

)
= T1,3(L2)

T2,4(L1, G2) = EU

(
G2(L̂1 − L1)

)
= T1,4(L1, G2)

T2,5(G1, G2) = EU (G2G1)− EU (G2G1) = 0

T2,6(L1, L2) = EU

(
L̂2L̂1 − L2L1

)
= T1,6(L1, L2)

T2,7(G1, L2) = EU

(
G1(L̂2 − L2)

)
.

591

For a generic cdf Y and a generic N -sample based empirical process V =
√
N(V̂ − V ), define592

ϕ(Y,V) =
∫
R Y (x)V(x)dU(x). Introducing S = (G1, G2, L1, L2), let us consider593

Ψ1,1(S, θ) = 2

(
2− p1

p3
1

G1 −
2

p3
1

L1 +
1

p2
1p2

L2 −
1− p2

p2
1p2

G2

)
Ψ1,2(S, θ) = 2

(
1

p2
1p2

(L1 −G1)

)
Ψ2,1(S, θ) = 2

(
2− p2

p3
2

G2 −
2

p3
2

L2 +
1

p2
2p1

L1 −
1− p1

p2
2p1

G1

)
Ψ2,2(S, θ) = 2

(
1

p2
2p1

(L2 −G2)

)
,
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and594

Φ1,1(L1, θ) = ϕ(Ψ1,1(S, θ),L1), Φ1,2(L2, θ) = ϕ(Ψ1,2(S, θ),L2),

Φ2,1(L2, θ) = ϕ(Ψ2,1(S, θ),L2), Φ2,2(L1, θ) = ϕ(Ψ2,2(S, θ),L1).

Note that the first and fourth, respectively the second and third, expression depends only on the595

randomness of L1, resp. L2. We resume the above remarks into the following basic expression:596

√
n(ḋn(θ)− ḋ(θ)) = Φ(L1,L2, θ) + oa.s(1), (32)

where, according to
√
n =
√
κn/
√
κ = ζ

√
n2 with ζ = 1/

√
κ:597

Φ(L1,L2) =

[
Φ1,1(L1, θ) + ζΦ1,2(L2, θ)
ζΦ2,1(L2, θ) + Φ2,2(L1, θ).

]
(33)

Since the empirical processes L1 and L2 are independent, by the Donsker Theorem [27, The-598

orem 19.3, p. 266], the vector [L1,L2] converges in distribution in the space D[−∞,∞] to a599

bi-dimensional zero-mean Gaussian process B, i.e.600 [
L1

L2

]
 B =

[
B1

B2

]
, (34)

where B is a bi-dimensional gaussian process with diagonal correlation matrix ρ = diag(ρ1, ρ2),601

where ρ1(x, y) = L1(x ∧ y)(1− L1(x ∨ y)) and ρ2(x, y) = L2(x ∧ y)(1− L2(x ∨ y)).602

603

Moreover,604

√
n[D(x, L̂1, L̂2, θ̂n)−D(x, L1, L2, θ

c)] =
√
n[F1(x, L̂1, p̂1)− F1(x, L1, p

c
1)]

−
√
n[(F2(x, L̂2, p̂2)− F2(x, L2, p

c
2))]. (35)

Let decompose closely, for i = 1, 2, the terms Fi(x, L̂i, p̂i)− Fi(x, Li, pci):605

√
n[Fi(·, L̂i, p̂i)− Fi(·, Li, pci)] =

√
n

[(
L̂i
p̂i
− Li
pci

)
−
(

1− p̂i
p̂i
− 1− pci

pci

)
Gi

]

=
√
n

[
L̂i − Li
p̂i

]
+
√
n

(
pci − p̂i
pci p̂i

)
(Li −Gi)

= ζi
1

pci
Li −

(
Li −Gi

(pci)
2

√
n[p̂i − pci ]

)
+ oP (1), (36)

where by convention ζ1 = 1 and ζ2 = ζ = 1√
κ
. It is also easy to prove that d̈n(θ̃n)

a.s.→ d̈(θc) > 0, as606

n→ +∞. Indeed, let us now consider the decompositions (45), (46) and (47) in Appendix D, we607
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have608 ∣∣∣[d̈n(θ̃n)− d̈(θc)]i,j

∣∣∣ ≤ ∫
R

∣∣∣Mi,j(x, L̂1, L̂2, G1, G2, θ̃n)−Mi,j(x, L1, L2, G1, G2, θ)
∣∣∣ dU(x)

≤
∫
R

∣∣∣Mi,j(x, L̂1, L̂2, G1, G2, θ̃n)−Mi,j(x, L1, L2, G1, G2, θ̃n)
∣∣∣ dU(x)

+

∫
R

∣∣∣Mi,j(x, L1, L2, G1, G2, θ̃n)−Mi,j(x, L1, L2, G1, G2, θ)
∣∣∣ dU(x)

≤ C

(
P(θ̃n)

[
2∑
i=1

‖L̂i − Li‖∞

]
+ |P(θ̃n)− P(θc)|

)
, (37)

where P(θ) =
∑4

k=0 p
−k
1 p−4+k

2 is a R2 → R continuous mapping. Now by using on (37) the609

Glivenko-Cantelli theorem and the almost sure convergence of θ̂n towards θc, we obtain the wanted610

result.611

In order to synthetically summarize results (31), (32), (33) and (35–36) for the Central Limit612

Theorem relative to our quantities of interest, we define the following matrix-type relation:613

√
n

 p̂1 − pc1
p̂2 − pc2

Dn(·)−D(·)

 = M(θc, ·)


Φ1,1(L1, θ

c)
Φ2,2(L1, θ

c)
L1

Φ2,1(L2, θ
c)

Φ1,2(L2, θ
c)

L2

+ oa.s.(1), with M(θc, ·) = L(·, θc) J−1(θc) C (38)

where614

C =


−1 0 0 0 −ζ 0
0 −1 0 −ζ 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 , J(θ) =

[
d̈(θ) 02×2

02×2 Id2×2

]
, L(·, θ) =

 1 0 0 0
0 1 0 0

−L1(·)−G1(·)
p21

L2(·)−G2(·)
p22

1
p1
− ζ
p2

 .(39)

We finally have615 
Φ1,1(L1, θ

c)
Φ2,2(L1, θ

c)
L1

Φ2,1(L2, θ
c)

Φ1,2(L2, θ
c)

L2


L→ Z =


Φ1,1(B1, θ

c)
Φ2,2(B1, θ

c)
B1

Φ2,1(B2, θ
c)

Φ1,2(B2, θ
c)

B2

 , (40)

where Z is Gaussian random vector of R6 with covariance matrix ΣL = E(ZZT ). Since B1 and B2616

are two independent (limiting) Gaussian processes, we have:617

ΣL(x, y) =

[
Σ1(x, y) 03×3

03×3 Σ2(x, y)

]
. (41)
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Because618

E

(∫
R
f1(x)B(x)dU(x)×

∫
R
f2(y)B(y)dU(y)

)
= E

(∫
R2

f1(x)f2(y)B(x)B(y)dU(x)dU(y)

)
=

∫
R2

f1(x)f2(y)E(B(x)B(y))dU(x)dU(y)

=

∫
R2

f1(x)f2(y)cov(B(x),B(y))dU(x)dU(y)

=

∫
R2

f1(x)f2(y)ρ(x, y)dU(x)dU(y),

it comes that Σ1(x, y) = (σ1(i, j;x, y))1≤i,j≤3 where619

σ1(1, 1;x, y) = σ1(1, 1) =

∫
R2

Ψ1,1(S, θ, u)Ψ1,1(S, θ, v)ρ1(u, v)dU(u)dU(v)

σ1(1, 2;x, y) = σ1(1, 2) = σ1(2, 1) =

∫
R2

Ψ1,1(S, θ, u)Ψ2,2(S, θ, v)ρ1(u, v)dU(u)dU(v)

σ1(1, 3;x, y) = σ1(1, 3; y) =

∫
R

Ψ1,1(S, θ, u)ρ1(u, y)dU(u)

σ1(2, 2;x, y) = σ1(2, 2) =

∫
R2

Ψ2,2(S, θ, u)Ψ2,2(S, θ, v)ρ1(u, v)dU(u)dU(v)

σ1(2, 3;x, y) = σ1(2, 3; y) =

∫
R

Ψ2,2(S, θ, u)ρ1(u, y)dU(u)

σ1(3, 3;x, y) = ρ1(x, y)

σ1(3, 1;x, y) = σ1(3, 1;x) = σ1(1, 3;x)

σ1(3, 2;x, y) = σ1(3, 2;x) = σ1(2, 3;x),

and Σ2 = (σ2(i, j;x, y))1≤i,j≤3 where620

σ2(1, 1;x, y) = σ2(1, 1) =

∫
R2

Ψ2,1(S, θ, u)Ψ2,1(S, θ, v)ρ2(u, v)dU(u)dU(v)

σ2(1, 2;x, y) = σ2(1, 2) = σ2(2, 1) =

∫
R2

Ψ2,1(S, θ, u)Ψ1,2(S, θ, v)ρ2(u, v)dU(u)dU(v)

σ2(1, 3;x, y) = σ2(1, 3; y) =

∫
R

Ψ2,1(S, θ, u)ρ2(u, y)dU(u)

σ2(2, 2;x, y) = σ2(2, 2) =

∫
R2

Ψ1,2(S, θ, u)Ψ1,2(S, θ, v)ρ2(u, v)dU(u)dU(v)

σ2(2, 3;x, y) = σ2(2, 3; y) =

∫
R

Ψ1,2(S, θ, u)ρ2(u, y)dU(u)

σ2(3, 3;x, y) = ρ2(x, y)

σ2(3, 1;x, y) = σ2(3, 1;x) = σ2(1, 3;x)

σ2(3, 2;x, y) = σ2(3, 2;x) = σ2(2, 3;x).
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Note that all the above matrices can be estimated consistently, see Appendix D.2.621

ii) Let us now decompose ndn(θ̂n) :622

ndn(θ̂n) =

∫
R
n(D(x, L̂1, L̂2, θ̂n)−D(x, L1, L2, θ

c) +D(x, L1, L2, θ
c))2dU(x)

=

∫
R
(
√
n[D(x, L̂1, L̂2, θ̂n)−D(x, L1, L2, θ

c)])2dU(x)

+2
√
n

∫
R

√
n[D(x, L̂1, L̂2, θ̂n)−D(x, L1, L2, θ

c)]D(x, L1, L2, θ
c)dU(x)

+n

∫
R
D2(x, L1, L2, θ

c)dU(x). (42)

Note that under H0, θc = θ∗, and we simply have:623

ndn(θ̂n) =

∫
R
(
√
nD(x, L̂1, L̂2, θ̂n))2dU(x)

=

∫
R
(
√
n[D(x, L̂1, L̂2, θ̂n)−D(x, L1, L2, θ

∗)]2dU(x)

= U0
n, (43)

since D(·, L1, L2, θ
∗) = 0 almost everywhere. Next, notice that it is easy to show that the map624

Un(D) is Hadamard differentiable from the domain of càd-làg functions of bounded variation into625

R [27, Lemma 20.10]. This combined with the result for weak convergence of the empirical process626

D, in the third row of (18), yields the desired result.627

Under H1, we have
∫
RD

2(x, L1, L2, θ
c)dU(x) > 0, which leads to628

ndn(θ̂n) =

∫
R
(
√
n[D(x, L̂1, L̂2, θ̂n)−D(x, L1, L2, θ

c)])2dU(x)

+n

∫
R
D2(x, L1, L2, θ

c)dU(x) + oP (n)

= U1
n + V1

n. (44)

Given the asymptotic convergence analysis under both H0 or H1, the random variable within629

brackets involved in (42) and (44) can be analyzed closely. Being able to tabulate its asymptotic630

distribution whatever H0 or H1 is true, we will be able to accept H0 if the test statistic ndn(θ̂n) is631

lower than the (1− α)-quantile of that asymptotic distribution, otherwise reject H0.632

B Optimization of the discrepancy measure633

As discussed in Section 1, we can face two types of situations when looking for the solution of our634

optimization problem (15) : i) there exists a local minima of d(θ), θ∗ under H0 or θc under H1,635

in the interior of the parametric space, and then the testing problem is non-trivial and should be636
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addressed, or ii) the optimization of d(θ) shows that we bump into the boundaries of the parametric637

space, i.e. one of the component of θc is equal to the upper-bound of the parametric space because638

the main way to reduce the contrast d(θ) is to make θ large. In the latter case, the testing problem639

is not even worth addressing (we clearly are under H1). This phenomenon is illustrated on Figure 8,640

where the two first graphs show the situation i) and the last one depicts the case ii). It is clear641

that a unique global minimizer belonging to the natural parametric space ]0, 1[ exists under H0.642

On the contrary, under H1, local minima out of this natural parametric space can exist and lead643

to select a minimizer tending to infinity.

Figure 8: Example of the surface of the discrepancy d(θ) where pi(i = 1, 2) belongs to Θi. From
left to right: under H0, under H1 with a solution belonging to the natural parametric space ]0, 1[,
and under H1 where p̂2 (minimizer of d(θ)) is very likely to be very far from the interval ]0, 1[.

644

C Validation of the estimators variance-covariance645

To validate the explicit covariance structure between the estimators, it is necessary to fix z and646

to compare the empirical covariances obtained by Monte Carlo simulations to the theoretical647

ones. Here, we illustrate the case of two-component Gaussian mixtures with parameters given in648

Section 3.2. Moreover, we take z = 2 in formulas (38)-(41). Hereafter, we provide the numerical649

approximations for the theoretical version of the covariance structure:650

 Var(P1) Cov(P1, P2) Cov(P1, Dz)
Cov(P2, P1) Var(P2) Cov(P2, Dz)
Cov(Dz, P1) Cov(Dz, P2) Var(Dz)

 =

 2.0086503 1.1209473 −0.1861036
1.1209473 1.6979287 −0.2714744
−0.1861036 −0.2714744 0.5082710

 ,
to be compared to its Monte Carlo version:651  V̂ar(P1) Ĉov(P1, P2) Ĉov(P1, Dz)

Ĉov(P2, P1) V̂ar(P2) Ĉov(P2, Dz)

Ĉov(Dz, P1) Ĉov(Dz, P2) V̂ar(Dz)

 =

 2.031565 1.091873 −0.170923
1.091873 1.639897 −0.29527
−0.170923 −0.29527 0.5158633

 .
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We can see that the approximations of both quantities are very close, which ensures the validity652

of i) in Theorem 2 in this case. Of course, we checked that for many different values of z, as well653

as many different frameworks in terms of mixture distributions.654

D Further details for computations655

D.1 Derivatives656

Let us compute the gradient vector Ḋ(θ) and the Hessian matrix D̈(θ) for any θ ∈ Θ,657

Ḋ(θ) =

(
G1(x)− L1(x)

p2
1

,−G2(x)− L2(x)

p2
2

)T
D̈(θ) = diag

(
−2

G1(x)− L1(x)

p3
1

, 2
G2(x)− L2(x)

p3
2

)
.

Dropping for simplicity the dependence on (x, θ) it comes now that

Ḋ(x, θ)Ḋ(x, θ)T =

(
(G1(x)−L1(x))2

p41
− (G1(x)−L1(x))(G2(x)−L2(x))

p21p
2
2

− (G1(x)−L1(x))(G2(x)−L2(x))

p21p
2
2

(G2(x)−L2(x))2

p42
,

)

and658

D̈(θ)D(θ) = diag

(
−2

G1(x)− L1(x)

p3
1

, 2
G2(x)− L2(x)

p3
2

)
×
[
L1(x)− (1− p1)G1(x)

p1

− L2(x)− (1− p2)G2(x)

p2

]
.

Let us compute now the terms of the matrix M(x, θ) = Ḋ(x, θ)Ḋ(x, θ)T + D̈(θ)D(θ). Dropping659

for simplicity the dependence on (x, θ) It comes now that660

M1,1 =
G2

1 − 2G1L1 + L2
1

p4
1

− 2

p4
1

G1L1 +
2(1− p1)

p4
1

G2
1 +

2

p3
1p2

G1L2 −
2(1− p2)

p3
1p2

G1G2

+
2

p4
1

L2
1 −

2(1− p1)

p4
1

L1G1 −
2

p3
1p2

L1L2 +
2(1− p2)

p3
1p2

L1G2

=
−6 + 2p1

p4
1

G1L1 +
3− 2p1

p4
1

G2
1 +

2

p3
1p2

G1L2 −
2(1− p2)

p3
1p2

G1G2

+
3

p4
1

L2
1 −

2

p3
1p2

L1L2 +
2(1− p2)

p3
1p2

L1G2, (45)
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M2,2 =
G2

2 − 2G2L2 + L2
2

p4
2

+
2

p3
2p1

G2L1 −
2(1− p1)

p3
2p1

G2G1 −
2

p4
2

G2L2 +
2(1− p2)

p4
2

G2
2

− 2

p3
2p1

L2L1 +
2(1− p1)

p3
2p1

L2G1 +
2

p4
2

L2
2 −

2(1− p2)

p4
2

L2G2

=
2

p3
2p1

G2L1 −
2(1− p1)

p3
2p1

G2G1 +
−6 + 2p2

p4
2

G2L2 +
3− 2p2

p4
2

G2
2

− 2

p3
2p1

L2L1 +
2(1− p1)

p3
2p1

L2G1 +
3

p4
2

L2
2, (46)

M1,2 = M2,1 = − 1

p2
1p

2
2

G1G2 +
1

p2
1p

2
2

G1L2 +
1

p2
1p

2
2

L1G2 −
1

p2
1p

2
2

L1L2. (47)

Since now the term vTMv = M1,1v
2
1 +M2,2v

2
2 + 2M1,2v1v2 and denoting661

a1(p1, v1) =
(−6 + 2p1)v2

1

p4
1

, a2(p1, v1) =
(3− 2p1)v2

1

p4
1

, a3(p1, v1) =
3v2

1

p4
1

,

b1(p1, p2, v1, v2) =

(
2v2

1

p3
1p2

+
2(1− p1)v2

2

p3
2p1

+
2v1v2

p2
1p

2
2

)
,

b2(p1, p2, v1, v2) =

(
−2(1− p2)v2

1

p3
1p2

− 2(1− p1)v2
2

p3
2p1

− 2v1v2

p2
1p

2
2

)
,

b3(p1, p2, v1, v2) =

(
− 2v2

1

p3
1p2

− 2v2
2

p3
2p1

+
2v1v2

p2
1p

2
2

)
,

we obtain the following developped expression:662

vTMv = [a1(p1, v1)G1L1 + a1(p2, v2)G2L2] + [a2(p1, v1)G2
1 + a2(p2, v2)G2

2]

+[a3(p1, v1)L2
1 + a3(p2, v2)L2

2] + [b1(p1, p2, v1, v2)G1L2 + b1(p2, p1, v2, v1)L1G2]

+b2(p1, p2, v1, v2)G1G2 + b3(p1, p2, v1, v2)L1L2

= [a1(p1, v1)(1− p∗1) + a2(p1, v1) + a3(p1, v1)(1− p∗1)2]G2
1

+[a2(p2, v2)(1− p∗2) + a2(p2, v2) + a3(p2, v2)(1− p∗2)2]G2
2

+[a1(p1, v1)p∗1 + 2a3(p1, v1)(1− p∗1)]G1F1 + [a1(p2, v2)p∗2 + 2a3(p2, v2)(1− p∗2)]G2F2

+a3(p1, v1)(p∗1)2F 2
1 + a3(p2, v2)(p∗2)2F 2

2

+[b1(p1, v1, p2, v2)(1− p∗2) + b1(p2, v2, p1, v1)(1− p∗1) + b3(p1, v1, p2, v2)(1− p∗1)(1− p∗2)]G1G2

+b3(p1, v1, p2, v2)p∗2(1− p∗1)G1F2 + b3(p1, v1, p2, v2)p∗1(1− p∗2)F1G2

+b3(p1, v1, p2, v2)p∗1p
∗
2F1F2. (48)

This decomposition relates to condition (II) insuring the positive definiteness of d̈ under both H0663

or H1.664
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D.2 Matrices consistent estimation665

The notations used here are taken from the notations introduced throughout the paper. All the666

matrices involved in our theoretical results can be estimated consistently as follows.667

Ĵ1,1(θc) = M1,1(Ŝ, θ̂n), Ĵ1,2(θc) = M1,2(Ŝ, θ̂n) = Ĵ2,1(θc), Ĵ2,2(θc) = M2,2(Ŝ, θ̂n)

L̂3,1(θc) = I1(θ̂), L̂3,2(θc) = −I2(θ̂), L̂3,3(θc) =
1

p̂1

, L̂3,4(θc) = I1(θ̂), L̂3,5(θc) = −I2(θ̂), L̂3,6(θc) =
1

p̂2

,

and668

σ̂1(1, 1) =

∫
R2

Ψ1,1(S, θ̂, x)Ψ1,1(S, θ̂, y)ρ̂1(x, y)dU(x)dU(y)

σ̂1(1, 2) = σ̂1(2, 1) =

∫
R2

Ψ1,1(S, θ̂, x)Ψ2,2(S, θ̂, y)ρ̂1(x, y)dU(x)dU(y)

σ̂1(1, 3) = σ̂1(3, 1) =

∫
R2

Ψ1,1(S, θ̂, x)D(S, θ̂, y)ρ̂1(x, y)dU(x)dU(y)

σ̂1(2, 2) =

∫
R2

Ψ2,2(S, θ̂, x)Ψ2,2(S, θ̂, y)ρ̂1(x, y)dU(x)dU(y)

σ̂1(2, 3) = σ̂1(3, 2) =

∫
R2

Ψ2,2(S, θ̂, x)D(S, θ̂, y)ρ̂1(x, y)dU(x)dU(y)

σ̂1(3, 3) =

∫
R2

D(S, θ̂, x)D(S, θ̂, y)ρ̂1(x, y)dU(x)dU(y),

and Σ2 = (σ2(i, j))1≤i,j≤3 where669

σ̂2(1, 1) =

∫
R2

Ψ2,1(S, θ̂, x)Ψ2,1(S, θ̂, y)ρ̂2(x, y)dU(x)dU(y)

σ̂2(1, 2) = σ̂1(2, 1) =

∫
R2

Ψ2,1(S, θ̂, x)Ψ1,2(S, θ̂, y)ρ̂2(x, y)dU(x)dU(y)

σ̂2(1, 3) = σ̂1(3, 1) =

∫
R2

Ψ2,1(S, θ̂, x)D(S, θ̂, y)ρ̂2(x, y)dU(x)dU(y)

σ̂2(2, 2) =

∫
R2

Ψ1,2(S, θ̂, x)Ψ1,2(S, θ̂, y)ρ̂2(x, y)dU(x)dU(y)

σ̂2(2, 3) = σ̂1(3, 2) =

∫
R2

Ψ1,2(S, θ̂, x)D(S, θ̂, y)ρ̂2(x, y)dU(x)dU(y)

σ̂2(3, 3) =

∫
R2

D(S, θ̂, x)D(S, θ̂, y)ρ̂2(x, y)dU(x)dU(y),

where ρ̂1(x, y) = L̂1(x ∧ y)(1 − L̂1(x ∨ y) and ρ̂2(x, y) = L̂2(x ∧ y)(1 − L̂2(x ∨ y). The above670

quantities are consistent estimates of their closed form counterparts given in the proof of Theorem671

4. The proof of consistency for each of these terms is lengthy but straightforward. They basically672

use the dominated convergence theorem noticing that for all (i, j) ∈ {1, 2}2 and (x, y) fixed in R2,673

the terms Ψi,j(S, θ̂, x), D(S, θ̂, y), are bounded and almost surely consistent estimates Ψi,j(S, θ
c, x),674

D(S, θc, x) according to Theorem 1, and ρ̂i(x, y) is an almost surely uniformly consistent estimate675

of ρ̂i(x, y) due to the Glivenko-Cantelli theorem.676
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E Special case: G1 = G2677

In this section we propose to investigate how the case G1 = G2, previously analyzed in Milhaud678

et al. [20] (under the Fi’s symmetry assumption), can be handled simply using the IBM-method679

described in Sections 1 and 2. First, the basic identifiability conditions in this particular setup are680

slightly simplified but also weakened. In fact, rewriting conditions (11) and (12) whenG1 = G2 = G681

leads to682

F1(x, L1, p1) =
L1(x)− (1− p1)G(x)

p1

and F2(x, L2, p2) =
L2(x)− (1− p2)G(x)

p2

. (49)

Let us investigate now the situations where possibly F1(x, L1, p1) = F2(x, L2, p2).683

F1(x, L1, p1) = F2(x, L2, p2) ⇔ L1(x)− (1− p1)G1(x)

p1

=
L2(x)− (1− p2)G2(x)

p2

⇔ (p1 − p∗1)G(x) + p∗1F (x)

p1

=
(p2 − p∗2)G(x) + p∗2F (x)

p2

⇔
(
p1 − p∗1
p1

− p2 − p∗2
p2

)
G(x) =

p∗2
p2

F2(x)− p∗1
p1

F1(x). (50)

Under H0, F1 = F2 = F , we simply obtain(
p1 − p∗1
p1

− p2 − p∗2
p2

)
G(x) =

(
p∗2
p2

− p∗1
p1

)
F (x).

If {G,F} is free (G 6= F on non-null measure set) we necessarily have

p∗2
p2

− p∗1
p1

= 0⇔ p1

p2

=
p∗1
p∗2
,

which means that we have an infinite number of solutions. Actually this conclusion is not an684

obstacle to our testing approach. In fact it is enough to arbitrarily fix a value for p1, let say p̆1685

in ]δ, 1[, 0 < δ < 1, and investigate p2 such that p2 = (p∗2p̆1)/p∗1 which will automatically become686

the only parameter λ = p2 under the p̆1-setup, not necessarily belonging to [δ, 1] but probably to687

a larger interval Θ′ = [δ, A] for A > δ large enough, such that F1(·, L1, p̆1) = F2(·, L2, λ) µ− a.e.688

Under H1, F1 6= F2, if we suppose that {G,F1, F2} is free, condition (50) leads to p∗1 = p∗2 = 0 which689

is impossible. Given the above identifiability discussion, the natural extension of our method is to690

consider a one single parameter fitting approach.691

In order to consistently pick the right λ∗ = (p∗2p̆1)/p∗1 under H0 and select under H1 a λ such692

that F1(x, p̆1) 6= F2(x, λ), we propose to investigate the location of the minimum (F1,F2)-distance693

parameter λc such that694

λc = arg min
λ∈[δ,A]

d(λ), where d(λ) =

∫
R
D2(x, L1, L2, λ)dU(x) (51)

with695

D(x, L1, L2, λ) = F1(x, L1, p̆1)− F2(x, L2, λ).
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Similarly to Section 2, we propose the following natural estimator of λc in (51), i.e.:696

λ̂n = arg min
λ∈[δ,A]

dn(λ), where dn(λ) =

∫
R
D2(x, L̂1, L̂2, λ)dU(x). (52)

According to the above identifiability discussion, Lemma 1 and Theorem 1 in Section 3 are still697

valid and we can establish the counterpart of Theorem 2. To answer the testing problem in the698

case G1 = G2, we would thus use the following result.699

700

(I’) The cdfs family E1 = {G,F1, F2} is linearly independent.701

702

(II’) The family of functions E2 = {G2, F1F2, F
2
i , GFi; i = 1, 2} is linearly independent.703

704

(A’) λ∗ under H0 (λc = θ∗), or λc under H1 (λc 6= λ∗), belong to ]δ, A[ the interior of the compact705

parametric space Θ′.706

707

Theorem 4. i) If conditions (I’), (II’) and (A’) hold, we have under both H0 or H1:708

√
n

[
λ̂− λc

Dn(·)−D(·)

]
L→ W (λc, ·), as n→ +∞, (53)

where W (λc, ·) = (W1(λc),W2(λc))T is a 2-dimensional centered Gaussian process with covariance709

matrix ΣW = M(λc, ·)ΣL(·, ·)M(λc, ·)T where M(λc, ·) is defined in (63) and ΣL(·, ·) in (66).710

ii) Under assumptions (I) and (II) we have respectively as n→ +∞:711

ndn(λ̂n) = U0
n
L→
∫
R
(W2(λ∗, x))2dU(x), under H0 (54)

ndn(λ̂n) = U1
n + V1

n, with U1
n
L→
∫
R
(W2(λc, x))2dU(x) and V1

n = OP (n), under H1. (55)

Remark 5. It is important to notice that if we have at our disposal a consistent estimate of the712

proportion p1, let say by using p̂1 the
√
n-consistent estimator of Bordes et al. [4] in the symmetric713

case or the p̂1 estimator of Patra and Sen [22] in the general case, we can use it to calibrate a714

consistent value for p̆1 and finally obtain a consistent couple (p̆1, λ̂n) → (p∗1, p
∗
2), with according715

rates of convergence under H0.716

Proof. i) By a Taylor expansion of ḋn around λc we have717

d̈n(λ̃n)
√
n(λ̂n − λc) = −

√
nḋn(λc), (56)

where λ̃n lies in the line segment with extremities λ̂n and λc. In particular, we have718

ḋ(λ) = 2EU

(
(2− λ)GL2

λ3
− (1− λ)G2

λ3
− L2

2

λ3
− GL1

λ2p̆1

+
(1− p̆1)G2

λ2p̆1

+
L2L1

λ2p̆1

− (1− p̆1)L2G

λ2p̆1

)
,

35



and719

ḋn(λ)− ḋ(λ) = 2

(
2− λ
λ3

T1 −
1− λ
λ3

T2 −
1

λ3
T3 −

1

λ2p̆1

T4 +
1− p̆1

λ2p̆1

T5 +
1

λ2p̆1

T6 −
1− p̆1

λ2p̆1

T7

)
.

where720

T1(G,L2) = EU

(
G(L̂2 − L2)

)
T2(G) = EU

(
G2
)
− EU

(
G2
)

= 0

T3(L2) = EU

(
(L̂2 − L2)(L̂2 + L2)

)
= EU

(
(L̂2 − L2)(2L2 + oa.s.(1))

)
T4(L1) = EU

(
G(L̂1 − L1)

)
T5(G) = EU

(
G2
)
− EU

(
G2
)

= 0

T6(L1, L2) = EU

(
L̂2L̂1 − L2L1

)
T7(G,L2) = EU

(
G(L̂2 − L2)

)
.

We can also denote by S = (G,L1, L2) and consider721

Ψ1(S, λ) = 2

(
2− λ
λ3

G− 2

λ3
L2 +

1

λ2p̆1

L1 −
1− p̆1

λ2p̆1

G

)
, Ψ2(S, λ) = 2

(
1

λ2p̆1

(L2 −G)

)
,

along with722

Φ1(L2, λ) = ϕ(Ψ1(S, λ),L2), Φ2(L1, λ) = ϕ(Ψ2(S, λ),L1).

Note that the first, respectively the second, above expression depends only on L2, resp. L1.723

√
n(ḋn(λ)− ḋ(λ)) = Φ(L1,L2, λ) + oa.s(1), (57)

where according to
√
n =
√
κn/
√
κ = ζ

√
n2 with ζ = 1/

√
κ:724

Φ(L2,L1, λ) = Φ2(L1, λ) + ζΦ1(L2, λ). (58)

Since the empirical processes L1 and L2 are independent, by the Donsker theorem:725 [
L1

L2

]
 B =

[
B1

B2

]
, (59)

where B is a bi-dimensional gaussian process with diagonal correlation matrix ρ = diag(ρ1, ρ2)726

with ρ1(x, y) = L1(x ∧ y)(1− L1(x ∨ y) and ρ2(x, y) = L2(x ∧ y)(1− L2(x ∨ y). Moreover,727

√
n[Dn(x, L̂1, L̂2, λ̂n)−D(x, L1, L2, λ

c)] =
√
n[F1(x, L̂1, p̆1)− F1(x, L1, p̆1)]

−
√
n[(F2(x, L̂2, λ̂)− F2(x, L2, λ))]. (60)
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Let analyze separately the two terms in the right hand side of the above equality.728

√
n[F1(·, L̂1, p̆1)− F1(·, L1, p̆1)] =

1

p̆1

L1, (61)

and729

√
n[F2(·, L̂2, λ̂)− F2(·, L2, λ

c)] =
√
n

[(
L̂2

λ̂
− L2

λc

)
−

(
1− λ̂
λ̂
− 1− λc

λc

)
G

]

=
√
n

[
L̂2 − L2

λ̂

]
+
√
n

(
λc − λ̂
λcλ̂

)
(L2 −G)

=
ζ

λc
L2 −

(
L2 −G
(λc)2

√
n[λ̂− λc]

)
+ oP (1). (62)

It is also easy to prove, similarly to the proof of Therorem 2, that d̈n(λ̃n)
a.s.→ d̈(λc) > 0, as n→ +∞.730

In order to synthetically summarize results (56), (57), (58) and (60–62) and build up the Central731

Limit Theorem relative to our quantities of interest, we define the following matrix-type relation:732

√
n

[
λ̂− λc

Dn(·)−D(·)

]
= M(λc, ·)


Φ2(L1, λ

c)
L1

Φ1(L2, λ
c)

L2

+ oa.s.(1), with M(λc, ·) = L(·, λc) J−1(λc) C, (63)

where733

C =

−1 0 −ζ 0
0 1 0 0
0 0 0 1

 , J(λ) =

[
d̈(λ) 01×2

02×1 Id2×2

]
, L(·, λ) =

[
1 0 0

L2(·)−G(·)
λ2

1
p̆1
− ζ
λ

]
. (64)

Finally, we have734 
Φ2(L1, λ

c)
L1

Φ1(L2, λ
c)

L2

 L→ Z =


Φ2(B1, λ

c)
B1

Φ1(B2, λ
c)

B2

 , (65)

where Z is Gaussian random vector of R4 with covariance matrix ΣL = E(ZZT ).735

Since B1 and B2 are two independent (limit) Gaussian processes we have736

ΣL(x, y) =

[
Σ1(x, y) 02×2

02×2 Σ2(x, y)

]
, (66)

where Σ1(x, y) = (σ1(i, j;x, y))1≤i,j≤3 with737

σ1(1, 1;x, y) = σ1(1, 1) =

∫
R2

Ψ2(S, θ, u)Ψ2(S, θ, v)ρ1(u, v)dU(u)dU(v)

σ1(1, 2;x, y) = σ1(1, 2; y) =

∫
R

Ψ2(S, θ, u)ρ1(u, y)dU(u)

σ1(2, 2;x, y) = ρ1(x, y)

σ1(2, 1;x, y) = σ1(2, 1;x) = σ1(1, 2;x)
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and Σ2 = (σ2(i, j;x, y))1≤i,j≤3 with738

σ2(1, 1;x, y) = σ2(1, 1) =

∫
R2

Ψ1(S, θ, u)Ψ1(S, θ, v)ρ2(u, v)dU(u)dU(v)

σ2(1, 2;x, y) = σ1(1, 3; y) =

∫
R

Ψ1(S, θ, u)ρ2(u, y)dU(u)

σ2(2, 2;x, y) = ρ2(x, y)

σ2(2, 1;x, y) = σ2(2, 1;x) = σ2(1, 2;x).

ii) Let us now decompose ndn(λ̂n).739

ndn(λ̂n) =

∫
R
n(D(x, L̂1, L̂2, λ̂n)−D(x, L1, L2, λ

c) +D(x, L1, L2, λ
c))2dU(x)

=

∫
R
(
√
n[D(x, L̂1, L̂2, θ̂n)−D(x, L1, L2, λ

c)])2dU(x)

+2
√
n

∫
R

√
n[D(x, L̂1, L̂2, λ̂n)−D(x, L1, L2, λ

c)]D(x, L1, L2, λ
c)dU(x)

+n

∫
R
D2(x, L1, L2, λ

c)dU(x). (67)

Note that under H0, λc = λ∗, and we simply get:740

ndn(λ̂n) =

∫
R
(
√
nD(x, L̂1, L̂2, λ̂n))2dU(x)

=

∫
R
(
√
n[D(x, L̂1, L̂2, λ̂n)−D(x, L1, L2, λ

∗])2dU(x)

= U0
n. (68)

since D(·, L1, L2, λ
∗) = 0 almost everywhere. Next, notice that it is easy to show that the map741

Un(D) is Hadamard differentiable from the domain of càd-làg functions of bounded variation into742

R [27, Lemma 20.10]. This combined with the result for weak convergence of the empirical process743

D, in the second row of (53), yields the desired result.744

Under H1, we have
∫
RD

2(x, L1, L2, λ
c)dU(x) > 0, which leads to745

ndn(λ̂n) =

∫
R
(
√
n[D(x, L̂1, L̂2, λ̂n)−D(x, L1, L2, λ

c)])2dU(x)

+n

∫
R
D2(x, L1, L2, λ

c)dU(x) + oP (n)

= U1
n + V1

n. (69)

Given the asymptotic convergence analysis under both H0 or H1, the random variable within746

brackets involved commonly in (67) and (69) can once again be analyzed closely, leading to answer747

our statistical test.748
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F Monte Carlo parametric setups749

Notation: N (a, b): Gaussian with mean a, and variance b > 0 ; G(a, b): gamma with shape a > 0,750

and scale b > 0 ; E(a): exponential with rate a > 0 ; Beta(a, b): beta with shape parameters a > 0,751

b > 0 ; NB(a): negative binomial with mean a, and convolution parameter b > 0 ; P(a): Poisson752

with mean a > 0 ; U(a, b) uniform on (a, b).753

F.1 Empirical levels - Study under H0754

We give here an illustration of the different frameworks studied in our simulations to assess the755

empirical level of our test. The component weights have systematically been fixed to 50% for756

illustration purpose, see Figure 9. Table 2 provides the corresponding parameters for each mixture757

component, also used within the assessment of empirical levels in our global simulation study.
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Figure 9: Densities of mixture distributions in the four frameworks under study (on each support:
R, R+, N, [0, 1] from top left to bottom right by series of 4 plots). Case a): G1 close to G2 with
G1 and G2 close to F1 (or F2) ; Case b): G1 far away from G2, with G1 and G2 close to F1 ; Case
c) : G1 close to G2 with G1 and G2 far from F1 ; Case d) : G1 far from G2 with G1 close to F1.
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Table 2: Parameters of mixture components corresponding to Fig. 9, used for the assessment of
empirical levels of the test. Recall that we are under H0, meaning that F1 = F2 = F .

On R On R+

Case (a) Case (b) Case (c) Case (d) Case (a) Case (b) Case (c) Case (d)

F N (1, 1) N (1, 1) N (1, 1) N (1, 1) G(16, 4) G(16, 4) G(16, 4) G(16, 4)
G1 N (2, 0.7) N (0, 0.7) N (4, 0.7) N (2, 0.7) E(1/3.5) E(1/2.5) E(1/12) E(1/3.5)
G2 N (3, 1.2) N (2, 1.2) N (5, 1.2) N (6, 1.2) E(1/4.5) E(1/5.5) E(1/10) E(1/10)

On N On [0, 1]

Case (a) Case (b) Case (c) Case (d) Case (a) Case (b) Case (c) Case (d)

F NB(1, 10) NB(1, 10) NB(1, 10) NB(1, 10) Beta(1.2, 5) Beta(1.2, 5) Beta(1.2, 5) Beta(1.2, 5)
G1 P(2) P(2) P(4) P(2) U(0, 0.6) U(0, 0.2) U(0, 0.9) U(0, 0.4)
G2 P(2.5) P(0.5) P(5) P(7) U(0.1, 0.5) U(0.2, 0.4) U(0.1, 1) U(0, 1)

p1 = p2 50% 50% 50% 50% 50% 50% 50% 50%

F.2 Empirical powers - Study under H1759

We give here an illustration of the different frameworks studied in our simulations to assess the760

empirical power of our test. The component weights have systematically been fixed to 50% for761

illustration purpose, see Figure 10 and corresponding parameters in Table 3.762

Table 3: Parameters corresponding to Fig. 10 and Fig. 11, used for the assessment of empirical
powers. Case (a) : different means for F1 and F2 ; Case (b) : close means between F1 and F2 ;
Case (c) : same means, different variances for F1 and F2 ; Case (d) : same means, close variances
between F1 and F2 ; Case (e) : same means and variances for F1 and F2, but different distributions.

On R On R+

Case (a) Case (b) Case (c) Case (d) Case (e) Case (a) Case (b) Case (c) Case (d) Case (e)

F1 N (1, 1) N (1, 1) N (1, 1) N (1, 1) N (1, 1) G(16, 4) G(16, 4) G(16, 4) G(16, 4) G(1.47, 0.56)

F2 N (2.5, 1) N (1.5, 1) N (1, 1.5) N (1, 1.1) L(1,
√

0.5) G(8, 4) G(14, 4) G(8, 2) G(22, 5.5) Gomp(0.1, 0.3)
G1 N (2, 0.7) N (2, 0.7) N (2, 0.7) N (2, 0.7) N (2, 0.7) E(1/3) E(1/3) E(1/3) E(1/3) E(1)
G2 N (3, 1.2) N (3, 1.2) N (3, 1.2) N (3, 1.2) N (3, 1.2) E(1/6) E(1/6) E(1/6) E(1/6) E(1/8)

On N On [0, 1]

Case (a) Case (b) Case (c) Case (d) Case (e) Case (a) Case (b) Case (c) Case (d) Case (e)

F1 NB(1, 10) NB(1, 10) NB(1, 10) NB(1, 2) NB(3, 100) Beta(1.2, 5) Beta(1.2, 5) Beta(1.2, 5) Beta(1.2, 5) Beta(5, 2)
F2 NB(4, 10) NB(2, 10) NB(1, 1) NB(1, 20) B(50, 0.6) Beta(0.5, 5) Beta(1, 5) Beta(12, 50) Beta(2.4, 10) LogitN (0.9, 0.8)
G1 P(2) P(2) P(2) P(2) P(2) U(0, 0.8) U(0, 0.8) U(0, 0.8) U(0, 0.8) U(0, 0.8)
G2 P(6) P(6) P(6) P(6) P(6) U(0.2, 1) U(0.2, 1) U(0.2, 1) U(0.2, 1) U(0.2, 1)

p1 = p2 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%
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Figure 10: The four frameworks to assess the empirical power of the test depending on the support.
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Figure 11: Cases where the distributions F1 and F2 have the same first two moments, for different
supports (R,R+,N,[0, 1]). Parameters of such mixtures are summarized in Case e), see Table 3.
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