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[1] We present a new class of stochastic downscaling models, the conditional mixture
models (CMMs), which builds on neural network models. CMMs are mixture models
whose parameters are functions of predictor variables. These functions are implemented
with a one-layer feed-forward neural network. By combining the approximation capabilities
of mixtures and neural networks, CMMs can, in principle, represent arbitrary conditional
distributions. We evaluate the CMMs at downscaling precipitation data at three stations in
the French Mediterranean region. A discrete (Dirac) component is included in the mixture
to handle the “no-rain” events. Positive rainfall is modeled with a mixture of continuous
densities, which can be either Gaussian, log-normal, or hybrid Pareto (an extension of the
generalized Pareto). CMMs are stochastic weather generators in the sense that they provide
a model for the conditional density of local variables given large-scale information. In this
study, we did not look for the most appropriate set of predictors, and we settled for a decent
set as the basis to compare the downscaling models. The set of predictors includes the
National Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalyses sea level pressure fields on a 6 x 6 grid cell region surrounding
the stations plus three date variables. We compare the three distribution families of CMMs
with a simpler benchmark model, which is more common in the downscaling community.
The difference between the benchmark model and CMMs is that positive rainfall is modeled
with a single Gamma distribution. The results show that CMM with hybrid Pareto
components outperforms both the CMM with Gaussian components and the benchmark
model in terms of log-likelihood. However, there is no significant difference with the log-
normal CMM. In general, the additional flexibility of mixture models, as opposed to using a
single distribution, allows us to better represent the distribution of rainfall, both in the

central part and in the upper tail.

Citation:
Water Resour. Res., 47, W10502, doi:10.1029/2010WR010128.

1. Introduction

[2] General circulation models (GCMs) solve the princi-
pal physics equations of the dynamics of the atmosphere and
of the oceans together with their interactions on a 3-D grid
over the globe. GCMs allow us to simulate climate variables
and to study the mechanisms of the present, past, and future
climate of the Earth [e.g., Gladstone et al., 2005; Intergov-
ernmental Panel on Climate Change (IPCC), 2007a]. In the
last two decades, the IPCC has compared and studied the
outputs of different GCMs. These analyses attempt to under-
stand the many processes involved in the current and upcom-
ing climate changes resulting from different greenhouse gas
emission scenarios [/PCC, 2007a]. In addition, the IPCC
seeks to evaluate the potential impacts of climate changes on
economy, agriculture, and ecology in the next decades
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[ZPCC, 2007b]. Such impact studies require climate simula-
tions at high spatial resolution (small scale), ranging from a
few kilometers down to station locations. In particular, pre-
cipitation, which is of major importance in agriculture, vege-
tation, and flood risk assessment, has a strong spatial
variability. However, the spatial resolution at which GCMs
operate (about 200 x 200 km) is typically too low to capture
such spatial variability. Other reasons why GCMs struggle
to reproduce precipitation are related to the features of the
distribution of precipitation, namely, boundedness at zero,
nonnormality, and the presence of extreme values at local
scale with a potential destructive power.

[3] In this context, downscaling techniques have been
developed to bridge the gap between large- and small-scale
variables [Hewitson and Crane, 1996]. There are two differ-
ent approaches to downscaling. The dynamical approach con-
sists in refining GCMs over a higher-resolution grid. These
refined GCMs, called regional climate models (RCMs), oper-
ate at a resolution down to about 10 km. RCMs have a high
computational cost and thus are often limited in their uses to
restricted regions and periods of time. On the other hand, the
statistical approach to downscaling proposes statistical mod-
els that relate large-scale GCM outputs to local-scale climate
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variables. These statistical downscaling models (SDMs) are,
in general, computationally more tractable and can be easily
applied to many GCM runs covering large regions and long
time periods. Moreover, SDMs offer a great modeling flexi-
bility that has proved useful, for example, in extreme event
modeling [e.g., Vrac and Naveau, 2007] and for uncertainty
assessment [e.g., Semenov, 2007]. SDMs generally borrow
from one or more of the following sets of methods: transfer
functions, stochastic weather generators, and weather typing
[e.g., Maraun et al., 2010]. Transfer functions aim at directly
translating large-scale data into local-scale values by per-
forming linear or nonlinear regressions. Given large-scale in-
formation x, the downscaled local response y is a function
$(x), which usually estimates E[Y|X = x] (»(x) could esti-
mate another quantile in the case of quantile regression [e.g.,
see Cannon, 2011; Friederichs and Hense, 2007]). Among
the regression-based transfer functions, we find linear regres-
sion [e.g., Wigley et al., 1990; Huth, 2002; Wilby et al.,
2002; Busuioc et al., 2008; Goubanova et al., 2010], non-
linear parametric models such as polynomial regression
[Hewitson, 1994; Sailor and Li, 1999], nonparametric regres-
sion based on splines, generalized additive models [ Vrac et al.,
2007b; Salameh et al., 2009], and neural networks [e.g.,
Snell et al., 2000; Cannon and Whitfield, 2002; Haylock
et al., 2006; Huth et al., 2008 ; Ghosh and Mujumdar, 2008].

[4] Stochastic weather generators (WGs) provide a way
to simulate meteorological variables such as precipitation
or temperature on the basis of probability density function
(pdf) models [e.g., Semenov and Barrow, 1997; Semenov
et al., 1998 ; Wilks, 1999]. WGs are calibrated so that the
simulated observations reproduce the statistical properties
of the corresponding local observations. In a downscaling
framework, WGs simulate a local variable Y given large-
scale information x by building a model for the conditional
distribution Y|X = x. To achieve this goal, the parameters
of the density model can be seen as functions of some
appropriate large-scale information such as American
weather regimes [e.g., Vrac et al., 2007a], the North Atlan-
tic Oscillation index [e.g., Yang et al., 2005], or other
large-scale climate variables (see Wilks and Wilby [1999]
for a review). Thus, changes in large-scale variables are
transferred into the local-scale density parameters so that
the simulated observations evolve accordingly [Vrac and
Naveau, 2007].

[5] The last set of methods, the weather typing methods,
seeks to cluster and classify large-scale atmospheric circu-
lation situations into recurrent weather patterns and
assumes that each weather pattern gives rise to similar
local-scale meteorological conditions or distributions [e.g.,
Huth, 2001; Vrac et al., 2007c]. Weather typing can serve
as a preprocessing step before building transfer functions
[e.g., Huth et al., 2008] or weather generators [e.g., Schnur
and Lettenmaier, 1998; Vrac et al., 2007a; Vrac and
Naveau, 2007].

[6] Transfer function methods based on neural networks
were applied successfully to downscaling [e.g., Snell et al.,
2000; Cannon and Whitfield, 2002]. They are able to repro-
duce the nonlinear relationship between large-scale atmos-
pheric data and precipitation [Hewitson and Crane, 1996].
However, as regression algorithms, neural networks are
limited in the following respects: they underestimate
extreme events [Haylock et al., 2006], they provide only
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pointwise prediction (i.e., no confidence interval or other
measure of uncertainty is provided since twice the same
input will produce twice the same output), and they cannot
account for trends in the variability. In order to enable neu-
ral networks to provide probabilistic information, Williams
[1998] has proposed the following model for rainfall data.
The occurrence and the intensity processes are modeled
jointly by means of a mixture with a discrete and a continu-
ous component. The discrete component relates to the occur-
rence process, and the continuous component, which is
taken to be a Gamma density, relates to the rainfall intensity
process. The parameters of this two-component mixture
depend on predictor variables by the functions computed by
a neural network. The error function of regression neural
networks is the mean-square error, which leads to the esti-
mation of the conditional expectation. In Williams’ model,
the error function is the conditional log-likelihood of the
two-component mixture. In this way, the neural network
provides information on the whole distribution of rainfall,
not only the conditional expectation. This kind of conditional
density model based on a neural network can be seen as a
continuous extension of quantile regressions [e.g., Cannon,
2011; Friederichs and Hense, 2007]. Williams [1998] used
lagged observations of precipitation as predictor variables to
model trend and seasonality of rainfall. Recently, Haylock
et al. [2006] and Cawley et al. [2007] proposed Williams’
model as a way for neural networks to model predictive
uncertainty in a downscaling application. In the latter, large-
scale atmospheric variables are taken as predictor variables
for the two-component mixture parameters. Such a model
belongs to the class of stochastic WGs since it provides a
conditional density model of the local variable given large-
scale information.

[7] In this paper, we extend Williams’ model by consid-
ering a mixture of distributions rather than a single Gamma
distribution to model rainfall intensity. Mixtures are flexi-
ble nonparametric density estimators that can account for
asymmetric and multimodal distributions [e.g., Priebe,
1994; McLachlan and Peel, 2000]. Our proposed down-
scaling model is thus a conditional mixture model (CMM)
in which one of the components is discrete to model rainfall
occurrence. Mixture parameters are estimated by a single
layer feed-forward neural network given predictor varia-
bles. We evaluate the performances at modeling rainfall in-
tensity of three CMMs that differ in the type of continuous
densities (Gaussian, log-normal, or hybrid Pareto) they use
as mixture components. We compare CMMs with the two-
component conditional mixture from Williams [1998] that
we use as a benchmark model. We compare these four sto-
chastic models at downscaling precipitation at three rain
gauge stations in the French Mediterranean area. The distri-
bution of precipitation is allowed to evolve according to
the large-scale atmospheric information in all four stochas-
tic downscaling models. The difference resides in the den-
sity model chosen for rainfall intensity. In CMMs, given the
state of the atmosphere, described by the predictor variables,
precipitation can be in one of several states or regimes, which
can be thought of as representing the smaller-scale processes.
These regimes are represented by the mixture components.

[8] This paper is structured as follows. Section 2 describes
in detail the conditional mixture models. Section 3 presents
the precipitation and large-scale data of our downscaling
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application together with the preprocessing, training, and
model selection steps. Results in terms of log-likelihood
and analyses of conditional quantiles and climatological
characteristics of the downscaling application are given in
section 4. Section 5 provides discussions and conclusions.

2. Statistical Downscaling Models

[v] We adopt the following notation. Let Y be a random
variable representing the precipitation process at a given
station and let X be a vector of random variables represent-
ing the predictors that include large-scale atmospheric in-
formation. Lowercase letters y and x refer to values taken
by the corresponding random variables.

2.1. Conditional Mixture Models

[10] Following Williams [1998], we consider a mixture
with a discrete component to model jointly the occurrence
and intensity processes of precipitation:

¢; ) = (1 = a)b(y) + ado(y; to), (1)

where « is the probability of rain occurrence, ¢ is the Dirac
function, which is such that [~ f(z)6(z — a)dz = f(a) and
8(z—a) =0 forz # a, and ¢ (-;1p) is the density model
with parameter 1) for rainfall intensity. Therefore, (1 — «)
8(v) handles the “no rain” events while ay(+; 1) handles
the case of positive rainfall. The parameter vector of the
mixture in equation (1) is thus ¢ = («, 1). In the work by
Williams [1998], ¢o(-;10) is the Gamma density. We pro-
pose to use mixture models instead:

m

Govivo) = Y mf (v:6)), (2)

Jj=1

where f(+;6;) is a density with parameter vector 6;, 7; is
the weight of component j, and 1), is the vector that concat-
enates all the mixture parameters (7, ..., Ty, 01, ..., 60,).
[11] We can take into account the dependence of the dis-
tribution of precipitation on predictor variables x by con-
sidering the parameters of the mixture of equation (1) as
functions of x : ¢(x) = [a(x),m(X), ..., T (x), 01 (X),...,
0,,(x)]. In the downscaling application, the predictors are
large-scale atmospheric variables. In the conditional mix-
ture model, precipitation can be thought of as being in one
of several states or regimes given the state of the atmos-
phere, as represented by the predictor variables. These
states are not directly observed. The hidden states could be
seen as resulting from subscale processes that are not
accounted for by the large-scale atmospheric variables.
Each of the hidden states is modeled by a component of the
mixture. The mixture weight 7;(x) gives the probability of
occurrence of state j, and f(y; 6;(x)) is the density of inten-
sity given state j. This view of CMMs bears similarities
with nonhomogeneous hidden Markov models (NHMMs)
[Bellone et al., 2000]. For NHMMs, the hidden state repre-
sents a weather pattern and is assumed to follow a first-
order Markov chain whose transition probability depends
on the predictors. This is one main difference with CMMs,
which capture the serial dependence through the predictor
variables exclusively. In NHMMs, the distribution of rainfall
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in a given hidden state (the so-called emission density) is
similar to the component density in the CMMs.

[12] Some authors [e.g., Hewitson and Crane, 1996]
have shown that the relationship between large-scale
atmospheric variables and precipitation is nonlinear. To
take this into account, a convenient way to implement the
functions in ¢(x) in the conditional mixture is by means of
a one-layer feed-forward neural network [Bishop, 1995].
Such neural networks are flexible nonparametric models
that can, in principle, approximate any continuous function
[see Hornik, 1991]. We implemented the feed-forward neu-
ral network in a standard way but added an extra linear
connection between the input variables and the neural net-
work outputs so that the linear model is a special case of
the neural network corresponding to zero hidden units. Let
H be the number of hidden units. Each hidden unit %, with
h=1,..., H, computes a linear combination of the predic-
tors x;, which is then nonlinearly transformed by means of
the hyperbolic tangent (tanh):

d
z, = tanh (Z Up,iXi + Uh,O) ) (3)

i=1

where vy, ; are the input layer weights linking the predictors
to the hidden units. Then, a linear combination of the hid-
den unit activations z, plus a linear combination of the pre-
dictors (the extra linear connection mentioned above) is
transformed by a function g in order to ensure range con-
straint such as positivity :

H d
V=g (Z Wincn+ Y Ui + Wm) : (4)
=1 i=1

where w;, are the hidden unit weights which compute the
non-linear part, v;; are the linear weights of the extra linear
connection and g is chosen according to the mixture param-
eter 1); (see Carreau and Bengio [2009b] for more details
on the function g). Let w represent the neural network
weights, i.e., v;; in equation (3) and w;; and ¥y; in equa-
tion (4). Then the conditional mixture can be written as

Pu(lx) = o3 1,(x)), (5)

where ¢(+;4) is defined in equation (1) and v,(x) empha-
sizes that the mixture parameters depend on the neural
network weights w. Those weights are calibrated by mini-
mizing the negative log-likelihood of the conditional mix-
ture over the training set. The optimization is done with a
conjugate gradient descent algorithm, and the gradient is
computed with the back-propagation algorithm [Rumelhart
et al., 1986]. To avoid local minima, the optimization is
restarted several times from different initial values of the
neural network weights, and the weights leading to the low-
est training error are kept. Depending on the type of CMMs
and on the data set, three to five restarts seem to be enough.
This procedure helps to stabilize the optimization and
hence the performance of each model. The complexity
level of the conditional mixture, that is, its degree of adap-
tiveness, is controlled by both the number of hidden units
of the neural network and the number of components of the
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mixture. Those are called hyperparameters. The hyperpara-
meters have to be carefully selected in order to trade off
bias (the model misfit with respect to the data) and variance
(also called overfitting or learning by heart). This can be
done by selecting the number of hidden units and compo-
nents via the so-called cross-validation method, which will
be described in section 3.2.

2.2. Three Families of CMMs

[13] We evaluate three conditional mixture models, all
with a discrete component, which differ in the type of mix-
ture components (i.e., f (-; Hj) in equation (2)) and compare
them with the two-component conditional mixture from
Williams [1998]. We took Gaussian, log-normal, and hybrid
Pareto as mixture components. Since the intensity of rain is
strictly positive, we ensure that the Gaussian and the hybrid
Pareto mixtures have only positive density on the positive
axis by truncation:

. (6)
0 otherwise

b0 (v;%0) = {(;300/; o)/ [1 = @o(0;¢)] if y <0

where ¢o(+;1) is either the Gaussian or the hybrid Pareto
mixture and ®y(-; 1)) is the corresponding cumulative dis-
tribution function. The conditional Gaussian mixture was
initially presented by Bishop [1994]. It combines the
approximation capabilities of neural networks and mixture
models and can, in principle, represent arbitrary conditional
distributions. This motivates the use of conditional Gaus-
sian mixtures to model rainfall intensity. However, when
the data set is small and the distribution is heavy tailed,
Gaussian mixtures might underestimate the upper tail of
the distribution [ Carreau and Bengio, 2009a]. Since precip-
itation in the French Mediterranean area where the rain
gauges are located is typically heavy tailed [Delrieu et al.,
2005], we also considered conditional mixtures with log-
normal and hybrid Pareto [Carreau and Bengio, 2009a]
components. The log-normal density is often employed to
model positive intensities of precipitation [see, e.g., Cho
et al., 2004]. Indeed, the shape of the log-normal distribu-
tion, i.e., its asymmetry and its support on the positive axis,
is more suited to model precipitation data. Also, log-normal
mixtures are often considered to model moderately heavy
tailed data [McNeil, 1997 ; Frigessi et al., 2002]. However,
the log-normal might suffer from the same difficulty to
model heavy-tailed distribution as the Gaussian. This is
because, like the Gaussian, the log-normal tail eventually
decreases exponentially fast, whereas the heavy-tailed dis-
tribution decreases polynomially fast [Embrechts et al.,
1997]. So we propose the hybrid Pareto as a mixture com-
ponent to explicitly take extreme observations into account.
The generalized Pareto distribution (GPD) has been put for-
ward as a model that can approximate all kinds of tails (ex-
ponential, polynomial, and finite) [Pickands, 1975]. The
GPD is designed to model only large observations. The
hybrid Pareto provides a smooth extension of the GPD to
the whole real axis and makes possible seamless inclusion
of the GPD in a mixture while inheriting its tail approxima-
tion properties. Another way to include the GPD into a
mixture model in a downscaling application was proposed
by Vrac and Naveau [2007].
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[14] The hybrid Pareto is made of a Gaussian stitched to-
gether with a generalized Pareto so as to ensure continuity
of the density and of its derivative [Carreau and Bengio,
2009a]. The hybrid Pareto density is given by

foip,0)/y  ify<u

gy —u;&,8)/y otherwise’ (7)

h(y;ma,é):{

where f(y;u,0) is the Gaussian density with parameters
1€ Rand o0 >0, u € R is the junction point or threshold,
y=1+ [ f(v;p,o)dy is the normalization factor, and
gy —u;&,B) is the generalized Pareto density with scale
parameter § > 0 and tail index parameter £ € R:

o [s(r+Se-m) ite#0
g(y—%&/f){ %exp(—%) -

In addition to the location and scale parameters p and o of
the Gaussian, the hybrid Pareto has a third parameter, the
tail index &, which characterizes the heaviness of the tail of
the distribution. Positive £ indicates a polynomially decreas-
ing tail, i.e., a heavy tail; the tail is called exponential or
light when £ = 0 and is called finite for negative £. Since
precipitation in the French Mediterranean area where the
rain gauges are located is typically heavy tailed [Delrieu
et al., 2005], we will focus on & > 0 for the hybrid Pareto
tail index parameter. Because of the continuity constraints,
the junction point # and the scale parameter of the GPD (3
are functions of £, i, and o. Note that, by construction, the
hybrid Pareto inherits the tail approximation property of the
generalized Pareto. The tail heaviness of a mixture of hybrid
Pareto is driven by the component with the heaviest tail.
The tail index that characterizes the mixture is then given
by £ = max;§;, where {; denotes the tail index parameter of
component j. In the conditional case, the tail index depends
on the predictor variables £*(x) = max;&;(x). In our down-
scaling application, it means that the behavior of the tail of
the distribution of the precipitation process is allowed to
vary with regard to the large-scale atmospheric conditions.
Carreau and Bengio [2009a, 2009b] have shown that in
most cases, the hybrid Pareto mixture, conditional or not, is
able to provide a decent estimator of the tail index of the
data. It is more challenging in the case of conditional den-
sity estimation because of the introduction of large uncer-
tainties in the tail index estimation [ Friederichs, 2010]. For
this reason, a penalty term to control the tail index parame-
ter estimation within a hybrid Pareto mixture was proposed
by Carreau et al. [2009].

2.3. Penalty Term for Tail Index Estimation

[15] Introducing a penalty term is similar to the approach
taken by Coles and Dixon [1999]. They argued, by analogy
with the probability weighted moment (PWM) estimator
[Hosking et al., 1985], that the performance of the maxi-
mum likelihood estimator (MLE) in small samples could
be improved by imposing a restriction similar to £ < 1
(which implies that the expectation is finite). This assump-
tion leads to a reduced variance of the PWM estimator at
the cost of a negative bias [Coles and Dixon, 1999]. Coles
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and Dixon [1999] show that adding a penalty that enforces
a similar prior assumption into the MLE leads to similar
improvement of the MLE estimator.

[16] The penalty designed for the hybrid Pareto mixture
is based on the following assumptions. One or a few com-
ponents should have tail index parameters high enough to
model the upper tail of precipitation data correctly. On the
other hand, most components should have their tail index
parameters close to zero and be dedicated to modeling the
central part of the distribution. Previous studies [e.g.,
Gardes and Girard, 2010] lead us to assume that the condi-
tional tail index £*(x) in the region where the studied rain
gauges are located varies between 0.16 and 0.26. We thus
suggest penalizing the log-likelihood of the hybrid Pareto
mixture according to a density, examples of which are
shown in Figure 1. This density has one mode at zero (for
the majority of components with light tail indexes that are
expected to model the central part of the distribution) and a
second mode at 0.2 that covers the interval [0.16,0.26]
(for the few components that are expected to model the
upper tail of rainfall distribution.) The bimodal densities of
Figure 1 are given by a two-component mixture made of an
exponential and a Gaussian:

p(&n, p) = nexp{—nx}/2
+ exp{f(f ~0.2)/(20%) }/ (2 27rp),
where 1 and p are the parameters of the exponential and the
standard deviation of the Gaussian, respectively. The expo-

nential puts one mode at zero while the Gaussian is cen-
tered at 0.2. The estimation then consists in maximizing a

density
15 20 25

10

I I I I I
0.0 0.1 0.2 0.3 0.4

tail index value

Figure 1. Three examples of bimodal density that reflect
our prior assumptions regarding the tail index parameters
of the hybrid Pareto mixture in the downscaling applica-
tion. Most components are assumed to have tail index pa-
rameters values near zero (the first mode of the density) to
model the central part of the distribution, and some tail
index parameters take values near 0.2 (the second mode) to
model the upper tail of the distribution.
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penalized log-likelihood obtained by adding the logarithm
of the bimodal density to the usual log-likelihood. In prac-
tice, for the conditional mixture, the neural network
weights w are found by minimizing

n m

£(0) =~ Y logloils)] - 230 logp(6sinp).

i=1 j=1

where n is the number of observations, m is the number of
mixture components, ¢, (y;|x;) is the conditional mixture
defined in equation (5), evaluated at point i, p(&;7, p) is
the bimodal density defined in equation (9) with & ; =
&(xi,w), and A controls the trade-off between minimizing
the negative log-likelihood and the penalty. The penalty
term introduces extra hyperparameters, namely, A, 7, and p.
These hyperparameters will be chosen by cross-validation;
see section 3.2. As i and p influence the range of values
taken by the tail index parameters of the mixture, we restrict
these hyperparameters to vary as follows: n € {60,20} and
p € {0.02,0.03,0.05}. This gives the possibility for the pen-
alty to adapt to the rain gauge—specific tail behavior without
letting the tail index parameters take unrealistic values.

3. Data Sets and Calibration of the Models
3.1.

[17] The local-scale data are precipitation from three
rain gauge stations: Orange, Séte, and Le Massegros. These
stations are located in the Cévennes-Vivarais region, which
is part of the French Mediterranean area. Because of the
Mediterranean influence and of the mountainous back
country, the Cévennes-Vivarais region is well known for
intense rain events, especially in the fall [Delrieu et al.,
2005]. For each rain gauge, we have daily rainfall measure-
ments over 46 years (from 1 January 1959 to 31 December
2004) extracted from the European Climate Assessment &
Dataset (ECA&D [Klein Tank et al., 2002]). Precipitation
values smaller than 1 mm are set to zero in order to discard
values possibly resulting from measurement error.

[18] In this work, we did not seek the best set of predictors
to drive the downscaling models. Our goal is to illustrate and
compare the performances and advantages of the four down-
scaling models. For this, we selected a set of predictors with
a decent predictive power to drive all four downscaling mod-
els, including the benchmark two-component model, so that
the comparison among models is fair. Although many large-
scale atmospheric variables are relevant to downscale pre-
cipitation, we only include the sea level pressure (SLP) field
because it has been shown to be a good predictor of precipi-
tation [e.g., Gonzdlez-Rouco et al., 2000]. We selected a
subset of the SLP field from the National Centers for Envi-
ronmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) reanalysis data [Kalnay et al.,
1996]. We decided to use a simple geometry (a rectangle of
reanalysis grid cells centered on the rain gauges) and then
proceeded by trial and error to select the size of the rectan-
gle. We found a 6 x 6 grid to be a reasonable choice to pro-
vide large enough regional information in order to capture
the relevant large-scale synoptic information.

[19] In addition to the SLP reanalysis data, we include as
predictors three date variables representing the year, the

Large- and Local-Scale Data
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month, and the week of an observation. The year variable
encodes the year as the difference with a reference year
(here 1970). This allows us to model a potential trend. The
month variable is built from the circular difference with the
month of January: this difference goes from zero (January)
to six (July) and decreases again to 1 (December). The
same kind of computation is done to produce the week vari-
able, but the circular difference operation is taken over 52
weeks. The circular differences are then smoothed in order
to have continuous variables in the range [0,1]. These cir-
cular difference variables (see Carreau et al. [2009] for
another application of the date variables) are an alternative
to using sine and cosine [see Williams, 1998] in order to
provide a way for the conditional mixtures to characterize
seasonality in the distribution of precipitation.

[20] Seasonal signals might be present both in the SLP
and the date variables. Therefore, although we are aware
that a more classical application of principal component
analysis (PCA) [Jolliffe, 1986] would separate the treat-
ment of these two kind of variables, we apply PCA on all
39 initial variables (36 SLP plus 3 date variables). Our use
of PCA serves merely to reduce dimensionality and remove
redundancy among the predictors. The observed predictors
are centered and scaled before the application of PCA in
order to ensure that their values are in the same range. We
extract the four principal components in order to keep 90%
of the variance of the data. The four projected predictors
are further standardized to have zero mean and unit stand-
ard deviation (this preprocessing is required to facilitate the
training of neural networks).

3.2. Training and Hyperparameter Selection

[21] Training refers to the optimization of the parameters
of the downscaling models (in all four cases, the neural net-
work weights) with respect to an error function that meas-
ures the misfit between the model and a data set, called the
training set. The error function is chosen according to the
task at hand. Since we deal here with conditional density
estimation, the error function is the conditional negative
log-likelihood (eventually with a penalty term). Hyperpara-
meters, such as the number of hidden units, control the com-
plexity level of an algorithm, which often is proportional to
the number of parameters. The higher the complexity level
is, the better the fit of the model to the training set becomes.
Therefore, hyperparameters cannot be selected by minimiz-
ing the error function on the training set. Theoretically, the
optimal hyperparameters should minimize simultaneously
bias (the model misfit) and variance (also called overfitting).
In practice, since the underlying process is unknown, bias
and variance have to be estimated. This can be achieved
with the cross-validation procedure [Bishop, 1995], which
computes an estimation of the validation error (the value of
the error function on data that are not used for training).
The validation error can be decomposed into a sum of bias
plus variance and some noise (the residual part of the error
that cannot be fit). Let’s define a set H that contains possi-
ble values from which to choose the hyperparameters. We
implemented a fivefold cross-validation as follows.

[22] 1. Split the training set into five subsets, called
folds: Ly, ..., Ls.

[23] 2. Leave one of the folds, Ly, aside.
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[24] 3. For each h € 'H, train the model (i.e., determine
its parameters given 4 € H) on the four remaining folds.

[25] 4. Evaluate the error function Ej (%) (the conditional
negative log-likelihood) on the left-aside fold Z;.

[26] 5. Return to step 2 until all fives are left aside in
turn.

[27] 6. Select the best
min, 32, Ex(h).

[28] For the benchmark Gamma conditional model, the
only hyperparameter is the number of hidden units. For the
conditional mixtures described in sections 2.1 and 2.2,
there is a second hyperparameter, which is the number of
mixture components. For the hybrid Pareto conditional
mixture, there are three additional hyperparameters for the
penalty term. The number of hidden units are chosen in the
set {0,2,4,8}, where zero hidden units means that only a
linear function is computed by the hidden layer of the neu-
ral network, and the number of mixture components is cho-
sen among {1,2,4,8}. The penalty hyperparameters of the
hybrid Pareto CMMs vary as follows: A € {0,1,10,20,
60,100}, n € {60,120}, and p € {0.02,0.03,0.05}. There-
fore, in the cross-validation procedure, we choose among
four hyperparameters for the benchmark model, 16 combi-
nations for the Gaussian and log-normal CMMs, and 576
combinations for the hybrid Pareto CMM. For this last
model, hyperparameter selection takes about 3 days of
computation time on a single CPU.

[29] The 46 year data set is split into a training set of 25
years (from 1 January 1959 to 31 December 1983) and a
test set of 21 years (from 1 January 1984 to 31 December
2004). The training set is first used to select the hyperpara-
meters of each SDM with the fivefold cross-validation
method. Once the hyperparameters are selected, each model
is trained anew on the whole training set. The test set serves
exclusively for comparison and evaluation of the SDMs.

hyperparameter: h* = arg

4. Results and Analyses
4.1.

[30] The hybrid Pareto conditional mixture is the most
complex model and requires careful and longer training to
address properly the issue of conditional tail index estima-
tion. In order to determine if using such a model is justified
by the data, we first compare the other three downscaling
models in terms of average of differences in conditional
log-likelihood with the hybrid Pareto CMM on the test set:

Global Comparisons

%Z [log ¢, (yilx:) — log b (vilxi)] (10)

where ¢" (vi|x;) is the hybrid Pareto CMM density and
o, (vi|x;) is the density of one of the other three models. Pos-
itive values indicate that the hybrid Pareto CMM performs
better. The evaluation of the performances (or differences in
performance) on the test set provides a fair way to compare
models even if the number of parameters might vary across
models. The risk of overfitting resulting from too many pa-
rameters is implicitly taken into account because the per-
formances are evaluated on new data, which did not serve
for training or hyperparameter selection. Therefore, we do
not need to introduce a penalty term for the number of pa-
rameters in the model, as is the case in popular fit criteria
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Table 1. Hyperparameters Selected via Cross-Validation for the
Three Rain Gauge Stations for Conditional Mixture Models by
Type of Components®

CARREAU AND VRAC: STOCHASTIC DOWNSCALING OF PRECIPITATION

Hybrid Pareto ~ Gaussian ~ Log-normal ~ Benchmark
Orange
(h, m) (2,2 0,4) (2,2) h=2
A m.p) (20,120, 0.03) - - -
Sete
(h, m) (2,2 (0, 8) (2,2) h=2
A n.p) (20,120, 0.05) - - -
Le Massegros
(h, m) 2,4 4,4 (2,2) h=4
Am,p) (10,60,0.03) - - -

“The hyperparameters are the number of hidden units and of components
selected (4, m) and penalty parameters (\, 7, p) for hybrid Pareto condi-
tional mixtures. The only hyperparameter for the benchmark model is the
number of hidden units 4.

such as the Bayesian information criterion [Schwarz, 1978],
which are measured on the training set.

[31] Table 1 presents the hyperparameters selected by
fivefold cross-validation on the training set for the four
downscaling models. Table 2 shows the average of differ-
ences in conditional log-likelihood on the test set along
with standard errors for the three competing models (Gaus-
sian CMM, log-normal CMM, and Gamma benchmark) on
the three rain gauge stations. The cases where the hybrid
Pareto CMM performed significantly better are in bold. We
see that the hybrid Pareto outperforms the Gaussian CMM
and the Gamma benchmark on all three stations. However,
we cannot really distinguish the hybrid Pareto CMM from
the log-normal CMM on the basis of this criterion. It is
not so surprising that log-normal CMMs have a good per-
formance because the data set is fairly large (which helps
training) and the asymmetry and positive support of the
log-normal are well suited to model rainfall data.

[32] We illustrate the forthcoming analyses on the Orange
station only since the two other stations provide similar
insights into the differences between SDMs. We computed
the mixture parameters corresponding to the predictors on
the test set and then randomly generated precipitation data
according to the conditional mixture parameters. This gives
us realizations of the precipitation process according to each
SDM over the test set. We repeated this a thousand times.
To visually assess how realistic a model is at reproducing
the precipitation process, we looked at QQ-plots (on log-
arithmic scale) of the simulated values against the observa-
tions in the test set for values greater than 1 mm. This is
illustrated in Figure 2 for the hybrid Pareto CMM (the other
two CMMs are not shown because they are similar) and the
benchmark model. Models that are in accordance with the

W10502

data should be close to the diagonal line. We see that the
benchmark model is less apt at modeling both the central
part (overestimation) and the upper part (underestimation)
of the distribution.

[33] For each of the 1000 generated time series, we com-
puted the frequency of wet and dry spells of at least & days.
These frequency counts were then normalized to obtain
proportions. We took the 5% and 95% empirical quantiles
over the 1000 replications for each spell length. We also
computed the proportion of wet and dry spells of at least k&
days from the test data. The resulting wet and dry spell con-
fidence intervals together with the spells computed from
the observations are compared on the logarithmic scale in
Figure 3 for the hybrid Pareto CMM and the benchmark
model, with the other two CMMs giving almost identical
results. From these wet and dry spell plots, we can con-
clude that the separate modeling of the occurrence process
(for both CMMs and the benchmark model) by means of
the discrete mixture component allows us to capture most
of the serial dependence, although the shortest wet spell (2
and 3 days) probabilities are slightly underestimated. This
dependence is taken into account implicitly by the neural
network, which estimates rainfall probability given the pre-
dictor variables. Serial dependence could also be explicitly
taken into account by including lagged observations in the
predictor variables.

[34] As shown in this section, there is a significant gain
(in terms of log-likelihood and through the analyses of the
QQ-plots) from using a mixture model instead of a single
Gamma distribution to model rainfall intensity. In the fol-
lowing analyses, we thus focus on the hybrid Pareto and
log-normal CMMs, which are the most likely models for
our downscaling application.

4.2. Seasonal Cycles

[35] In this section, we analyze climatologies on the Or-
ange test set. For each day of the 21 years in the test set, we
computed the 99% quantile y, 99(X) and the rain probability
a(x) according to the SDMs. Then, for each of the 365
days of the generic year (or 366 considering leap years), we
estimated empirical quantiles of levels 5%, 50%, and 95%
from the 21 values of yg99(x) and a(x) computed from the
models. In order to compare the SDMs with the observa-
tions, we also computed the empirical 99% quantile from
the test data for each day of the 365/366 days of the year
and the proportion of rainy days. For CMMs, conditional
quantiles are obtained by solving numerically the following
equation for y,,: ®,,(y,|x) = p, where p € [0,1] is the quan-
tile level (i.e., a probability) and @,,(y,|x) is the distribution
function associated with the conditional mixture in equation
(5). Note that y, is equal to zero for all p < 1 — «(x), the

Table 2. Average Differences in Log-Likelihood on the Test Set for the Three Rain Gauge Stations Between the Hybrid Pareto CMM

and the Other Models®

Gaussian Log-normal Benchmark
Orange 0.02146 (0.003139) 0.0022512 (0.001910) 0.02275 (0.002866)
Seéte 0.01595 (0.003034) —0.003530 (0.001647) 0.01847 (0.002690)
Le Massegros 0.01948 (0.006671) —0.004606 (0.002121) 0.02068 (0.003005)

Standard errors are given in parentheses. Positive numbers indicate that the hybrid Pareto CMM performed better. Significant differences are in bold.
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Figure 2. QQ-plots on a logarithmic scale of the simulated precipitation versus observations >1 mm
on the Orange test set for (left) the hybrid Pareto conditional mixture and (right) the benchmark model.
The horizontal lines are the empirical unconditional quantiles from observations of the test set.

no-rain probability, since in that case y, falls in the discrete
part of the distribution.

[36] Figure 4 shows the daily seasonal cycle of the rain
probability and the daily seasonal cycle of the 99% condi-
tional quantile for the Orange test data. The black line is
the climatology computed from the observations in the test
set: in Figure 4 (left), this is the proportion of rainy days,
whereas in Figure 4 (right) it is the empirical 99% quantile.
The gray band is the 90% confidence interval based on the
empirical quantiles of 5% and 95% levels computed from
the hybrid Pareto CMM, and the white line corresponds to
the empirical median. In Figure 4 (left), the empirical quan-
tiles are estimated from the 21 modeled conditional proba-
bilities of rain «(x) per day, and in Figure 4 (right) they are
estimated on the 21 modeled conditional quantiles of the
99% level, yg.99(x), per day. It is not meaningful to look at
more central conditional quantiles because of the presence
of the discrete component, which makes these conditional
quantiles hard to interpret. From Figure 4 (left), we can
identify two seasonal modes, around March (month 3) and
October (month 10), which translates into higher probabil-
ities of rain around these two months, while summer (i.e.,
around July) presents smaller probabilities of rain. This is
in agreement with the observations over the test set, show-
ing the same features. Regarding the 99% quantile in Fig-
ure 4 (right), the picture is a bit less clear, but we can
nevertheless identify two modes in the median (white line)
just after March and around fall (months 9 and 10). Larger
rainfall amounts are thus expected in spring and fall. The
climatologies are based on empirical quantiles computed
on 21 values (because of the 21 years in the test set). Few
positive observations occurred for a given day out of the
21, and empirical quantiles are thus not very stable (espe-
cially at the 99% level). This explains the spiky features in
Figure 4. The seasonal cycles for the other three SDMs are
very similar and are thus not shown.

[37] In order to get some understanding of the way con-
ditional mixtures approximate the conditional distribution

of precipitation intensity, we now look at the daily seasonal
cycle of the mixture parameters (the continuous part of the
mixture; see equation (1)) on the test set. The mixture pa-
rameters are deterministic functions of the predictor varia-
bles and therefore vary with the values taken by these. Just
as before, for each of the 365/366 days of the year, empiri-
cal quantiles of the 5%, 50%, and 95% levels are estimated
from the 21 values of the mixture parameters on the test
set. Figure 5 depicts the climatology of the hybrid Pareto
CMM mixture weight, tail index, location, and scale pa-
rameters over the Orange test set. For this station, the
cross-validation procedure selected two components in the
mixture. The white and the black lines represent the empiri-
cal median of the mixture parameter values for each com-
ponent. The gray bands are the 90% confidence intervals
based on the empirical quantiles of the 5% and 95% levels.
The seasonal cycle of the mixture weights (or priors) in
Figure 5 (top left) shows the predominance of one or the
other component in the density. For the hybrid Pareto
CMM, we see that in July (month 7), the component associ-
ated with the black line tends to dominate, although not sig-
nificantly, as we see that the confidence intervals overlap.
The seasonal cycle of the tail index parameters is shown in
Figure 5 (top right). We observe a slight decrease of the tail
index parameter from both components in the summer, but
globally, they are around the value 0.2, which is in agree-
ment with the penalty of the MLE (see equation (9)). For
the Orange data, the penalty hyperparameters 7 and p
selected via cross-validation imply that the tail index pa-
rameters have just one mode centered on 0.2. For the other
two data sets, Seéte and Le Massegros, the penalty hyper-
parameters selected entail that the tail index parameters
have two modes centered on zero and on 0.2 with different
heights. These results are not shown. Figure 5 (bottom)
depicts the cycles of the location and scale parameters of
the hybrid Pareto components. There is a strong seasonal
signal with a clear bump of the white line component for
both location and scale parameters around summertime,
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Figure 3. Logarithm of the proportion of (left) wet spells and (right) dry spells of at least £ days for the
Orange test data (dots) together with 90% empirical confidence interval (gray band) from (top) the
hybrid Pareto CMM and (bottom) the benchmark model. The predictor variables allow implicit modeling
of serial dependence of rainfall occurrence and provide similar spell probabilities in all four downscaling

models.

thereby providing a larger probability of high-intensity
rainfall. Keeping in mind that this continuous mixture den-
sity is conditional on the fact that it rains (¥ > 0), it means
that when it rains, the rainfall intensity is potentially high.
However, we saw in Figure 4 (left) that the probability of
rain reaches a low in the middle of summer. This reflects
common knowledge about rainfall in this area of France:
summer rain is rare but intense.

[38] As a means of comparing the log-normal versus the
hybrid Pareto CMMs, we also include the climatologies of
the log-normal conditional mixture parameters on the Or-
ange test data; see Figure 6. In this case as well, two com-
ponents were selected via cross-validation. From the
climatology of the mixture weights in Figure 6 (top), we
observe a pattern similar to the one of the hybrid Pareto
CMM: one of the components dominates in the summer. In

this case, the difference is more accentuated. The log-
normal distribution has two parameters, ; and o2, which
are directly linked to the Gaussian parameters. However,
unlike the Gaussian, they do not represent the expectation
and the variance of the log-normal. So instead of the p and
o2, we have computed the climatologies of the expectation

and the variance of the log-normal components, which are
given by e*t7°/2 and e+’ (e"2 - 1), respectively. These

are plotted in Figure 6 (middle and bottom). In summer, we
see the same bump as in Figure 5 (bottom), albeit less pro-
nounced for the expectations (Figure 6, middle). However,
the values taken by the variance (Figure 6, bottom) are
much higher: the full 90% confidence interval takes values
up to about 600, which makes for a standard deviation up
to about 25. This means that the tail is not heavy enough to
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Figure 4. Daily seasonal cycles of (left) the rain occurrence probability and (right) the 99% quantile
from the observations (black line) together with an empirical 90% confidence interval (gray band) and
median (white line) from the hybrid Pareto conditional mixture for the Orange station test data. Peaks in
the seasonal cycle of the occurrence process are visible in spring and fall.
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Figure 5. Daily seasonal cycles of the hybrid Pareto conditional mixture parameters (top left to bottom
right: mixture weights 7, tail index parameters ¢;, location parameters 1;, and scale parameters o;) to-
gether with an empirical 90% confidence interval. The mixture has two components whose parameters
are represented by the black and white lines.
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correctly represent rainfall. To compensate, the log-normal
conditional mixture needs to inflate the variance of one of
the components in order to take properly extreme rainfalls
into account. We also note that the component with large
location and scale in the summer has the largest prior.
Therefore, the log-normal CMM is not very realistic. The
hybrid Pareto CMM, because of the tail index parameters,
does not need to increase the variance. However, the fine-
tuning of the penalty term of the MLE (see equation (9))
requires some extra care and greatly influences the final
model.

4.3. Analyses of Conditional Events

[39] This section concerns analyses of two specific rain
events at the Orange station from the test set: the wet spell
with the highest volume of rain (322 mm on 8-9 September
2002) and the longest wet spell (9 days, from 24 April 1993
to 2 May 1993). Our goal is to check whether the SDMs’
continuous part can capture rainfall intensity during partic-
ularly severe events that might be challenging to reproduce.
Results are shown for the hybrid Pareto CMM only. In
Figure 7, modeled conditional quantiles of the 95%, 99%,
and 99.9% levels, i.e., y9.95(X), Vo.99(X), and yg.999(X), are
shown in light, medium, and dark gray, respectively, for
the hybrid Pareto CMM for these two rain events. The
black vertical lines represent the observed precipitation on
each day. We can see how the hybrid Pareto CMM adapts
to the atmospheric conditions that yield a sequence of dry
days or little rain, then a high or long volume of precipita-
tion, and then back to a drier period. If the model is right,
we expect the observed precipitation to be below the quan-
tile level p x 100% of the time. In other words, we expect
the observed precipitation to exceed the modeled condi-
tional 99.9% quantile on average 0.01%, which means,
given the test set size, about one observation. The largest
observation in the training set for the Orange station is
137 mm, whereas the largest observation in the test set is
220 mm. The latter appears at the date 09/08 in Figure 7
(left) and corresponds to a quantile level of 99.99% accord-
ing to the hybrid Pareto CMM. On average, the tested
SDMs are pretty accurate with regard to conditional quan-
tile modeling; see Table 3.

[40] Another way to look at the evolution of the model
through a rain event is by looking directly at the condi-
tional densities, which are associated with different atmos-
pheric conditions, that is, for different predictors. More
precisely, we depicted the conditional densities of ¥ given
the predictors x and given that ¥ > 0. For the conditional
mixtures, it corresponds to the continuous part of the mix-
ture in equation (1): a(x)¢o(y; ¥, (x)). These conditional
densities are illustrated in Figure 8 for the hybrid Pareto
CMM on the wet spell with the highest volume of rain
in the Orange test data. This is the same rain event as in
Figure 7 for the conditional confidence intervals. Figure 8
(left) shows the central part of the conditional densities,
while Figure 8 (right) represents the upper tails in logarith-
mic scale. Each curve corresponds to a different day, which
is connected in the legend with the amount of rain observed
on that day. The days in the legend are presented in chrono-
logical order (from top to bottom). We see from Figure 8
(left) that the density of the rain intensity is very low,
almost flat, for days where no precipitation occurred
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Figure 7. Hybrid Pareto conditional mixture: conditional quantiles yg95(x) (light gray), vo.99(X) (me-
dium gray), and yg 999(X) (dark gray) on (left) the wet spell with the highest volume of rain and (right)
the longest wet spell from the Orange test data. Vertical lines represent the observed precipitation. The
largest observed rainfall, 220 mm on 8 September (Figure 7, left), corresponds to a quantile level of

99.99% for the hybrid Pareto CMM.

(curves in warm hues). The corresponding tails in Figure 8§
(right) decrease rapidly. The yellow curve, which is the last
day with zero precipitation preceding the wet spell, is an
exception; this density curve is similar to the density
curves of the intense wet days (in green hues). For the days
of heavy rains, the upper tail of the conditional density is
heavier. We performed similar analyses on the other data
sets and with the other three SDMs. There are differences
(not shown) caused by the choice of the statistical model
for rainfall intensity and reflecting the underlying assump-
tions. For instance, during an intense rain event, the upper
tails of the Gaussian mixture density curves decrease much
more rapidly than the upper tails of the hybrid Pareto
CMM, indicating a lesser risk of extreme rainfalls for the
Gaussian CMM. In general, from these analyses, we see
that the conditional mixture model is very responsive to a
change in atmospheric conditions. The mixture parameters
change to adjust the shape of the distribution of precipita-
tion in a consistent way (heavier upper tail is associated
with extreme rainfalls).

5. Conclusions and Discussion

[41] The focus of this paper is on conditional mixture
models (CMMs), which to our knowledge, are used for the
first time in a downscaling context and open interesting ways
to study the interactions between large- and small-scale cli-
mate variables. CMMs are flexible stochastic downscaling
models: a discrete component in the mixture serves to simu-
late the occurrence process, whereas the continuous mixture
part simulates the intensity process. The continuous mixture
is made of either one of the following types of component:
Gaussian, log-normal, or hybrid Pareto. The mixture parame-
ters, i.e., mixture weights and both discrete and continuous
components parameters, are functions of predictor variables
(including large-scale information) and are computed by
means of neural networks. CMMs extend the two-component
mixture proposed initially by Williams [1998], which has a
discrete component like CMMs to model the occurrence

process but relies on a single density, the Gamma, for the
rainfall intensity process. This simpler model, which was
used in a downscaling context [Haylock et al., 2006; Cawley
et al., 2007], acted as a benchmark model.

Table 3. Percentage of Observations Below Estimated Quantiles
of Various Probability Levels (» = 0.05, 0.5, 0.9, 0.0975, 0.99,
0.999) for the Hybrid Pareto, Gaussian, and Log-normal CMMs
and the Benchmark Model for the Three Rain Gauge Stations on
the Test Set®

Hybrid Pareto ~ Gaussian ~ Log-normal ~ Benchmark
Orange

p=0.05 - 0 - -

p=05 44.1 50.9 45 46.3
p=09 88.6 88.8 89.6 89.9
p =095 94.2 94.7 94.4 94.9
p=0.975 96.4 97.2 96.7 96.8
p=0.99 98.5 98.9 98.5 98.5
»=0.999 99.7 99.8 99.8 99.6

Sete

p=0.05 - - - -

p=05 47.8 51.4 48.9 474
p=09 89.6 89.7 90.6 91.7
p=0.95 94.3 95.1 94.6 95.1
p=0.975 97.4 97.7 97.5 97.5
p»=0.99 98.8 99.1 98.9 98.9
p =0.999 99.7 100 99.9 99.7

Le Massegros

p=0.05 8.3 16.7 15.6 9.7
p=05 47.6 48.7 48.4 50.4
=09 89.1 89.2 89.0 89.8
p=095 95.0 95.0 95.2 95.1
p=0.975 97.4 97.5 97.6 97.2
p=0.99 99.0 98.9 99.0 98.5
»=0.999 99.9 99.9 99.9 99.8

*Missing values are because the estimated quantiles fall in the discrete
part of the distribution. If the model is correct, the percentage of observa-
tions should be close to p x 100.
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Figure 8. (left) Central part and (right) upper tail in logarithmic scale of the conditional densities

a(x)do(y; ¥, (x)) for the hybrid Pareto CMM day by day for a period comprising the wet spell with the
highest volume of rain in the test Orange data (same period as in Figure 7, left). Each daily density is
represented with a different color, which is represented in the legend in chronological order, from top to
bottom, with the amount of rainfall observed on that day.

[42] We draw the following conclusions from our analy-
ses of the three stations in the French Mediterranean area.
First, conditional mixture models have a clear advantage
over the benchmark model in terms of flexibility to repre-
sent both the central and the extremal part of rainfall inten-
sity distribution. Second, modeling the occurrence process
separately with a discrete component allows the implicit
introduction of serial dependence through the predictor var-
iables and hence the reproduction of wet and dry spell
sequences. Finally, the choice of component in CMMs
depends on the data. In our case, Gaussian components are
not well suited. Log-normal CMMs offer a good perform-
ance and are more straightforward to implement than
hybrid Pareto CMMs. However, the assumption of heavy
tails of the hybrid Pareto CMM seems more realistic for the
precipitation data considered in this work.

[43] The downscaling models considered in this work
are all weather generators: they downscale the whole con-
ditional distribution of precipitation from which we can an-
swer all kind of questions. (1) Conditional quantiles can be
computed, and from these, climatologies can be examined
and confidence intervals can be constructed. (2) Condi-
tional densities give insight into the influence of the atmos-
pheric information on the distribution of precipitation. (3)
It is easy to simulate rainfall and check whether the fea-
tures of observed precipitation, such as wet and dry spells,
are well captured by the models.

[44] Although conditional mixtures are rather complex
models, some understanding of the modeling mechanisms
can be gained by looking at the climatologies of the mix-
ture parameters as functions of the covariates. We believe
that the multiple benefits from the conditional mixtures
compensate for the extra work of implementation. Note
that a package in the R language [R Development Core
Team, 2010] named CondMixt has been developed for this
study and should be made available in the near future.

[45] This study has multiple perspectives and future
works. For example, the choice of appropriate predictors

should be made with care and requires further analyses. In
this paper, our goal was to illustrate and compare the per-
formances and advantages of the proposed downscaling
models. We provided the downscaling models with a
decent set of predictors without looking for the best set of
predictors. The results from the hyperparameter selection
for the mixtures show that single-component models are
inadequate. This could indicate that more than one compo-
nent is required, but it could also be due to inappropriate
selection of predictors. Hence, although the comparisons
between models are fair, a more complete set of predictors
describing better the physical processes at play could yield
more accurate statistical properties and simulations for all
models.

[46] Another interesting perspective would be to evalu-
ate climate change in precipitation according to these
downscaling models. For this, we need to validate the use
of GCM outputs as predictors in CMMs trained on reanaly-
sis data. Indeed, this is essential to assess the reliability of
the “couple” (GCM and CMM) and to give confidence in
their present projections before applying CMMs to down-
scale distributions of rainfall under various potential future
greenhouse gas emission scenarios. This would help us to
evaluate the impact of climate change on very important
features of rainfall, such as (interannual or statistical) vari-
ability, seasonality, or extremes.

[47] Finally, a challenging extension of this downscaling
approach would be to take into account spatial dependen-
cies between different rain gauges. This would allow joint
modeling of precipitation at multiple sites with multivariate
CMMs. Possible approaches to model the spatial depend-
ence structure of precipitation include the use of copulas
[Nelsen, 2006] and the approach suggested by Cannon
[2008] to change the error function in order to encourage
the model to match the observed covariance matrix. The
resulting coherent spatial simulations should preserve
observed dependencies and would provide tools to under-
stand their temporal evolutions during a control time period,
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past or future climate, completing the information brought
by CMMs to study the many facets of climate changes.
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