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3632/15, 400 96 Úst́ı nad Labem, Czech Republic

cMAST-GPEM, Univ. Gustave Eiffel, IFSTTAR, Fr-44344 Bouguenais, France

Abstract

This article intends to revisit the electro-diffusional theory for the wall shear

stress measurement from mass transfer probes of rectangular shape by consid-

ering the existence of two components of the wall shear rate (i.e., axial and

transversal). General analytical formulas for the effective transfer length and

the dimensionless mass transport coefficient were derived as a function of only

two parameters: a dimensionless angle of the flow direction, relative to the lead-

ing edge of the probe, and the aspect ratio between the width and the length

of the strip probe. The correctness of the analytical relations for arbitrary flow

direction and the aspect ratio was confirmed by numerical solutions of the trans-

port equation in the convective-diffusive regime. It has also been proved that

the differences between the Lévêque solution and the general analytical formula

exhibit a significant deviation for a specific range of parameters. In the case

of the three-dimensional boundary layers, in addition to the magnitude of the

wall shear stress, the direction of the fluid flow in the vicinity of the probe’s

surface is of paramount importance. Accordingly, a measurement methodology

is proposed using two strip probes with different aspect ratios. The resulting

equations required to quantify the magnitude of the wall shear rate vector and

the dimensionless angle are also derived.
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1. Introduction

The efficiency of mass and energy transfer between a solid wall and the

surrounding fluid depends on the nature of the hydrodynamics boundary layer

[1, 2], and the wall shear stress fundamentally influences these transport phe-

nomena. However, to obtain information about the spatial changes of velocity5

using experimental measurements in the viscous sub-layers is not a trivial mat-

ter. The inability of the classical techniques to describe fluid dynamics in the

near-wall region has led to the development of a group of non-invasive methods

based on a heating element or a mass transfer probe flush-mounted to the wall

[3]. The Electro-Diffusion (ED) technique is one of the essential representatives10

of these methods.

The ED method measures the wall shear rate in the liquid phase from the

mass transfer probes. A potential difference between an anode of a broad surface

(usually located far from the measuring area) and the small working electrode

acting as a cathode leads to a fast redox reaction. The ion disappearance occurs15

only on the microprobe active surface, causing the development of the diffusion

boundary layer, in which the fast electro-diffusion reaction rate is controlled only

by diffusion in the case of the sufficiently large Schmidt number. The sufficiently

large Schmidt number guarantees that the diffusion boundary layer thickness is

smaller than the width of the viscous sub-layer, and it allows the simplification20

of a description of the hydrodynamics near the wall by using the assumption of

simple shear flow [4]. The Schmidt number is given by the ratio of the liquid

viscosity to the diffusion coefficient of the electrolyte ions. Since in the most

measurement cases water and ions of ferricyanide are used, the assumption of

sufficiently large Schmidt number can be easily fulfilled for small size probes.25

The main drawback of the ED method is posttreatment of measured data to

find out the wall shear stress from the limiting diffusion current measurements
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on the base of individual assumptions, which may not always be fulfilled. The

fundamentals of ED have been addressed in several works [4, 5]. They conclude

that ED measurement has to respect the quasi-steady regime of simple shear30

flow in the viscous sub-layer perpendicular to the strip probe leading edge. In

this case, an analytical solution of the convection-diffusion equation, initially

derived by Lévêque [6], can be applied. In 1963 Reiss and Hanratty extended

the Lévêque solution also to a circular probe [7].

Nonetheless, the Lévêque solution has limited validity for sufficiently large35

Péclet numbers, where the convection has to outweigh the diffusion in the axial

direction significantly. Then axial diffusion flux can be neglected. However,

this assumption cannot be used for smaller values of Péclet number [8–10].

Such cases have been studied by the matched asymptotic expansions [11] and

integral boundary method [8] with some simplifications for limiting cases or40

by a combination of numerical solution of convection-diffusion equation and the

inverse method with the necessity of an iterative process [12, 13]. The presented

results for small Péclet numbers are pointing at a significant deviation to the

Lévêque solution [10].

Whenever substantial inertial effect is combined with unsteady phenomenon45

governs the transport processes, wall shear rate fluctuations are occurring [14,

15], and the frequency response of the mass transfer probes must be taken into

account [16]. If the amplitude of the flow perturbations is relatively small com-

pared to the time-averaged value, the time-variation of the measured electric

current respects the temporal fluctuations of the wall shear rate, and a quasi-50

steady state is generally assumed. At more elevated fluctuation rates, it is

necessary to take into consideration the frequency response of the mass transfer

probes due to the sufficiently large Schmidt number. In these cases, the capaci-

tive effect of the concentration boundary layer acts as a low-pass filter upon the

current fluctuations [17], and the assumption of quasi-steady state is erroneous.55

The correction between wall shear stress fluctuations and measured fluctuations

of limiting diffusion current is restored by transfer functions [18], and their uses

have been found relevant, especially for turbulent flow measurements [16]. By
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using the transfer function, it is possible to evaluate the phase shift of the mea-

sured current signal concerning the imposed wall shear rate variation of a given60

frequency, the amplitude attenuation, and correct the power spectra obtained

from the measurements of near-wall turbulence [19]. The transfer functions can

provide information on the frequency-domain from a signal analysis procedure

at the cost of the loss of the time-domain information. Therefore, some authors,

similarly to the small Péclet number cases, have considered using other methods65

as, for example, the inverse mass transfer method explored firstly by Mao and

Hanratty [20], to deal with the probe inertia while preserving the time-resolved

ED measurements. This approach has improved the measurements of the am-

plitude probability distribution and the frequency spectrum of the streamwise

component of the fluctuating velocity gradient. Another procedure for suffi-70

ciently high frequency fluctuating flow was introduced by Sobolik et al. [21].

Their method corrects the quasi-steady solution by adding a term, derived from

the transient response of the ED probe extended by the time derivative of the

wall shear rate. It is based on the assumption of similarity of the concentration

fields over the probe surface under steady and unsteady flow conditions. This75

method was verified numerically for small amplitudes of the fluctuation rate [22]

and experimentally at higher amplitudes of the fluctuation rate [23] showing its

relevancy in turbulent flows compared to the transfer function.

Another problem that may interfere with the correct posttreatment of mea-

sured data by ED is the direction of fluid flow. For a circular electrode, due to80

its symmetry, there is no influence of the angle of the liquid flow on the relation

between measured limiting current and wall shear stress. This feature simpli-

fies the interpretation of experimental data, but on the other hand, it does not

allow more work with information about the direction of the wall shear stress

vector. Unlike the circular probes, rectangular probes are sensitive to the flow85

orientation in both the axial and transverse directions. The expression for the

evaluation of the mass transport coefficient for the slanted probe was firstly pre-

sented by Sirkar & Hanratty [24]. For that evaluation, knowledge of the direction

of flow around the surface probe is required. However, this information is often
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not available. It has to be determined by other means than solely measurements90

with one strip probe because from obtained data it is possible to evaluate only

the magnitude of the wall shear rate vector. Therefore, if additional informa-

tion about the flow direction is needed, the more-segmented probes have been

proposed. Sirkar & Hanratty [24] developed the chevron-electrode arrangement

formed by a pair of slanted electrodes. Py & Gosse [25] used semi-circular ac-95

tive surfaces with an isolated gap, and Tournier & Py [26] suggested utilizing

the pair of twin rectangular probes. The most commonly used two-segmented

probes are, so-called ’sandwich probes’, are formed by two strips separated in

the mean flow direction by a gap created by an insulator [27]. The main prob-

lem of this type of two-segmented probes lies in poor sensitivity to transverse100

flow, and their usage is, therefore, often reduced only to detection of reversal

flow in low-frequency oscillating flows [12]. Due to unsatisfactory results with

two-segmented probes in terms of flow direction evaluation, the three-segment

sensors were developed [28]. The three-segment probes can detect the magni-

tude of wall shear stress vector and flow direction with a precision better than105

10◦ with appropriate calibration [29]. However, they exhibit problems with stag-

nation point flow evaluation and are not suitable for the measurement of high

frequency fluctuating flow due to the probe inertia [12]. Such latter complex

micro-sensors also suffer from manufacturing constraints for implementation,

and the diffusion layer approximation in the trailing edge has to be carefully110

identified.

In the early stages in the 1960s, the ED method was considered as the sole

experimental method able to provide relevant insight into the near-wall flow

behavior. Measurements in simple geometries such as straight channel were

firstly considered for a better understanding of the boundary layer nature in115

fully developed turbulent flow [5, 7, 30]. Afterward, ED technique usage was

expanded to more complex flows such as flows around bypassing bodies [31],

creating of stagnation points e.g. flow-through suddenly changing cross-section

[32], or the mixing of fluid streams [33, 34]. Since the last two decades, the

electro-diffusion method has also been extended to the multiphase systems as120
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flows through microporous systems [35]. This sudden transition from funda-

mental to advanced flow characterization may have led to a misunderstanding

in the interpretation of the results while considering the hypothesis of the ED

method initially introduced sixty years ago.

If the simple geometry as a straight channel is used, the strip probe can125

be uniquely positioned on the wall so that its leading edge is perpendicular to

the flow direction. In many applications [36, 37], the situation is less clear,

and the flow direction is also dependent on the input conditions. In such cases,

the probe cannot be placed universally in the space so that the liquid flow is

always perpendicular to the leading edge, and the existence of transverses flow130

directions must be taken into account in addition to the main axial component.

In such flow conditions, the analytical solution of Lévêque [6], used in most of

the research works, is no longer apply.

In that context, this work intends to revisit the ED technique and show

the benefit it may have for the scientist community to take into account the135

existence of two components of the wall shear rate (i.e., axial and transversal)

for the interpretation of measured data. For the Lévêque solution users, pit-

falls and sources of errors are outlined. In the present paper, we start from the

diffusion-convection equation assuming a homogeneous two-dimensional sim-

ple shear flow without the existence of stagnation points in the measured area140

(ux, uy 6= 0;uz ≈ 0). We reduced the general parametric space of convection-

diffusion transport equation into solely two parameters; one corresponding to

the aspect ratio between the width and the length of the strip probe, while the

second is related to the flow direction relative to the leading edge of the probe.

We derived general analytical formulas for the effective transfer length and the145

dimensionless mass transport coefficient for fluid flow of arbitrary orientation

and any aspect ratio of the strip probe. This relation is a generalization of the

solution presented by Sirkar & Hanratty [24] for a slanted strip probe. The re-

sults of the analytical solution for the dimensionless mass transport coefficient

were confirmed by a numerical solution of the transport equation with 2D con-150

vective flux. Finally, we presented the new methodology of measurement with

6



a strip probe concerning the axial and transversal flow directions.

2. Strip mass transfer probes: measurement of wall shear stress

The principle of the electro-diffusion method is based on the measurement

of the current under limiting diffusion conditions, Ilim. In this case, the mass155

transfer coefficient averaged through a surface probe, k̄z, can be calculated using

the Faraday relation:

k̄z =
Jz

c∞ − cw
=

Ilim
νeFSe (c∞ − cw)

(1)

where Se is the surface of the electrode, F is Faraday constant, νe is the number

of electrons involved in the redox reaction, c∞ is bulk concentration, and cw is

equilibrium concentration on the probe surface. From the knowledge of the160

average mass transfer coefficient, the wall shear rate can be obtained based on

the relationship derived from the local description of the mass transport over

the probe surface.

The mass transport in the vicinity of the strip probe flush-mounted to the

wall can be described by the governing equation:165

∂c

∂t
+ ux

∂c

∂x
+ uy

∂c

∂y
+ uz

∂c

∂z
= D

∂2c

∂x2
+D

∂2c

∂y2
+D

∂2c

∂z2
, (2)

with the following boundary conditions:

x→ −∞ ∀y z > 0 c = c∞

x ∈ 〈0, Lx〉 y ∈ 〈0, Ly〉 z = 0 c = cw

x < 0 ∪ x > Lx y < 0 ∪ y > Ly z = 0
∂c

∂z
= 0

∀x ∀y z →∞ c = c∞

(3)

where x, y, z are Cartesian coordinates, Lx is the width of the probe in the x-

direction, Ly is the length of the probe in the y-direction, and u ≡ (ux, uy, uz)

is the velocity vector.

This work is focused on the simple shear flow flowing under an arbitrary170

angle α over the mass transfer probe of rectangular shape with any aspect

ratio R. In such cases, in addition to the axial flow (ux 6= 0), the existence
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of a transverse direction of the velocity must be taken into account (uy 6= 0).

Since the flow near the probe is supposed to be parallel with the wall, and

the existence of stagnation points in the measured area is not expected, the175

convective transport in the z-direction is negligible (uz ≈ 0). It is also assumed

that the flow is homogeneous over the surface of the probe and the components

of the velocity vector (ux, uy) vary only in the normal direction to the electrode

surface as a linear function in the viscous sub-layer:

ux =
∂ux
∂z

z = Sxz, (4)

180

uy =
∂uy
∂z

z = Syz, (5)

where Sx and Sy are components of the wall shear rate vector. This assumption

can be made since the Schmidt number is sufficiently large. It is also expected

that the flow regime is in steady state (∂c∂t = 0). Based on the expectations of

sufficiently large Péclet numbers, it can also be assumed that mass transport by

diffusion mechanism close to the wall is essential only in the normal direction.185

Applying the above assumptions to mass transport governing equation, the

eq. (2) is reduced to the form:

Sxz
∂c

∂x
+ Syz

∂c

∂y
= D

∂2c

∂z2
. (6)

For the sake of simplification, the following discussion of mass transport on

the strip probe surface is divided into two parts based on spatial orientations

between the probe’s leading edge and fluid flow. The examined situation is190

schematically illustrated in figure 1a. The first conventional case assumes the

perpendicular fluid flow across the leading edge of the probe (figure 1b). The

second case assumes fluid flows under the general angle α considering the leading

probe edge (figure 1c). The first case leads to the Lévêque solution [6] and the

second one to the generalized Sirkar and Harantty solution for the slanted strip195

probe [24].
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Figure 1: Scheme of the investigated system: a) flow and mass transfer in the near-wall region

of the strip probe in XZ plane; b) perpendicular fluid flow over probe surface in XY plane;

c) arbitrary orientation fluid flow over probe surface in XY plane.

3. Perpendicular fluid flow: Lévêque solution for strip probe

If the fluid flow is perpendicular to the leading edge of the probe (see figure

1b), equation (6) is simplified into the following form:

Sxz
∂c

∂x
= D

∂2c

∂z2
. (7)

This partial differential equation with boundary conditions (3) has an analytical200

solution [7] such as:
c− cw
c∞ − cw

=
1

Γ
(
4
3

) ∫ η

0

e−η
2

dη, (8)

where Γ is the gamma function, and variable η is defined as:

η = z

(
Sx

9Dx

) 1
3

. (9)

Based on the knowledge of the analytical expression for the concentration field,

eq. (8), the relation for the mass transport coefficient on the strip probe was

derived by Lévêque [6]:205

k̄z =
3

2Γ
(
4
3

)
9

1
3

(
D2Sx
Lx

) 1
3

= 0.8075

(
D2Sx
Lx

) 1
3

. (10)

In its normalized form, eq. (10) can be rewritten as:

Sh∗Lx
=

ShLx

Pe
1
3

s,Lx

= k̄z

(
Lx
D2Sx

) 1
3

= 0.8075, (11)
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where Sh∗Lx
is normalized Sherwood number evaluated for the characteristic

length Lx. For the perpendicular transfer surface case, non-dimensional Sher-

wood number, ShLx
, and shear Péclet number, Pes,Lx

, are defined as:

ShLx =
k̄zLx
D

; (12)

210

Pes,Lx =
L2
xSx
D

. (13)

Both non-dimensional numbers are also related to the characteristic length cor-

responding to the width of the probe Lx.

Using the Faraday relation (1) and the definition of the normalized Sherwood

number (11), it is possible to evaluate the wall shear rate Sx from measuring

current under the limiting diffusion conditions.215

4. The arbitrary orientation of simple shear flow

For the homogeneous fluid flow, the inlet angle α is related to the components

of the wall shear rate vector S over the whole electrode surface. Therefore, the

angle α can be defined in the form of the non-dimensional β parameter that is

introduced as a square of the ratio of the transverse shear rate to its magnitude,220

‖S‖:

β =
S2
y

S2
x + S2

y

=
S2
y

‖S‖2
, (14)

and the individual components of the wall shear rate on the wall surface could

be re-written as:

Sx =
√

1− β‖S‖; (15)

Sy =
√
β‖S‖. (16)

The exact relation between the β parameter and inlet angle α is presented in225

the Appendix A by equations (A.18) and (A.19).

By substituting equations (15) and (16) into equation (6) one can obtain:

√
1− β‖S‖z ∂c

∂x
+
√
β‖S‖z ∂c

∂y
= D

∂2c

∂z2
. (17)
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Equation (17) can be converted into a dimensionless form to simplify the analysis

of its solution within the parametric space on the base of the following formulas:

c+ =
c− cw
c∞ − cw

; x+ =
x

Lx
; y+ =

y

Ly
; z+ =

z

δD
;

δD =

(
Dl

‖S‖

) 1
3

; R =
Lx
Ly
,

(18)

where l is characteristic length on which the thickness of the diffusion boundary230

layer, δD, is calculated. Substituting formulas (18) into eq. (17) and subse-

quent simple modifications, the transformed non-dimensional form of eq. (17)

is obtained:

z+
∂c+

∂x+
+ z+

√
β√

1− β
∂c+

∂y+
=

1√
1− β

Lx
l

∂2c+

(∂z+)
2 . (19)

Due to the introduction of bidirectional fluid flow, the transport eq. (19) has no

analytical solution. It fundamentally complicates the wall shear rate evaluation235

by using the ED method. Two ways of solving this problem are possible: (i)

determine an analytical solution of the normalized Sherwood number or (ii)

compute the concentration profiles numerically from the equation (19) to assess

the normalized Sherwood number.

4.1. Analytical approach: extension Sirkar and Harantty solution for strip probe240

General analytical relation for normalized Sherwood number for arbitrary

orientation β ∈ 〈0, 1〉 and any aspect ratio of strip mass transfer probe, R ≥ 0,

can be derived on the base of the method initially used by Reiss & Hanratty

[7] for a circular probe. Later, Sirkar & Hanratty [24] applied this approach on

a slanted strip probe. This method is based on dividing the probe into narrow245

strips oriented in the direction of flow. Since each strip is infinitesimally wide,

they can be considered as a separate rectangular probe of length l(v) and width

dv. On the base of the Lévêque solution, the mass transfer coefficient for a given

narrow strip can be defined according to the equation (10) as follows:

k̄z = 0.8075

(
D2‖S‖
l(v)

) 1
3

. (20)
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The mean integral value of the mass transfer coefficient, k̄z, over the whole250

probe surface is given by:

k̄z =
1

LxLy

∫
S

kzdS =
1

LxLy

∫
v

kzl(v)dv = 0.8075

(
D2‖S‖

) 1
3

LxLy

∫
v

l(v)
2
3 dv. (21)

The eq. (21) is possible rewrite into the form:

k̄z = 0.8075

(
D2‖S‖
le

) 1
3

, (22)

where the effective transfer length le is defined as:

l
1
3
e =

LxLy∫
v

l(v)
2
3 dv

. (23)

The integral in the denominator has to be evaluated for two basic situations:

β ≤ βc and β > βc, where βc is the critical parameter β. The critical parameter255

βc corresponds to a condition where the aspect ratio of the probe equals the

ratio of the axial to the transversal velocity components of the flowing fluid over

the probe:
Lx
Ly

=
ux
uy

=
Sxz

Syz
=

√
1− βc‖S‖z√
βc‖S‖z

=

√
1− βc√
βc

. (24)

It is possible to express βc by a simple modification of eq. (24):

βc =
L2
y

L2
x + L2

y

=
1

R2 + 1
. (25)

For the evaluation of the effective transfer length, the integral in eq. (23) must260

be divided into three parts, as displayed in figure 2. In both cases (β ≤ βc

and β > βc), the rectangular probe is divided into two triangles A, C, and one

parallelogram B. The triangles A and C are identical from the integration point

of view. Based on this division, eq. (23) could be rewritten into the form:

l
1
3
e =

LxLy

2

∫ vs

0

lt(v)
2
3 dv +

∫ vc

0

l
2
3
p dv

, (26)

where vs is the altitude of triangles A and C, vc is the altitude of parallelogram265

B, and lt(v) is the length of strips in both triangles (A and C), and lp is the

12



Figure 2: Scheme and description of the rectangular probe to derive the effective transfer

length le for cases: a) β ≤ βc and b) β > βc.

length of strips in the parallelogram. As shown in figure 2, the length lp is

independent from the parameter v.

By solving the integrals in eq. (26) and subsequent simple adjustments, the

equations describing the effective transfer length le as a function of probe width270

Lx, aspect ratio R and parameter β can be obtained:

l
1
3
e =

LxLy∫
v

l(v)
2
3 dv

=



L
1
3
x

(1− β)
1
6

(
1 +

R
√
β

5
√

1− β

) for β ≤ βc

L
1
3
x

β
1
6R

1
3

(
1 +

√
1− β

5R
√
β

) for β > βc

. (27)

A detailed derivation of the equation (27) is given in the Appendix A.

In the case of multidimensional flow, the dimensionless Sherwood and Péclet

numbers are defined as follows:

Sh l =
k̄zl

D
; (28)

275

Pes,l =
l2‖S‖
D

, (29)
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where l is the characteristic length, and its choice will be discussed below. Now

the normalized Sherwood number can be expressed as:

Sh∗l =
Sh l

Pe
1
3

s,l

= k̄z

(
l

D2‖S‖

) 1
3

, (30)

By substituting a combination of eqs. (22) and (27) into equation (30), one can

obtain a relation for evaluation of Sh∗l :

Sh∗l = 0.8075

(
D2‖S‖
le

) 1
3
(

l

D2‖S‖

) 1
3

= 0.8075

(
l

le

) 1
3

, (31)

By a combination of the expression (27) and the equation (31) the final relation280

of normalized Sherwood number is obtained:

Sh∗l =


0.8075 (1− β)

1
6

(
1 +

R
√
β

5
√

1− β

)(
l

Lx

) 1
3

for β ≤ βc

0.8075β
1
6R

1
3

(
1 +

√
1− β

5R
√
β

)(
l

Lx

) 1
3

for β > βc

. (32)

The resulting value of the normalized Sherwood number depends on the

selection of the characteristic length l. It is clear from the relation (31) that if

the substitution of the characteristic length l by the effective transfer length le

is used (see eq. (27)), the equation (32) is reduced to the form:285

Sh∗le =
Sh le

Pe
1
3

s,le

= k̄z

(
le

D2‖S‖

) 1
3

= 0.8075, (33)

In this case, Sh∗le is constant, and it is independent from both parameters R

and β. The value of the normalized Sherwood number is identical to the value

of the normalized Sherwood number obtained by the Lévêque solution for the

perpendicular probe, compare eqs. (11) and (33). If the effective transfer length

le is known, the magnitude of wall shear rate ‖S‖ is evaluated directly from eq.290

(33) on the base of the evaluated mass transfer coefficient.

Another possibility is to assume that the characteristic length is equal to

the width of the probe. Using substitution l = Lx, the relation (32) has the
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Figure 3: Normalized Sherwood number for length l = Lx as function of the parameter β and

aspect ratio R evaluated from eq. (34). For practical reasons, the aspect ratio is limited to an

interval R ∈ 〈0, 1〉. The black curve describes the value of the critical βc defined by eq. (25).

following form:

Sh∗Lx
= k̄z

(
Lx

D2‖S‖

) 1
3

=


0.8075 (1− β)

1
6

(
1 +

R
√
β

5
√

1− β

)
for β ≤ βc

0.8075β
1
6R

1
3

(
1 +

√
1− β

5R
√
β

)
for β > βc

.

(34)

295

In this situation, the value of the normalized Sherwood number is generally a

function of two parameters: probe aspect ratio R and parameter β. The result-

ing values of normalized Sherwood number defined by eq. (34) are presented in

figure 3. In general, the more the effective transfer length differs from the probe

width, the more Sh∗Lx
will vary from the derived Lévêque solution, see eq. (31).300

Figure 3 shows that the minimum value of the normalized Sherwood number can

be found for β = 1, and the electrode width is close to zero (R→ 0). In this situ-

ation, normalized Sherwood number is also approaching to zero. Conversely, the

15



maximum normalized Sherwood number can be found for the following param-

eters: β = 0.5 (β = βc) and R = 1 (square probe). In this case, Sh∗Lx
= 0.8627.305

The presented value of Sh∗Lx
corresponds to the normalized Sherwood number

of a circular probe relative to its diameter derived by Reiss & Hanratty [7]. It

is clear from equation (34) that the Lévêque solution (Sh∗Lx
= 0.8075) applies

only to the perpendicular transfer surface (β = 0). In such a case, the effective

transfer length is equal to the electrode width (le = Lx).310

During experimental measurements, the direction of fluid flow can be un-

known. This fact fundamentally complicates a posttreatment process with the

measured data. In the literature, the effective transfer and characteristic length

are often substituted by the electrode width Lx without taking into account the

fluid flow direction. In such cases, it is assumed that the difference between the315

real value of normalized Sherwood number and the normalized Sherwood num-

ber obtained for the perpendicular flow from the Lévêque solution is negligible.

But, as shown in figure 3, the difference between both values of the normalized

Sherwood numbers may vary considerably. It applies that the more Sh∗Lx
differs

from the value equal to 0.8075, more significant errors occur whenever the cal-320

culation of the wall shear rate is solely based on the Lévêque solution assuming

the case of the perpendicular fluid flow over the surface of the probe.

4.2. Numerical approach

A second approach, on how to get the appropriate value of the normalized

Sherwood number, is based on the calculation of the concentration profiles close325

to the probe surface by numerical solution of the transport equation (19). In

our case, the numerical solution was used, especially to verify the validity of the

derived analytical relation for Sh∗Lx
, see eq. (34). Therefore, the characteristic

length l in eq. (19) is defined as the width of the probe l = Lx. In this case,

the eq. (19) is changed to:330

z+
∂c+

∂x+
+ z+

√
β√

1− β
∂c+

∂y+
=

1√
1− β

∂2c

(∂z+)
2 . (35)

The eq. (35) is dependent only on two parameters: R and β. Due to the
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transformation into the non-dimensional form, the individual velocity compo-

nents and the diffusion coefficient have changed, see eq. (35):

u+x = S+
x z

+ = 1.z+; (36)

u+y = S+
y z

+ =

√
β√

1− β
.z+; (37)

335

D+ =
1√

1− β
.z+. (38)

The mass transport in the viscous boundary layer is modeled with a simple

shear flow over the wall of the square shape (L+
x = 1, L+

y = 1). A probe is

placed on the bottom wall near the inlet. The chosen size of the domain did not

affect the shape of the diffusion boundary layer over the probe while minimizing

the calculation time. Domain dimensions are in dimensionless quantities. The340

height of the domain is H = 6. The length and width are 9 × 9. The square

electrode has dimensions 1× 1. The following boundary conditions were set for

dimensionless concentration: on the probe surface: c+ = 0; inlet: c+ = 1; top

wall: c+ = 1; outlet: ∇+c+ = 0; bottom wall (except the probe): ∂c+

∂z+ = 0.

The finite volume method was used for discretization. A numerical grid was345

containing 107 elements and was non-uniform. Since the greatest change in

concentration occurs at the inflow edges of the probe, the numerical grid at the

given locations had the highest density to refine the numerical solution. Con-

vection terms were discretized by the UPWIND scheme and diffusion term by

the central differencing scheme. For the solution of a system of linear algebraic350

equations was used smoothSolver with preconditioner method DILU (Simplified

diagonal-based incomplete LU smoother for asymmetric matrices). Individual

simulations were performed within the OpenFOAM software in which the solver

for the numerical solution of equation (35) was programmed.

Examples of concentration profiles for different probe aspect ratios R and355

different parameters β are shown in figure 4. In figures 4a, c, and e, the con-

centration profiles are presented directly on the bottom wall with the placed

probe having a square shape after transformation. In figures 4b, d, and f, the

concentration profiles are shown in a plane perpendicular to the bottom wall,
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Figure 4: 2D slices of concentration profiles for different probe aspect ratios R and parameters

β: a), b) R = 0.1, β = 0.4; c), d) R = 0.1, β = 0.8; e), f) R = 0.9, β = 0.8. The first column

— the bottom wall with the electrode; the second column — the plane perpendicular to the

bottom wall, passing through the center of the electrode and its orientation is in the direction

of fluid flow. The black dashed lines in the subplots in the first column represent the position

of planes in the second column. Variable l+ is a relative length of the black dashed line. The

black lines are contours.
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passing through the centre of the probe and its orientation is in the direction of360

fluid flow.

As can be seen in figure 4, the individual concentration profiles depend on

the β and R parameters. The resulting shape of the concentration profiles

depends on the mutual competition between convective and diffuse transport,

which could be characterized by the Péclet number:365

Pes,L+
x

=
(L+

x )
2 ‖S‖

D+
; (39)

whereas the characteristic length corresponds to the width of transformed probe

L+
x = 1. By substitution of eqs. (36) - (38) into eq. (39), the Péclet number is

obtained as a function of β and R parameters:

Pes,L+
x

=
√

1− β

√
1− β (1−R2)

1− β
=
√

1− β (1−R2). (40)

In general, if the Péclet number increases, the importance of convective

transport increases compared to diffusion. Therefore, the higher Péclet number370

results in the reduction of the thickness of the diffusion boundary layer. The

increasing the ratio R causes an increase of the Péclet number and a decrease

of diffusion boundary layer thickness (compare figure 4d; Pes,L+
x

= 0.456 and

4f; Pes,L+
x

= 0.921). The increasing the parameter β causes a reduction of the

Péclet number and, at the same time, the increase of diffusion boundary layer375

thickness (compare figure 4b; Pes,L+
x

= 0.777 and 4d; Pes,L+
x

= 0.456).

The evaluation of the normalized Sherwood number is computed from the

numerical concentration fields around the probe surface, such as:

Sh∗Lx
=

ShLx

Pes,Lx

=

(
L2
x‖S‖
D

) 1
3 Lx
δD

1∫
0

1∫
0

(
∂c+

∂z+

)
dx+dy+ =

=

1∫
0

1∫
0

(
∂c+

∂z+

)
dx+dy+ =

ShL+
x

Pes,L+
x

= Sh∗
L+

x
.

(41)

As follows from eq. (41) for calculating the normalized Sherwood number,

knowledge of the concentration derivative according to the z-direction on the380
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Figure 5: The derivative of concentration in the z−direction on the probe surface (logarithmic

color bar): the first row – β = 0; the second row – β = 0.4; the third row – β = 0.8; the first

column – R = 0.1; the second column – R = 0.4; the third column – R = 0.8.

probe surface is necessary. Examples of these concentration derivatives for dif-

ferent β and R parameters only on the surface of the probe are presented in

figure 5. The essential fact is that the highest value of the derivative in the

normal direction is located around the inlet area according to the β parameter

value. Then there is a sharp drop in this quantity. Therefore, a very dense385

numerical grid requires to be used near the inlet edges of the probe. By inte-

grating the derivative of the concentration in the normal direction across the

electrode surface based on eq. (41), a normalized Sherwood number was found.

The numerical values of Sh∗Lx
coincide with the analytical values obtained from

the relation (34) and represented through figure 3. The relative error between390
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the numerical results based on 100 simulations and the analytical solutions, eq.

(34), was found, on average, around 10−4. A further reduction of the error could

be achieved by using a higher density numerical grid, especially in the area of

liquid inflow on the inner edges of the probe. The agreement between the results

proves the correctness of eqs. (31)-(34) for the interpretation of the ED method395

measurements on the strip probe with any aspect ratio R for a simple shear flow

of arbitrary spatial orientation.

4.3. Measurement of wall shear stress with the strip probe for the arbitrary ori-

entation of simple shear flow

Based on Faraday’s relation, see eq. (1), the mass transfer coefficient can400

be obtained from the measured electrical current under limiting diffusion condi-

tions. Unlike the perpendicular case, where the wall shear rate can be calculated

directly from eq. (11), in the case of the arbitrary orientation of simple shear

flow, eq. (34) cannot be used in this straightforward manner. In addition to the

magnitude of the wall shear rate vector, an unknown β parameter also occurs405

in eq. (34). It is necessary to obtain one more independent equation for dimen-

sionless mass transport coefficient to obtain an unambiguous solution (β, ‖S‖).

This equation can be defined based on a new measurement with a strip probe

of other aspect ratios.

It is necessary to make measurements with two probes, namely called A and410

B, with different aspect ratios in such a way that RA < RB . During the ex-

periment, it must be guaranteed that the concentration wakes of both probes

do not interact with each other, which can be overcome by alternative time-

acquiring synchronization of the measurements from both probes or a suitable

inter-probe distance. Because of the small dimension of the probe surfaces, the415

flow field in the near-electrode surfaces is assumed to be homogeneous and, so,

the magnitude of the wall shear rate vector and parameter β are identical in

both cases under a given hydrodynamical flow condition. In that situation, the
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relation (34) can be written as follows:

Sh∗Lx,A
(β,RA) = k̄z,A

(
Lx,A
D2‖S‖

) 1
3

; (42)

420

Sh∗Lx,B
(β,RB) = k̄z,B

(
Lx,B
D2‖S‖

) 1
3

. (43)

By combining the equations (42) and (43), the unknown ‖S‖ is eliminated, and

the new relation is only dependent on one unknown, namely the parameter β:

Sh∗Lx,A
(β,RA)

k̄z,AL
1
3

x,A

=
Sh∗Lx,B

(β,RB)

k̄z,BL
1
3

x,B

. (44)

As follows from equation (34), the exact relation describing the normalized

Sherwood number is dependent on the critical parameter βc. Because of the

difference in βc values for both measurement sets, the equation (44) can occur425

in the following three forms:

f (β) =



RAf1 + (1− β)
1
6

L
1
3

x,Ak̄z,A
− RBf1 + (1− β)

1
6

L
1
3

x,B k̄z,B
= 0 for β ≤ βc,A, βc,B

RAf1 + (1− β)
1
6

L
1
3

x,Ak̄z,A
− f2 + β

1
6RB

L
1
3

x,B k̄z,BR
2
3

B

= 0 for βc,B < β ≤ βc,A

f2 + β
1
6RA

L
1
3

x,Ak̄z,AR
2
3

A

− f2 + β
1
6RB

L
1
3

x,B k̄z,BR
2
3

B

= 0 for β > βc,A, βc,B

,

(45)

where

f1 =

√
β

5 (1− β)
1
3

; f2 =

√
1− β
5β

1
3

. (46)

The solution of equation (45) corresponds to looking for the root of the function

f(β). It is a nonlinear continuous monotonic decreasing function with only one

real β root, which can be obtained by any iterative numerical method for finding430

roots such as the Newton’s method. In general, the bigger the difference between

the aspect ratio RA and RB , the steeper the function f(β) decreases. After

obtaining the appropriate value of β parameter, the last stage is to calculate

the magnitude of the wall shear rate vector ‖S‖ from eq. (42) or (43).
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5. Conclusion435

The purpose of this paper is to revisit the electro-diffusional theory for the

measurement of wall shear stress from strip mass transfer probes based on the

consideration of the existence of the two components of the wall shear rate (i.e.,

axial and transversal). Therefore, the two-dimensional simple shear flow flowing

under an arbitrary angle over the probe of rectangular shape with any aspect440

ratio was considered. For this type of uniform flow without stagnation points

in the measured area, two general analytical formulas were derived for the ef-

fective transfer length and the dimensionless mass transport coefficient. These

equations are a generalized solution presented by Sirkar & Hanratty [24] for a

slanted strip probe. The correctness of the electro-diffusional theory revision for445

interpreting measurement data from the ED method was confirmed by numeri-

cal solutions of the non-dimensional convection-diffusion equation. It has been

shown that if the characteristic length is substituted by the effective transfer

length, the dimensionless mass transport coefficient is constant, and the value of

the normalized Sherwood number is identical to that obtained with the Lévêque450

solution for the perpendicular probe. On the other hand, if the characteristic

length is defined as the width of the probe, as commonly assumed, the value of

the normalized Sherwood number is a function of two parameters: the aspect

ratio R and the non-dimensional angle β. By using the electro-diffusion method

for the arbitrary fluid flow direction, it is also often necessary to evaluate, in455

addition to the magnitude of the wall shear rate vector, the unknown angle of

the fluid flow. Therefore, a new measurement methodology based on the pro-

posed analytical relations is applied for two measuring probes of different aspect

ratios.
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Appendix A.465

The calculation of the effective transfer length is based in particular on the

quantification of integrals in the denominator of the equation (26) for two cases:

β ≤ βc and β > βc.

For the case β ≤ βc, the following equations for altitudes and lengths of

strips are applied, see figure 2:470

vs = Lx cos (α) ; (A.1)

vc = ∆ sin (α) =

(
Ly −

vs
sin (α)

)
sin (α) = Ly sin (α)− Lx cos (α) ; (A.2)

lt (v) =
v

cos (α) sin (α)
; (A.3)

lp (v) =
Lx

sin (α)
; (A.4)

where α is the angle between the leading edge of the rectangular probe, Ly,

and the velocity vector of fluid flow over the surface of the probe. The integrals475

in the denominator in relation (26) after applying terms (A.1) — (A.4) can be

solved as follows:

2

vs∫
0

lt (v)
2
3 dv = 2

Lx cos(α)∫
0

(
v

cos (α) sin (α)

) 2
3

dv =
6

5
L

5
3
x

cos (α)

sin (α)
2
3

; (A.5)

vc∫
0

lp (v)
2
3 dv =

Ly sin(α)−Lx cos(α)∫
0

(
Lx

sin (α)

) 2
3

dv =

= L
2
3
xLy sin (α)

1
3 − L

5
3
x

cos (α)

sin (α)
2
3

. (A.6)

Substituting the solutions of the integrals (A.5) and (A.6) into the equation for

calculating the effective transfer length (26), can be get the following formula:480

l
1
3
e =

LxLy
6

5
L

5
3
x

cos (α)

sin (α)
2
3

+ L
2
3
xLy sin (α)

1
3 − L

5
3
x

cos (α)

sin (α)
2
3

. (A.7)
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Based on simple arithmetic adjustments, the relation (A.7) can be simplified

into the form:

l
1
3
e =

L
1
3
x

sin(α)
1
3

(
1 +

Lx cos(α)

5Ly sin(α)

) . (A.8)

For the case β > βc, the altitude of triangles vs, the altitude of the parallelogram

vc, the length of strips in both triangles lt(v) and the length of strips in the

parallelogram lp are defined by relations:485

vs = Ly sin (α) ; (A.9)

vc = ∆ cos (α) =

(
Lx −

vs
cos (α)

)
cos (α) = Lx cos (α)− Ly sin (α) ; (A.10)

lt (v) =
v

cos (α) sin (α)
; (A.11)

lp (v) =
Ly

cos (α)
; (A.12)

The integrals in the denominator in relation (26) after applying terms (A.9) —

(A.12) can be solved as follows:490

2

vs∫
0

lt (v)
2
3 dv = 2

Ly sin(α)∫
0

(
v

cos (α) sin (α)

) 2
3

dv =
6

5
L

5
3
y

sin (α)

cos (α)
2
3

; (A.13)

vc∫
0

lp (v)
2
3 dv =

Lx cos(α)−Ly sin(α)∫
0

(
Ly

cos (α)

) 2
3

dv =

= LxL
2
3
y cos (α)

1
3 − L

5
3
y

sin (α)

cos (α)
2
3

. (A.14)

By substitution of the integrals’ solutions (A.13) and (A.14) into the equation

for calculating the effective transfer length (26), it is got the following formula

now for case β > βc:

l
1
3
e =

LxLy
6

5
L

5
3
y

sin (α)

cos (α)
2
3

+ LxL
2
3
y cos (α)

1
3 − L

5
3
y

sin (α)

cos (α)
2
3

. (A.15)

Based on simple arithmetic adjustments, the relation (A.15) described effective495

transfer length can be simplified into the form:

l
1
3
e =

L
1
3
y

cos(α)
1
3

(
1 +

Ly sin(α)

5Lx cos(α)

) . (A.16)
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It follows from the definition of beta by eq. (14):

ux
uy

=
Sxz

Syz
=

√
1− β‖S‖z√
β‖S‖z

=

√
1− β√
β

=
sin (α)

cos (α)
= tan (α) (A.17)

From the equation (A.17), the relation between the goniometric functions and

β parameter can be obtained:

sin (α) =
√

1− β; (A.18)
500

cos (α) =
√
β. (A.19)

Substituting formulas (18), (A.18) and (A.19) into equations describing effective

transfer length (A.8) and (A.16), it is obtained the resulting equation describing

the effective transfer length le as a function of probe width Lx, aspect ratio R

and β parameter:

l
1
3
e =

LxLy∫
v

l(v)
2
3 dv

=



L
1
3
x

(1− β)
1
6

(
1 +

R
√
β

5
√

1− β

) for β ≤ βc

L
1
3
x

β
1
6R

1
3

(
1 +

√
1− β

5R
√
β

) for β > βc

. (A.20)
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