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Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France
(e-mail: {amine.othmane, hugues.mounier}@l2s.centralesupelec.fr)

∗∗ Chair of Systems Theory and Control Engineering
Saarland University, Saarbrücken, Germany

(e-mail: {a.othmane, j.rudolph}@lsr.uni-saarland.de)

Abstract: The use of algebraic differentiators in the context of asymptotic continuous-time
parameter estimation is discussed. The estimation problem is analyzed within a least squares
optimization context. Bounds for the error stemming from high frequency disturbances and the
approximation of the derivatives are derived. It is shown that with higher frequencies the error
stemming from the disturbances decreases and that the filter parameters can be used to adjust
the convergence of this error to zero. An observer with assignable error dynamics for the online
estimation is also proposed. A simulation is carried out to evaluate the results and compare the
proposed observer with the recursive solution of the least squares problem.

Keywords: Algebraic differentiators, parameter estimation, least squares algorithm,
time-varying linear observers

1. INTRODUCTION

The problem of identifying parameters of a dynamic pro-
cess from its operating data is an important task and
is still receiving considerable attention. Among the var-
ious techniques that where developed, regression models
combined with a least squares estimator have attracted
much attention. In Durbin (1960) for example, this ap-
proach is developed for discrete time dynamical systems.
However, in the presence of disturbed measurements, the
least squares analysis may lead to inconsistent estimates
as discussed in detail for example in Wald (1940). Dif-
ferent approaches have been proposed in the literature in
order to overcome this problem. The instrumental variable
approach for example, first developed in Reiersøl (1941);
Durbin (1954); Young (1970), can be seen as a slight
variation of the least squares solution of the linear re-
gression overcoming the problem. However, as noted in
Young (1979), the major problem with this approach is
the generation of the instrumental variables themselves.

For the continuous-time estimation of process parameters
using the least squares approach, the knowledge of the
time derivatives of the measured signals is required and
in the presence of disturbances represents an additional
challenge. In Young (1979), a state variable filter is pro-
posed which simultaneously filters the signals and provides
filtered time derivatives which replace the exact but un-
known derivatives.

? This work is supported by the ”ADI 2018” project funded by the
IDEX Paris-Saclay, ANR-11-IDEX-0003-0

In Mboup et al. (2007); Mboup et al. (2009), a family of nu-
merical differentiators was introduced. The time derivative
of a measured signal can be approximated using these esti-
mators, which are time-invariant filters and operate on the
non-differentiated signal. Their stability is implicitly guar-
anteed from their finite impulse response. In Liu (2011),
it was shown that the algebraic differentiators outperform
recent numerical algorithms based on higher order sliding
modes and high-gain observers. For a systematic configu-
ration of the five filter parameters the methods presented
in Kiltz and Rudolph (2013); Kiltz (2017) can be applied
such that desired properties of the amplitude spectrum
of the derivative estimator are achieved. Two methods
were presented: The first one allows the elimination of
harmonic disturbances. In the second one, the derivative
estimators are approximated as low-pass filters of arbitrary
large order. Then, the parameters can be calculated from
the desired cutoff frequency and the desired filter order.

The contribution of this article is to analyze the parameter
estimate error when algebraic differentiators are used in
the context of continuous-time parameter estimation using
linear regression with a least squares approach. Bounds for
the error stemming from the disturbances and the deriva-
tive approximation are derived using recent results from
Kiltz (2017). High frequency measurement disturbances
are considered. It is shown that the rate of convergence to
zero of the bias stemming from these disturbances can be
tuned using the parameters of the algebraic differentiators.
Furthermore, an observer with assignable error dynam-
ics and delayed measurements for the online estimation
of the parameters using the approximated derivatives is
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presented and compared with the recursive solution of the
least squares optimization problem in a simulation.

This article is structured as follows. In section 2, the
notation used in the work is summarized. The algebraic
differentiators introduced in Mboup et al. (2007); Mboup
et al. (2009) are recalled in section 3. The results from Kiltz
and Rudolph (2013); Kiltz (2017) are used to analyze their
behavior in the presence of high frequency disturbances
and error bounds are derived. In section 4, the use of
these filters in the context of parameter estimation is
discussed. First, the use of a least squares optimization
problem is introduced and analyzed. Then, an observer
with assignable error dynamics is proposed. In section
5, a simulation is performed and the effectiveness of the
proposed approaches is shown.

2. NOTATION

For a real-valued function f defined on R, the supremum
norm of f is defined as ‖f‖∞ = supt∈R |f(t)|. For S ⊂ R it
holds that ‖f‖∞,S = supt∈S |f(t)|. The convolution of two
real-valued functions f and g is written f ∗g. A function f
is said to be of class Cn, for n a non-negative integer, if the
derivatives of f up to the order n exist and are continuous.
In order to specify a Cn function on a domain I ⊆ R, the
notation Cn(I) is adopted. For a Cn function f , with n a
non-negative integer, f (i), for i = 0, . . . , n, denotes its i-th
derivative and f (0) is the function f itself. Alternatively,
Newtons notation for derivatives is also adopted for the
first and the second derivative. The gamma function is
denoted as Γ. The orthogonal Jacobi polynomial of degree
i associated with the weight function

w(α,β)(τ) =

{
(1− τ)α(1 + τ)β , τ ∈ [−1, 1]

0, else,

with the real parameters α, β > −1, is denoted P
(α,β)
i .

The definitions for class K and KL functions are borrowed
from Khalil (2002).

3. ALGEBRAIC DIFFERENTIATORS

3.1 Time domain interpretation of algebraic differentiators

The algebraic derivative estimation methods introduced
in Mboup et al. (2007); Mboup et al. (2009) were initially
derived using differential algebraic manipulations of trun-
cated Taylor series. Later works (Liu (2011); Kiltz (2017))
derived these filters using an approximation theoretical
approach that yields a straightforward analysis of the filter
characteristics, especially the estimation delay. Using this
approach, the estimate of the n-th order derivative of a
signal t 7→ y(t) denoted ŷ(n) can be approximated as

ŷ(n)(t) =

∫ T

0

g
(n)
T (τ)y(t− τ) dτ, (1)

with the filter kernel

gT (t) =
2

T

N∑
i=0

P
(α,β)
i (ϑ)∥∥∥P (α,β)
i

∥∥∥2w
(α,β) (ν(t))P

(α,β)
i (ν(t)) .

In the latter equation

• ν(t) = 1− 2
T t,

• ‖x‖ =
√
〈x, x〉 is the norm induced by the inner

product

〈x, y〉 =

∫ 1

−1

w(α,β)(τ)x(τ)y(τ) dτ,

• N is the degree of the polynomial approximating the
signal y(n) in the time window [t− T, t],
• T is the filter window length,
• and ϑ parameterizes the estimation delay as described

in (3).

This approach yields a straightforward analysis of the
estimation delay δt and the degree of exactness 1 γ which
are given as (Kiltz (2017))

γ =

{
n+N + 1, if N = 0 ∨ ϑ = p

(α,β)
N+1,k

n+N, otherwise,
(2)

δt =

{
α+1

α+β+2T, if N = 0
1−ϑ

2 T, otherwise,
(3)

with p
(α,β)
N+1,k the k-th zero of the Jacobi polynomial of

degree N + 1. In the sequel, hT is a function defined as

hT (t) =

{
gT (t), if t ∈ [0, T ],

0, otherwise.
(4)

3.2 Error analysis

Let ȳ be a disturbed measurement of y such that

ȳ(t) = y(t) + η(t), (5)

where η represents the additive disturbance. The esti-
mated derivative ŷ(n) is corrupted by three sources of
errors (Mboup et al. (2007); Mboup et al. (2009); Kiltz
(2017)):

• The error ed stemming from the delay δt and defined
as ed(t) := y(n)(t− δt)− y(n)(t).

• The polynomial approximation yields a smoothing of
fast changes in the signal. This error is denoted ea

and is defined as ea(t) := (hT ∗ y)(t)− y(n)(t− δt).
• The error due to the disturbance corrupting the

measurements and denoted en. It is defined as

en := h
(n)
T ∗ y − h(n)

T ∗ ȳ = h
(n)
T ∗ η.

The errors ea and en are of interest in this work and are
studied in the following propositions.

Proposition 1. (Liu (2011); Kiltz (2017)).
Let y ∈ Cn+m+1(I), with m ∈ N and I ⊆ R, γ and hT the
degree of exactness defined in (2) and the filter given in
(4), respectively. Assume there exists Mn ∈ R∗+ such that∥∥y(n+p+1)

∥∥
∞,I 6Mn with p = min{m, γ−n}. Then, there

exists a positive scalar M such that the approximation
error satisfies

‖ea‖∞,I 6
M

p!

(
T

2

)p+1

Mn ,

for T → 0.

Proposition 2. Let ȳ given in (5) be a disturbed measure-
ment of y ∈ Cn+1+p(I), p, n ∈ N, I ⊆ R and hT the

1 The degree of exactness was introduced in Kiltz (2017) as the
polynomial degree up to which the derivative estimation is exact.
If γ = 2 for example, the first and second time derivatives of a
polynomial signal of degree two are exact up to an estimation delay.



filter kernel defined in (4). The disturbance is assumed
to be integrable and bounded by σ, i.e., σ = supt∈I η(t).
Then, for all times t ∈ I the error en stemming from the
disturbance is bounded such that

‖en‖∞,I 6
σ

Tn+1
Q,

with Q = Tn+1
∫ T

0

∣∣g(n)(τ)
∣∣dτ <∞ independent of T .

Proof. The error stemming from the disturbance is given
as

en(t) = (h
(n)
T ∗ y)(t)− (h

(n)
T ∗ ȳ)(t)

= (h
(n)
T ∗ η)(t)

=

∫ T

0

g
(n)
T (t− τ)η(τ) dτ.

Note that

g(n)(t) =
22n+1

Tn+1
w(α−n,β−n)(ν(t))· N∑

i=0

(i+ n)!P
(α,β)
i (ϑ)

i!
∥∥∥P (α,β)

i

∥∥∥2 P
(α−n,β−n)
i+n (ν(t))

 ,

with ν(t) = 1 − 2
T t. Let Q = Tn+1

∫ T
0

∣∣g(n)(τ)
∣∣ dτ < ∞

which is independent of T . Thus, the error can be bounded
by

|en(t)| =

∣∣∣∣∣
∫ T

0

g
(n)
T (t− τ)η(τ) dτ

∣∣∣∣∣
6 σ

∫ T

0

∣∣∣g(n)
T (τ)

∣∣∣dτ =
σ

Tn+1
Q,

for all times t. Hence, the error satisfies ‖en‖∞,I 6
σ

Tn+1Q.

The error bounds for more general stochastic processes are
derived in Liu (2011). However, it is stressed that these are
only conservative bounds and do not take into account the
low pass effect of these filters analyzed in detail in Kiltz
and Rudolph (2013); Kiltz (2017).

The estimation error in the presence of high frequency
disturbances is now analyzed using the results from Kiltz
and Rudolph (2013); Kiltz (2017). For this purpose, a
disturbance model introduced in Astolfi et al. (2016) for
the analysis of the sensitivity of High-Gain observers to
high frequency disturbances is used. The model is given as

εẇ(t) = Sw(t), η(t) = Pw(t), (6)

where the matrices S and P take the form

S = blockdiag(S1, . . . , Sm), Si =

[
0 ωi
−ωi 0

]
,

P = ((0 p1), (0 p2), . . . , (0 pm)),

with ωi ∈ R>0, pi ∈ R, i = 1, . . . ,m, m ∈ N, and the
parameter ε ∈ (0, 1) will be taken small in the forthcoming
analysis. The initial conditions are denoted w0(t0) = w0.
System (6) can be conveniently seen as a generator of
m > 0 harmonics at frequencies wi

ε > 0, i = 1, . . . ,m. The
disturbance is then given as η(t) =

∑m
i=1 pi cos(ωi

ε t+ φi)
where φi = arccos(w0,i,2). The next proposition proposes
a bound for the error stemming from a high frequency
disturbance generated by the model given in (6).

Proposition 3. Let ȳ given in (5) be a disturbed measure-
ment of y ∈ Cn(I), n ∈ N, I ⊆ R, and hT the filter kernel
defined in (4). Assume the disturbance to be generated

by the model in (6). Introduce ω> = maxi∈{1,...,m} ωi and
ω< = mini∈{1,...,m} ωi. Then, for ε→ 0 and min{α, β} > n
the following holds for the error stemming from the dis-
turbance:

• If N = 0 and α = β, there exists a function κ1 ∈ KL
such that

0 6 ‖en‖∞,I 6 κ1

(
1

T
,
ω>
ε

)
,

• otherwise there exist two functions κ2, κ3 ∈ KL such
that

κ2

(
1

T
,
ω<
ε

)
6 ‖en‖∞,I 6 κ3

(
1

T
,
ω>
ε

)
.

Proof. As observed in earlier references (see for instance
Mboup et al. (2009); Kiltz and Rudolph (2013); Kiltz
(2017)), the algebraic differentiator in (1) is a linear
time-invariant filter. Thus, the response of the filter to a
sinusoidal signal with amplitude u and angular frequency
ω0 is a sinusoidal signal with an identical frequency and
amplitude U = uωn0 GT (ω0), where GT denotes the Fourier
transform of gT . It is shown in (Kiltz, 2017, chapter 3)
that for |ω| → ∞ the function GT satisfies

1

(ωT )
µG− 6 |GT (ω)| 6 1

(ωT )
µG+,

with

G+ =
∣∣∣r(α,β)

∣∣∣+
∣∣∣s(α,β)

∣∣∣
G− =

∣∣∣∣∣∣∣∣r(α,β)
∣∣∣− ∣∣∣s(α,β)

∣∣∣∣∣∣∣∣
where

µ = min{α+ 1, β + 1},

r(α,β) =

N∑
i=0

c
(α,β)
i

Γ(µ+ κ+ i)
P

(µ−1,µ+κ−1)
i (χϑ),

s(α,β) =

N∑
i=0

(−1)ic
(α,β)
i

Γ(µ+ i)
P

(µ−1,µ+κ−1)
i (χϑ),

c
(µ,κ)
i = (2µ+ κ+ 2i− 1)Γ(2µ+ κ+ i− 1),

χ =

{
1, β ≥ α,
−1, α > β,

, κ = |α− β| .

The model (6) generates a sinusoidal disturbance signal
η(t) =

∑m
i=0 pi cos(ωi

ε t+ φi). For notational simplicity, let
ω = (ω1, . . . , ωm). From the above considerations it follows
that

|en(t)| 6

∣∣∣∣∣
m∑
i=0

(wi
ε

)n
piGT

(ωi
ε

)∣∣∣∣∣
6

m∑
i=0

(wi
ε

)n
|pi|
∣∣∣GT (ωi

ε

)∣∣∣ ,
and, for ε→ 0,

bl(T, ω) 6 ‖en‖∞,I 6 bu(T, ω),

where

bl(T, ω) = T−µG−
m∑
i=0

|pi|
(wi
ε

)n−µ
,

bu(T, ω) = T−µG+
m∑
i=0

|pi|
(wi
ε

)n−µ
.



Using ω> and ω< it follows that

bl(T, ω) ≥ mT−µ
(ω<
ε

)n−µ
G−p< =: κ2

(
1

T
,
ω<
ε

)
bu(T, ω) 6 mT−µ

(ω>
ε

)n−µ
G+p> =: κ3

(
1

T
,
ω>
ε

)
,

with p< = mini∈{1,...,m} |pi| and p> = maxi∈{1,...,m} |pi|.
Thus,

κ2

(
1

T
,
ω<
ε

)
6 ‖en‖∞,I 6 κ3

(
1

T
,
ω>
ε

)
.

It is straightforward to see that for µ > n the functions
κ2, κ3 ∈ KL. For N = 0 and α = β it holds that

κ2

(
1

T
,
ω<
ε

)
= 0

κ3

(
1

T
,
ω>
ε

)
=

4µΓ(µ+ 1/2)√
πTµωµ>

=: κ1

(
1

T
,
ω>
ε

)
.

4. PARAMETER IDENTIFICATION USING
ALGEBRAIC DIFFERENTIATORS

4.1 Least squares parameter estimation

Introductory example Consider the system

ẋ(t) = ax(t) + bu(t), (7)

where a, b ∈ R are unknown parameters, u is a known
function of time and y(t) = x(t) + η(t) is a disturbance
corrupted measurement of the state. Assume η(t) is gener-
ated by (6). The estimation of the parameters a and b using
a least squares approach and the algebraic differentiators
presented above is now discussed.

Assume the filter in (1) is used to estimate ẏ and denote

the estimate as ˆ̇y. Taking into account the estimation delay
δt, equation (7) can then be rewritten as

ˆ̇y(t) = ay(t− δt) + bu(t− δt).
For the purpose of convergence analysis of the algorithms
the latter equation is rewritten as

ˆ̇x(t) = ax(t− δt) + bu(t− δt) + e(t),

with e(t) = ˆ̇η(t) + η(t− δt), where ˆ̇η represents the output
of the filter when applied to the disturbance signal. Note
that defining θ = [a b]T , H(t) = [x(t− δt) u(t− δt)]T , and

φ(t) = ˆ̇x(t) − e(t) yields φ(t) = HT (t)θ. Assume that for
all t, t0 ≥ 0 satisfying t0 < t the function

ψ(t) =

∫ t

t0

eλ(τ−t)HT (τ)H(τ) dτ, (8)

with λ > 0, is non-zero. Let θ̂(t) be the solution of the
minimization problem

min
θ

∫ t

t0

eλ(τ−t) (HT (τ)θ − φ(τ)
)T (

HT (τ)θ − φ(τ)
)

dτ.

Then,

θ̂(t) =
1

ψ(t)

∫ t

t0

H(τ)φ(τ) dτ

=
1

ψ(t)

∫ t

t0

H(τ)ˆ̇x(τ) dτ︸ ︷︷ ︸
θ∗(t)

− 1

ψ(t)

∫ t

t0

H(τ)e(τ) dτ︸ ︷︷ ︸
θ̃(t)

,

i.e., the measurement disturbance yields a bias θ̃ in the
estimation of the parameters. A method where this bias
vanishes is presented in the sequel.

In contrast to the approach presented above, where the
filter was only used for the estimation of the numerical
derivative of the measurement, it is applied to all signals
in the system to get

ˆ̇y(t) = aŷ(t) + bû(t) (9)

and equivalently

ˆ̇x(t) = ax̂(t) + bû(t) + ê(t), (10)

with ê(t) = ˆ̇η(t) + η̂(t). Using the same arguments as in
the proof of Proposition 3 it can be shown that the error
satisfies

‖e‖∞ 6 κε

(
1

T
,
ω>
ε

)
= c1T

−µ
∣∣∣∣(ω>ε )1−µ

∣∣∣∣ ∣∣∣∣1 +
(ω>
ε

)−1
∣∣∣∣

with ω> = maxi∈{1,...,m} ωi, p> = maxi∈{1,...,m} pi, c1
some constant depending on the filter parameters and the
disturbance amplitude, and µ = min{α+ 1, β + 1}. Note
that lim

ε→0
κε(

ω>

ε ) = 0 when µ > 1. Estimating the parame-

ters a and b from (10) using a least squares approach yields

a bias θ̃ satisfying∥∥∥θ̃∥∥∥
∞,I

= sup
t∈I

∣∣∣∣ 1

ψ(t)

∫ t

t0

H(τ)e(τ) dτ

∣∣∣∣
6 sup

t∈I

∣∣∣∣ 1

ψ(t)

∣∣∣∣ ∫ t

t0

|H(τ)| |e(τ)|dτ

6 κε

(
1

T
,
ω>
ε

)
sup
t∈I

∣∣∣∣ 1

ψ(t)

∣∣∣∣ ∫ t

t0

|H(τ)|dτ

= κθ̃

(
1

T
,
ω>
ε

)
,

for all t ∈ I = [0 t∗], with t∗ bounded and strictly
positive. If the input u is bounded, it can be concluded
that lim

ε→0
κθ̃
(

1
T ,

ω>

ε

)
= 0, i.e., the identification bias stem-

ming from the disturbances vanishes when ε → 0. The
convergence speed of the error to zero can be adjusted
using µ = min{α+ 1, β + 1}.
In the previous analysis only the effect of the distur-
bance on the estimation was taken into account. However,
applying the algebraic differentiators also results in an
error stemming from the polynomial approximation of
the signals in the filter window. This is analyzed in the
forthcoming paragraph.

For notational simplicity the disturbance is assumed to
be identical to zero, i.e., η(t) = 0 for all t ≥ 0. Define
ex(t) = x(t−δt)−x̂(t) and eu(t) = u(t−δt)−û(t). Recalling
the estimation equation (9)

ˆ̇x(t) = ax̂(t) + bû(t)

used earlier, yields

ẋ(t−δt) = ax(t−δt)+ bu(t−δt)+ ėx(t)− aex(t)− beu(t)︸ ︷︷ ︸
eg(t)

.

Thus, using the algebraic differentiators yields an estima-
tion bias eg(t) compared to the use of the exact values.
Assume that x ∈ Cmx+2(I), u ∈ Cmu+1(I), I ⊆ R, and

that these functions are bounded. Let eθ(t) = θ(t)− θ̂(t),
H(t) = [x(t) u(t)]T and ψ(t) =

∫ t
t0
eλ(τ−t)HT (τ)H(τ) dτ



with t0 < t. Assume ψ(t) 6= 0 for all times t ∈ I. The
estimation error due to the use of the algebraic differen-
tiators satisfies

‖eθ‖∞,I = sup
t∈I

∣∣∣∣ 1

φ(t)

∫ t

t0

H(τ)eg(τ) dτ

∣∣∣∣
6 sup

t∈I

∣∣∣∣ 1

φ(t)

∣∣∣∣ ∫ t

t0

|H(τ)| |eg(τ)|dτ

6 ‖eg‖∞,I sup
t∈I

∣∣∣∣ 1

φ(t)

∣∣∣∣ ∫ t

t0

|H(τ)|dτ.

From Proposition 1 it follows that

‖eg‖∞,I = O

((
T

2

)p+1
)
,

with p = min{mx,mu, γ − 1}. Thus, the estimation error
due to the use of the algebraic differentiators satisfies

‖eθ‖∞,I 6 O

((
T

2

)p+1
)
.

Generalization The observation made with the simple
first order system in (7) can be generalized for higher order
systems as stated in the following proposition.

Proposition 4. Let n andm be positive integers, u ∈ Cm(I),
I ⊆ R, a known signal, hT the filter defined in (4), x a
Cn(I) function and ȳ = x + η a disturbed measurement
where the disturbance η is generated by the model in (6)

with the parameter ε. Introduce ŷ(i) = h
(i)
T ∗ ȳ and assume

that u and x satisfy the linear relationship

x(n)(t) +

n−1∑
i=0

aix
(i)(t) =

m∑
i=0

biu
(i)(t), ai, bi ∈ R. (11)

Let λ be a positive scalar and define

Hx(t) =
[
x(t), . . . , x(n−1)(t), u(t), . . . , u(m)(t)

]T
,

Hȳ(t) =
[
ŷ(t), . . . , ŷ(n−1)(t), û(t), . . . , û(m)(t)

]T
,

θ = [a0, . . . , an−1, b0, . . . , bm]T ,

ψx(t) =

∫ t

t0

eλ(τ−t)HT
x (τ)Hx(τ) dτ,

ψȳ(t) =

∫ t

t0

eλ(τ−t)HT
ȳ (τ)Hȳ(τ) dτ.

Assume the matrices ψx(t) and ψȳ(t) are invertible for
all t ∈ I. Denote by θx(t) and θȳ(t) the solution of the
following optimization problems

min
θ

∫ t

t0

eλ(τ−t)
(
HT
x (τ)θ − x(n)(τ)

)2

dτ,

min
θ

∫ t

t0

eλ(τ−t)
(
HT
ȳ (τ)θ − ŷ(n)(τ)

)2

dτ,

respectively. Assume further that lim
t→∞

θx(t) = θ. The

estimated parameters using the measurements satisfy

‖θx − θȳ‖∞,I 6 κg

((
T

2

)p+1
)

+ κε

(
1

T
,
ω>
ε

)
,

with p = min{m,n, γ − 1} and κg, κε class K∞ and class
KL functions, respectively.

Proof. The proof follows from the considerations pre-
sented in the previous example.

4.2 Observer with assignable error dynamics

Consider the general model in (11) and the notation intro-
duced in Proposition 4. First, for simplicity, assume that
x(i)(t), i = 0, . . . , n and u(i)(t), i = 0, . . . ,m, are known
for all times t. Introduce θ(t) = [a0, . . . , an−1, b0, . . . , bm]T .
The functions θ, Hx and x(n) satisfy

θ̇(t) = 0

x(n)(t) = HT
x (t)θ(t).

Let

z(t) =


x(n)(t)

x(n)(t− δ1)
...

x(n)(t− δκ)

 =


HT
x (t)

HT
x (t− δ1)

...
HT
x (t− δκ)


︸ ︷︷ ︸

=C(t)

θ(t), κ = n+m,

with the delays δi, i ∈ {1, . . . , κ} chosen such that
det(C(t)) is not identically zero for all times t. The
parameters can be estimated using the observer

˙̂
θ(t) = L(t)

(
C(t)θ̂(t)− z(t)

)
, θ̂(0) ∈ R,

with L(t) the solution of the equation

L(t)C(t) =

{
(det(C(t)))

2
A, if |det(C(t))| < d

ρA, otherwise,
(12)

where A is an arbitrary matrix whose eigenvalues lie in
the left half plane, and d and ρ are two strictly positive
parameters. The asymptotic convergence of the estimates
to the true parameters can be shown using the Lyapunov

function V (t) = eTθ (t)eθ(t), with eθ(t) = θ(t)− θ̂(t).
When only the measurement y(t) = x(t) + η(t), with the
additive disturbance η(t) satisfying (6), is available, an
algebraic differentiator can be used and the parameters
can be estimated by

˙̂
θ(t) = L̂(t)

(
Ĉ(t)θ̂ − ẑ(t)

)
, θ̂(0) ∈ R,

with

Ĉ(t) =


HT
ȳ (t)

HT
ȳ (t− δ1)

...
HT
ȳ (t− δκ)

 , ẑ(t) = (h
(n)
T ∗ z)(t),

and L̂(t) the solution of (12) when the function C is

replaced by Ĉ. The estimate error derived in the last
section for the least squares approaches can be derived
for this observer in a similar manner.

5. EXAMPLE: PARAMETER ESTIMATION OF A
4-TH ORDER LINEAR SYSTEM

Consider the 4-th order linear system defined as

ξ̇(t) =

0 1 0 0
0 0 1 0
0 0 0 1
0 γ1 γ2 γ3

 ξ(t) +

 0
ζ1
ζ2
ζ3

u(t)

with the output y(t) = ξ1(t). The numerical values of the
parameters are summarized in Tab. 1.



Table 1. Numerical values of the parameters used in the
simulation.

γ1 γ2 γ3 ζ1 ζ2 ζ3

-16 -15.4 -1.2 0.5 -0.6 -0.1

The input and measurement disturbance are chosen to be
a superposition of harmonics such that

u(t) =

6∑
i=1

ui
i

(
sin
(ω
i
t
)

+ sin(πt)
)
,

η(t) =

5∑
i=0

ai sin(ωit+ φi),

with ui = 3, ω = 10, ai ∈ (0, 0.005) and ωi ∈ [500, 5000]
for i ∈ {0, . . . , 5}. The frequencies, amplitudes, and shifts
of the disturbance and the input are chosen randomly
using a uniform distribution. The signal-to-noise ratio
is equal to 36 dB. In order to be able to compare the
observer to the least squares estimator, the estimation
of the parameters starts only for times greater than the
highest delay used in the observer. The numerical values
of the parameters of the algebraic differentiator are

N = 2, T = 1.5, α = 5, β = 7.5,

and ϑ is chosen to be the greatest zero of the Jacobi-

polynomial P
(α,β)
N+1 . The parameters d and ρ of the observer

are chosen to be equal to 10 and 1, respectively, and A is
the diagonal matrix

A = −diag([[2.4, 8, 3.2, 4, 0.8, 8]])

and the delays are

δ1 = 0.1, δ2 = 0.33, δ3 = 0.53, δ4 = 0.87, δ5 = 1.47.

The least squares optimization problem is solved recur-
sively to show the applicability of the approach in the
context of online parameter estimation. The parameter
λ = 0.98. The observer is implemented using the backward
Euler method. The sampling period is equal to 0.01.

The simulation results given in Fig. 1 show clearly that
the estimated parameters converge to the true parameters.
During the transient phase, the results of the observer
show less oscillations and overshoots than those of the least
squares estimator. Varying its parameter λ introduced in
(8) does not significantly affect this observation.

6. CONCLUSION

The use of algebraic differentiators in the context of
asymptotic parameter estimation has been discussed. The
estimation error when a least squares approach is used
has been analyzed using recent results from Kiltz (2017).
More specifically, the bias stemming from high frequency
disturbances has been considered. It has been shown that
it decreases with higher disturbance frequencies. The pa-
rameters of the filters can be used to tune the convergence
rate of the bias to zero. For the online estimation, an
observer with assignable error dynamics has also been
proposed and compared to the recursive solution of the
least squares problem. The observer shows better results in
the simulation. Further research will be conducted on the
analysis of the error stemming from the discretization of
the approaches presented here. A systematic methodology
for the choice of the delays must also be discussed.
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Fig. 1. The estimated parameters: depicts the estimation
results with the recursive least squares approach and
when the proposed observer is used. The true parameters are
given by .
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