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Figure 1: Comparison of G-MoN (adaptive Median of meaNs with the use of the Gini coefficient) and classical mean
estimators on Villa scene with 100,000 samples using Path Tracing in both. The mean, even at 100,000 samples is still
sensitive to the high contributions while this estimator removes all fireflies present in the image.

Abstract

Estimating the rendering equation using Monte Carlo methods produces photorealistic images by evaluating
a large number of samples of the rendering equation per pixel. The final value for each pixel is then calcu-
lated as the average of the contribution of each sample. The mean is a good estimator, but not necessarily
robust which explains the appearance of some visual artifacts such as fireflies, due to an overestimation of
the value of the mean. The MoN (Median of meaNs) is a more robust estimator than the mean which allows
to reduce the impact of outliers which are the cause of these fireflies. However, this method converges more
slowly than the mean, which reduces its interest for pixels whose distribution does not contain outliers. To
overcome this problem we propose an extension of the MoN based on the Gini coefficient in order to ex-
ploit the best of the two estimators during the computation. This approach is simple to implement whatever
the integrator and does not require complex parameterization. Finally, it presents a reduced computational
overhead and leads to the disappearance of fireflies.

CCS Concepts
e Computing methodologies — Monte Carlo Techniques; * Rendering — Global Illumination; Sampling
and Reconstruction;

1. Introduction

Realistic image computation mimics the natural process
of acquiring pictures by simulating the physical inter-
actions of light between every existing object, light and
camera lying within a 3D modelled scene. Light simula-
tion process in a 3D scene is known as global illumina-

tion and was formalised by Kajiya [Kaj86] with the light
transport rendering equation.

This equation cannot be analytically solved in most
cases and Monte Carlo (MC) approaches are generally
used to estimate the value of the final image pixels. Sam-
pling is performed through the construction of random
light paths between the camera and the light sources lying
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in the 3D scene: in its simplest form, a ray is sent from the
camera location through a pixel and is randomly reflected
by the surface of the first object it encounters. The pro-
cess is applied recursively until a source is encountered
or the path construction is randomly stopped through the
use of a Russian roulette. Numerous light paths are built
per pixel according to the law of large numbers and to
the MC approach. The average of the samples contribu-
tion is then computed for each pixel. It converges to the
expected solution following a 1/4/n rate where n is the
number of samples [SWZ96]. Computing a very large
number of samples per pixel makes it possible to obtain
realistic synthetic images.

The final MC estimator approximation of the expected
value for n samples is obtained from the empirical mean
as specified in Eq. 1.
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where x; is a sample obtained during rendering.

This computation initially causes considerable noise
when generating the image, but as the calculation pro-
gresses, this noise is reduced and almost invisible. When
generating such images from certain scenes, however,
some visual artefacts known as fireflies may be still
present and highly perceptible to the human visual sys-
tem.

Examples of such fireflies are given in Fig. 2 where
two images have been generated from Veach’s scene
[Vea97] using Path Tracing and Bi-Directional Path Trac-
ing (BDPT) [LW93], the latter allowing to converge more
rapidly to the final image than a classical Path Tracing
method for some scenes. It is quickly noticeable that
many fireflies are visible when using the random path-
tracing method. Although the BDPT method seems to
give a better result, some fireflies are still present even
with 100,000 samples.

These artifacts mainly come from very low probability
paths which contribute intensely to equation 1. Even if
the mean estimator is considered as a good estimator, it is
also strongly perturbed by these kind of very large values
and their contribution can only be smoothed by evaluat-
ing many other samples (see Fig. 3). During the rendering
of a pixel, it is difficult to decide whether the contribution
of a path is such a rare value that could generate a fire-
fly or the first occurrence of an important estimate for the
pixel.

In this paper, we propose to replace the mean by more
robust estimators based on the Median of meaNs (MoN),

previously introduced in [JMD15]. We detail two estima-
tors, named G-MoN and G-MoNj,, which use the Gini co-
efficient [Dor79] to identify sample distributions that are
likely to exhibit firefly. The G-MoN,, allows us to choose
the best estimator between the mean and the MoN, while
the G-MoN extends the amount of information taken
into account in the MoN. Both estimators compare very
favourably with the mean for firefly suppression and pro-
vide similar values to the mean when no fireflies occur.
The proposed estimators have been implemented in Path
Tracing, due to its greater use in production [Zhu20], but
their use in other integrators is straightforward.

| 8

(a) Path Tracing (b) Path-tracing

| 8

(c) BDPT (d) BDPT

Figure 2: Fireflies overview of cropped part of Veach’s
scene using Path Tracing and BDPT with 100,000 sam-
ples in both.

The paper is organised as follows: in Section 2, the ex-
isting methods for the elimination of outliers in a statisti-
cal context are exposed as well as methods for firefly re-
moval in rendering. Then the MoN estimator is described
in Section 3 as well as its use for rendering. Our two new
estimator proposals are introduced in Section 4 and their
results, prior to the conclusion, are then detailed and an-
alyzed.

2. Related work

Sample values that generate fireflies are known as out-
liers in more general scientific problems. We review here
the more classical approaches that have been studied in
statistic for removing such outliers as well as the ap-
proaches proposed in computer graphics.
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(a) Red spectrum luminance values of firefly pixel with 1 high (b) Comparison of the mean without and with outlier value

contribution.

on the Red spectrum luminance values.

Figure 3: Impact overview of high contribution from obtained samples contribution obtained over 0, the arithmetic mean
estimator. The y-axis of sub-figure 3b has been re-scaled to allow a better impact visualization of the high contribution
values and the expected mean is computed on 10M of samples. Only the red color channel (Red spectrum) is displayed
here so that highly correlated RGB spectrum values have no impact on the analysis.

2.1. Statistical approach for outlier removing

Many indicators are available in order to well estimate the
expected value in statistics, where the filtered mean part
refers to methods where outliers are suppressed [HR09]
by a clipping process. Within these methods, a few can
be mentioned such as Percentile, Sigma and Median clip-
ping which aim to remove certain sample values outside
a confidence interval. This requires however to know the
full information of the distribution of the samples. From
a computer graphics perspective, it is often difficult or
undesirable to have all the samples and their distribution
available, due to the high memory cost and the progres-
sive evaluation of the samples during the rendering pro-
cess.

Median of meaNs (MoN) was introduced in [Bla85,
JVV86] and designed to resist the appearance of so-called
polluting data which are treated as outliers. It consists of
separating all the samples into M sets of the same size
(if possible). The mean is calculated for each of the M
sets, then the median over the M sets is used as the fi-
nal estimator. This estimator seems to show some ro-
bustness to values that may be outside a confidence in-
terval [AMS99]. More recently, intensive work has been
carried out on the MoN which demonstrated its robust-
ness compared to the mean for non-normal distributions
such as heavy-tail [BCBL13,BJL15,HS16]. It is now also
widely studied in machine learning oriented approaches
[B1103,LM19], such as bagging and bootstrapping.

The idea of combining the robustness of the median
with the consistency of the mean has been also widely
studied. In [CH94] and [DP04] authors investigate the use
of linear combinations of mean and median with weights
picked according to asymptotic criteria.

2.2. Fireflies removal

Several works whose objective is to reduce fireflies pix-
els have been studied in the field of MC image render-
ing [DWR10, SD12]. In [DWRI10] a density-based ap-
proach is proposed in order to reduce fireflies by iden-
tifying and removing them. They propose to work on a
joint space of the image coordinates and the sample val-
ues (color space). Then, they use a k-d tree to iteratively
store the samples which are likely to be outliers by com-
paring them to the k nearest neighbors samples. Although
not all samples are stored in the k-d tree (only potential
outlier samples), it still involves a significant storage cost.
The method proposed in [SD12] aims at exploiting the re-
lations of the samples of the neighbouring pixels to accel-
erate the rendering of the image while suppressing most
of these fireflies.

Other approaches explore ways to better estimate the
pixel value of the contributions obtained without nec-
essarily involving additional processing, but only when
generating the final image. In [J]MD15], the authors have
introduced median extraction on M estimators of sub-
sampled means which appears to be identical to the MoN
estimator. They propose a criterion for obtaining the
value of M to be used, by evaluating the ratio between
the standard deviation of the pixel and the standard devi-
ation of the scene. If the pixel is not likely to be firefly
then M = 1, leading to the use of the mean estimator.
Otherwise, M > 1 (with M an odd value) with a maxi-
mum value of M = 17. Fireflies tend to be all removed
when the number of fireflies in the scene is not too large.
Furthermore the estimated value appears to be underes-
timated. In [ZHD18], authors specify that removing fire-
flies can affect the way to converge to the final solution.
According to the authors, even if a sample can be iden-
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tified as a firefly, it should not be removed, but weighted
with respect to the progress of the calculation and distri-
bution. They state a theoretical approach which consists
in storing all the samples, sorting them, then weighting
each sample according to a criterion of detection or not
of an outlier. Storing all the samples is not feasible, so
they propose to stratify the luminance range in a set of M
buffers and to sum each sample contribution in a buffer
associated with its luminance interval. Then, once sorted,
each buffer B; is assigned a reliability weight based on
local and neighborhood pixel information of the sum of
the samples stored in the current buffer, which allows a
reduction of the outliers contribution. One of the key dif-
ference of this approach and the one proposed in this pa-
per is the use of non-local pixel information in the case
of Zirr’s proposal whereas we only use the sample values
local to each pixel.

Finally, some methods offer unbiased denoising ap-
proaches, i.e. ensuring that the resulting solution con-
verges correctly. These methods are mainly oriented to-
wards the statistical study of the samples obtained during
image rendering [SD12,BB17,ETF19]. By learning how
the samples are distributed, these methods aim to reduce
variance and also reduce the appearance of fireflies while
denoising.

The use of Deep learning techniques has also been pro-
posed allowing both to considerably denoise the images
and reducing the impact of fireflies [VRM* 18, VAN*19,
MH20]. They provide an expected image quality for a
very low computation time, but introduce a bias.

2.3. Fireflies in Path Tracing-based integrators

Path Tracing has been improved by many other integra-
tors, such as BDPT [LW93] or Metropolis Light Trans-
port (MLT) [VG97] methods, mainly aiming at speeding
up the convergence of the method. However, all these new
methods present fireflies, to a greater or lesser degree de-
pending on the scenes used. MLT, for example, generates
mutations through a Monte Carlo Markov Chain process
(MCMC) from an initial path with a significantly found
contribution. It can therefore be very sensitive to the con-
servation of the firefly, which comes precisely from a
higher contribution.

Path-guiding oriented methods have been also pro-
posed with the aim to control the pathways that are sam-
pled through reinforcement learning and to obtain a bet-
ter knowledge of the PDF for interesting contributions
[VHH"19]. Fireflies are a known aspect of practical path
guiding approaches even if recent development mitigates
this issue [MGN17,DGJ*20].

3. MoN in rendering

The work proposed in this paper focuses on the combi-
nation of the Gini coefficient [Dor79] and the Median
of meaNs (MoN) in order to reduce the appearance of
fireflies. Before detailing the two combination modes we
have studied, we formally describe the MoN here. Then
we detail how it can be used in the rendering and the re-
sults that can be obtained.

3.1. Definition

The MoN consists of separating all the samples obtained
into M sets of the same size (if possible). The mean is
calculated for each of the M sets and the the median over
the M sets (the median set) is used as the final estima-
tor. Given independent and identically distributed random
sample x; estimation, the median of means with M sets of
size k with a total of n = k X M samples can be defined
by the following equation:

. (1 1
pMoszedlan(EZx[,...,z Z x,-) 2)
i=1

i=n—k+1
with minor adjustments if n/k is not an integer.

Implementing such an approach in a rendering engine
is quite simple, but involves a storage of information that
is M times larger than conventional averaging methods.
However, this is still reasonable compared to saving all
calculated samples. Then, during image rendering, pixels
are sampled one by one, with the value of each sample
added to one of the sets, for example cyclically. Finally
the final pixel value is estimated through Eq. 2.

3.2. MoN behavior study

Fig. 4 allows the robustness of the MoN method to be
compared to the classical mean. The number of sets used
are M = {5,11,21}. MoN does not seem to be affected
at all by the high sample contribution around the 10000th
sample for each M studied (see figure 4b).

At around 30,000 samples some contributions, higher
than the previous ones are successively collected and
generate a discontinuity in the convergence curve. Note
that these values are not outliers since their magnitude
is much smaller than that of the 10,000th sample. Each
of these contributions is stored in one of the M sets. The
M means are thus impacted consequently, modifying the
order of the sorted means before computing the median.
This effect is clearly visible for M =5 and M = 11 pro-
viding a little overestimate for M = 5. The MoN using
M =21 sets is not impacted in this case since the number
of contributions concerned is low. These contributions are
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(b) Red spectrum luminance samples with outlier (in same
scale).

Figure 4: MoN and mean comparisons over rendering samples (Red spectrum) with and without outlier. MoN is studied
with M € {5,11,21} to see the impact of this parameter. The expected mean value has been computed with 10M of

samples.

thus sorted in the higher rank sets and do not modify the
median set. In this case the MoN underestimates the value
of the pixel.

The arithmetic mean is a good estimator, but not nec-
essarily robust. The median, although more robust than
the mean, implies a longer convergence to the expected
value than the mean [M*19] and this also seems to be the
case when applying the MoN, which explains this under-
estimation.

3.3. Dynamic choice of M

In [JMD15], which introduced the MoN, a dynamic
choice of M was proposed in order to reduce the addi-
tional storage cost and indirectly to avoid this underesti-
mation. The value of M is computed according to equa-
tion 3:

1 for 22 < 1,
image
_— , 3)
2 x ([log, o[+ 1)+1 otherwise

where ;. is the standard deviation of the outgoing ra-
diance in a pixel and Gjjqge is the standard deviation of
the overall image.

Fig. 5 provides an overview of the results obtained us-
ing equation 3. The value of M is shown as a heat map
(see Sub-figure 5a) on a part of the Veach’s scene, with
values lying between 1 (blue) and 17 (red). It also illus-
trates that this dynamic M parameter tends to eliminate
a large part of fireflies at 10,000 samples (see Sub-figure
5b). However, some fireflies still remain and quite a con-
siderable noise remains visible. On the contrary, although
the MoN estimation with M = 17 seems to underestimate
the result, it removes the fireflies and reduce the MC noise
(see Sub-figure 5d). Some other results of the Jung et al
method with the dynamic choice of M are available in

Fig. 6 with SSIM scores and better overview of remained
fireflies.

(a) Heat map of dynamic M

(b) Jung et al

(¢) Mean (d) MoN (M = 17)

Figure 5: Jung et al dynamic M map overview of 10,000
samples on cropped part of Veach’s scene with visual re-
sults of Jung et al, mean and MoN final estimators. The
heat map is composed of possible values of M ranging
from 1 to 17.

The computation of M according to equation 3 appears
to have one weakness which is related to the amount of
fireflies in the image: when it is high it increases the over-
all variance in the image. Fireflies from pixels with a
lower intensity are therefore not suppressed.

The next section presents our approaches, which aim
to identify the presence of firefly locally rather than glob-
ally. We also not seek to dynamically reduce the size of
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Jung et al. Reference

Mean Jung et al. Reference

RMSE: 6.0567
SSIM: 0.6099

RMSE: 0.0
SSIM: 1.0

RMSE: 8.1013
SSIM: 0.4099

RMSE: 8.1122
SSIM: 0.4261

RMSE: 0.0
SSIM: 1.0

RMSE: 6.5120
SSIM: 0.4365

RMSE: 6.6120
SSIM: 0.4866

RMSE: 0.0
SSIM: 1.0

Figure 6: Comparison of classical Mean, Jung et al with
10,000 samples per pixel.

M, but instead extend the amount of information taken
into account in the MoN.

4. Adaptive MoN with the Gini coefficient

In this section we propose to improve the MoN estima-
tor that is helpful in reducing the impact of outliers and
thus the appearance of fireflies. The two approaches will
be described that will focus in identifying fireflies locally
(for each pixel independently). They are both based on
the use of the Gini coefficient but in different ways.

4.1. Firefly detection

The Gini coefficient [Dor79] is used in econometrics to
highlight social inequalities. If the value obtained from
this coefficient is O then there is a perfect equality and
1 (which cannot be achieved) means total inequality. In
this paper, we focus on this coefficient in order to detect
the presence or not of a firefly with the idea that adding
the value of a firefly to one of the MoN means should
increase the inequality between these means.

The Gini coefficient applied to the MoN can be cal-
culated by equation 4, based on a reformulation of the
equation proposed in [DWO00]. Our reformulation is de-
tailed in appendix A.

_ 2008 M+

= - 4
M ):1}/1:1 9, M

with 6 i, j € [1,M], the M means computed with the MoN,
indexed in ascending order (é ;i < 0 1)

automated M and reference using BDPT images obtained with

— GM=11) — G(M=15) G(M =21)

0 20,000 40,000 60,000 80,000 100,000
n

(a) G coefficient evolution on samples with no outliers.

— QM =11) — G(M=15)

0 20,000 40,000 60,000 80,000 100,000
n

(b) G coefficient evolution on samples with some outliers.

Figure 7: Gini coefficient evolution over M-means ob-
tained during rendering with M € {11,15,21} to see the
impact of outliers over G.

We show in Fig. 7 the evolution of the G coefficient
for the same sample distributions that appear in Fig. 4
with the firefly that appears around the 10,000th sample
removed in Sub-figure 7a. This sub-figure clearly indi-
cates that G seems to trust the obtained averages because
large outliers are not present here. If a slightly larger
sample value appears (for example around n = 30,000),
the coefficient fluctuates moderately but still specifies
that the distribution of the means is not uneven, since
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G < 0.4. On the contrary, in sub-figure 7b, G coeffi-
cient reacts strongly when it encounters the outlier around
n = 10,000, reaching a value close to 1, signifying the ap-
pearance of an inequality between the means. Even with
100,000 samples the decrease of the value is not suffi-
cient for removing the lack of confidence in the equal-
ity of the obtained M means. Let us note that the larger
the value of M, the more difficult it appears to achieve
equality since inequality with respect to the other sets is
common and influence the G coefficient.

One of the advantages of using the Gini coefficient is
that it adjusts if the inequality decreases. In the context
of our approach, this would mean that a value identified
as an outlier has been detected causing high inequality
in the M sets. If, however, some other sets also get same
magnitude contributions, the value of the Gini coefficient
will reduce, trusting again in the equality of the different
means and considering that these values are meaningful
ones.

4.2. Binary Median of meaNs

Because of the behaviour of G according to the presence
or absence of fireflies, we define a threshold below which
we consider that full confidence can be given to the es-
timate provided by the classical mean. For example, a
value of G < 0.25 will correspond to a case in which
the confidence indicator for the mean is risk-free (without
outlier and therefore without firefly).

We thus propose a new estimator based on this confi-
dence criterion, so called G-MoN,, defined by:

6 if G < 0.25,
G-MoN, = { , ©)
fon  otherwise

This estimator will exploit the G coefficient in order to
define whether it should be oriented towards the mean or
towards the MoN estimator. It is denoted G-MoNy,, for bi-
nary, as it makes a purely binary choice (mean or MoN).

4.3. Adaptive Median of meaNs

As mentioned in [Ore19], in spite of its theoretical prop-
erties, the MoN under utilizes the data available by only
using the median set. Based on this idea, this adaptive
MoN approach wishes to take advantage of the informa-
tion available in the neighboring sets of the median set. It
will be defined by the following equation:

. . 6;

HG-MoN = M—2c (6)

with 8, j € [1,M], the M means computed with the MoN,

indexed in ascending order (éj < éjH) and c € N[O’L%J]
the number of means from each extreme side of the M
ranked means that will not be taken into account for the
final estimator.

Because of the ability of the Gini coefficient to provide
some information about the equality/inequality between
a set of information, we use it for computing dynami-
cally the value of the ¢ parameter introduced in equation
6suchas: c= |G xk| withk= [%J Thus, if G gives us
a strong tie, then the final estimator will be close to the
mean by using more neighbouring means. Otherwise, it
will be close to the MoN estimator by using only the me-
dian set, but with potentially some additional information
from neighbouring sets.

5. Comparisons and Results

In this section we present the results of these two estima-
tors during rendering for different images and compare
them to three other estimators: the mean, the MoN and
the Jung et al’s version of the MoN.

5.1. Experimentation setup

Our experiments were conducted using the Physically
Based rendering engine PBRT-v4 [PJH16] with GPU sup-
port and available literature scenes [Bit16]. In the context
of computer-generated images, 100,000 samples remains
a consequent large number of samples, but does not seem
to be able to erase the presence of firefly for each scene.
In order to check which estimators seem to be more in-
teresting than others when rendering, reference images of
4 scenes have been computed and are available in Fig. 8.
The Veach and Villa scenes which references are avail-
able in sub-figures 8a and 8d are highly sensitive to fire-
flies, unlike Bathroom and Crown scenes in sub-figures
8b and 8c that do not provide any firefly. The interest is
to well compare the robustness of each estimator accord-
ing to the nature of the scene.

When comparing MoN based estimators on different
M values, such as classical MoN, G-MoN;, and G-MoN,
Jung et al’s method is ran using its dynamic M parame-
ter with recommended M = 17 as the maximum possible
number of sets. The mean remains fixed (not impacted by
the choice of M parameter).

The Zirr et al’s approach [ZHD18] was also imple-
mented in PBRT for comparisons. This method uses
M buffers with ordered luminance intervals that are
weighted for final estimation. The computed weight is
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(a) Veach

(d) Villa

(c) Crown

Figure 8: Reference images used for comparisons of esti-
mators: Veach and Villa are computed with 100,000 sam-
ples using BDPT, Bathroom and Crown with 1M samples
using Path Tracing.

relative to a reliability of the current pixel and its neigh-
bors (3 x 3 kernel size), which differentiates it from the
previously compared estimators where only local infor-
mation are used, even if the approach remains very simi-
lar. They proposed a parameter b allowing to define the
size of each luminance interval where the interval of
buffer B; is in range [b/=1,b/*1]. The b parameter can
be set automatically with b = ¥/S;ax where Spay is the
maximum expected luminance set as 8% such as in the
Zirr et al’s paper.

5.2. Convergence study

A convergence study of the different proposed estimators
(i.e. G-MoN and G-MoNp) is processed in comparison
with the Jung et al (with automated M), MoN and mean.
The results are available in Fig. 9 using the structural
similarity index measure (SSIM) more correlated with
the Human Visual System (HVS) based on the idea that
the pixels have strong interdependencies especially when
they are spatially close. The classical Root-Mean-Square
Error (RMSE) was only indicated since its sensitivity to
firefly is low: it calculates an absolute error, whereas a
firefly generates a very local error as compared to the ref-
erence image.

Sub-figure 9a presents results for the scene Bathroom
that does not highlight any firefly. All the estimators have
a very close convergence rate, with a slightly lower rate
for MoN which is known for underestimating its results.

None of the estimators is therefore penalised by the ab-
sence of firefly. When images highlight fireflies, such as
in the Veach’s scene, the difference between the different
estimators becomes more important (see sub-figure 9b).
The mean as well as Jung et al’s method fail due to the
presence of a large number of fireflies that are perceived
by SSIM. The way the parameter M is computed in Jung
et al’s approach is sensitive to such situations and reduce
its efficiency. G-MoN and MoN provide the best results
in removing fireflies, with a slight advantage to G-MoN.
Even if the two estimators finally have a similar conver-
gence when fireflies are visible, G-MoN is more robust
since providing better results in images without fireflies.
G-MoN,, shows a weakness in robustness, its SSIM score
converging between those of the mean and MoN, but re-
maining worse than those obtained by MoN or G-MoN.

To complete the convergence study results, table 1
presents the SSIM scores obtained by the estimators G-
MoN, G-MoN,, and MoN for M = {5,11,15,21,25} for
the 4 scenes computed with 100,000 samples and Path
Tracing. These estimators are compared to Jung et al and
to the mean which SSIM score values are indicated again
for each M value (the mean is not dependent on M and we
have used a constant maximal value of M = 17 for Jung).
By studying the proposed rank based on SSIM scores, G-
MoN seems to be better each time on at least 3 scenes
when M > 11. The only scene where it seems to be a bit
further away is the Bathroom scene where its SSIM score
remains very good which confirms that it is a consistent
and reliable estimator.

Additional results on the convergence of each esti-
mator are also provided in the table 2. The number of
samples required is given in relation to a SSIM score
achieved for each of the 4 scenes. Proposed SSIM scores
are € {0.6,0.7,0.8}. It can be quickly noticed that the
G-MoN estimator almost always reaches first the SSIM
fixed score in fewer samples than all other estimators, es-
pecially when M > 5. An interpretation of such results, is
that with a large enough value of M, i.e. M € [11,25], the
Gini coefficient seems to capture more information from
the M means and allows a better final estimate.

5.3. Visual impact of estimators

We also visually compare the results obtained for the two
estimators with respect to Jung et al, mean and the clas-
sical MoN. For this purpose, we compare images com-
puted with 10,000 samples to the reference ones. Fig. 10
presents such comparisons for the two images Veach and
Bathroom. Two targeted areas are indicated by a respec-
tive colored dial in the full image.
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on the Bathroom image.

of the Veach’s scene image.

Figure 9: Convergence study of G based estimators with M = 21 using SSIM indicator until 100,000 samples. Estimators
are compared to Jung et al, classical MoN (with M = 21) and mean on two scenes using the reference images available
in Fig. 8: Bathroom, with no fireflies (left) and Veach with a large amount of fireflies (right).
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Figure 10: Comparisons of RMSE and SSIM obtained from different estimators with 10,000 samples on 2 images. Full
size images and targeted areas are compared to references. MoN, G-MoN}, and G-MoN are set with M = 21.

For the Veach’s scene image that highlights numerous
fireflies, the MoN based approaches provide the best vi-
sual results with the exception of the Jung’s approach
which global criterion keeps several fireflies. In terms
of SSIM score, G-MoN seems closest to the reference.
Adding knowledge from neighbouring sets of the median
set brings a better precision of estimation.

For the Bathroom image, all estimators seem to be rel-
atively close to the reference either visually or in SSIM
score. However, MoN seems to be more accurate in uni-
form areas that are not sensitive to fireflies (see the red
area in the figure). G-MoN, on the other hand, proposes
a score faithful to the reference on more complex areas
or very close to the best estimator (such as MoN for the
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Scene Veach Bathroom Crown Villa
Mean 0.77061 (5) | 0.95987 (2) | 0.99377 (2) | 0.86733(5)
v | MoN 0.88315 (1) | 0.95275(5) | 0.99296 (4) | 0.89738 (2)

I | Jungetal. | 0.84992 (3) | 0.95932(3) | 0.99263 (5) | 0.87744 (4)
= | G-MoN, | 0.84036 (4) | 0.95988 (1) | 0.99378 (1) | 0.89493 (3)
G-MoN 0.88017 (2) | 0.95785 (4) | 0.99363 (3) | 0.89858 (1)
Mean 0.77061 (5) | 0.95987 (2) | 0.99377 (3) | 0.86733 (5)
= | MoN 091602 (2) | 0.95074 (5) | 0.99280 (4) | 0.90833 (1)

I | Jungetal. | 0.84992 (4) | 095932 (4) | 0.99263 (5) | 0.87744 (4)

S | G-MoN, | 0.87084(3) | 0.95993 (1) | 0.99378 (2) | 0.90461 (2)
G-MoN | 0.92090 (1) | 0.95935(3) | 0.99380 (1) | 0.89744 (3)
Mean 0.77061 (5) | 0.95987 (1) | 0.99377 (2) | 0.86733 (5)

| MoN 0.92697 (2) | 0.95003 (5) | 0.99279 (4) | 0.91249 (2)

Il | Jungetal. | 0.84992 (4) | 0.95932(4) | 0.99263 (5) | 0.87744 (4)

S | G-MoN, | 0.87818(3) | 0.95979 (2) | 0.99377 (3) | 0.90814 (3)
G-MoN | 0.93097 (1) | 095950 (3) | 0.99383 (1) | 0.91329 (1)
Mean 0.77061 (5) | 0.95987 (1) | 0.99377 (2) | 0.86733 ()

S| MoN 093711 (2) | 094953 (5) | 0.99273 (4) | 0.91681 (2)

I | Jungetal. | 0.84992 (4) | 095932 (4) | 0.99263 (5) | 0.87744 (4)

= | G-MoN, | 0.88508(3) | 0.95978 (2) | 0.99374(3) | 0.91190 (3)
G-MoN 0.93976 (1) | 095965 (3) | 0.99383 (1) | 0.91739 (1)
Mean 0.77061 (5) | 0.95987 (1) | 0.99377 (2) | 0.86733 (5)

S | MoN 0.94146 (2) | 0.94915(5) | 0.99278 (4) | 0.91894 (2)

I | Jungetal. | 0.84992(4) | 095932 (4) | 0.99263 (5) | 0.87744 (4)

S | G-MoN, | 0.88769(3) | 0.95967 (2) | 0.99377 (3) | 0.91389 (3)

G-MoN | 0.94359 (1) | 095953 (3) | 0.99387 (1) | 0.91952 (1)

Table 1: SSIM comparison with reference image and dif-
ferent M values using 100,000 samples with Path Trac-
ing. The rank of the studied estimators is from (1) to (5).
The mean and Jung et al estimators are added for each
different M row for comparison purposes.

red boxed area). In addition, G-MoN seems to converge
faster than the arithmetic mean. The benefit of filtering
values far from the mean by applying the median brings
better results.

All the experiments and results obtained seem to indi-
cate that the G-MoN estimator gives a good estimate. It
removes fireflies while being close to or above the clas-
sical mean for non-firefly scenes. The dynamic choice of
the ¢ parameter set number using the G coefficient seems
to be robust enough. G-MoN;, on the other hand, also al-
low the suppression of the fireflies, but is still not as good
as the MoN, especially on the Veach’s scene. G-MoN
brings robustness and fidelity of the desired estimator.

Rather than trying to automate the M parameter, ex-
ploiting the separation of the samples into sets allows us
to identify fireflies and improve the reliability of the final
estimator.

5.4. Non-local comparison

We compare our approach to the Zirr’s method that ap-
pears to be globally better than the G-MoN method. The
convergence curves presented in figure 11, seem to in-
dicate that even with a small value of M (e.g. M =5),
the estimator converges more quickly. For M = 25, G-
MoN and MoN seem to converge, but still perform less
well than Zirr’s method. This is mainly due to the use of
neighbouring information for the computation of sample

weights (i.e. luminance interval buffers) which has not
been exploited in our approach.

Figure 12 illustrates the images obtained for the G-
MoN and Zirr et al methods where a visual proximity
of the two images can be seen.

The complexity of Zirr’s method based on a weighting
theoretical approach allows it to be robust to fireflies, but
it should be noted that the G-MoN one, even if it performs
less efficiently on smaller sizes of M, is still competitive
and easier to implement because of its simplicity.

5.5. Computation overhead

Fig. 1 provides a rendering overview of the Villa scene
for the G-MoN and the mean estimators. Both images
were computed on the GPU using Path Tracing with
100,000 samples per pixel. Visually, all the fireflies are
removed by using G-MoN. The computation times are
3618.3s and 3576.3s for G-MoN and the classical mean
respectively. Thus G-MoN estimator only leads to an ad-
ditional cost of ~ 1.17% for the management of the MoN
sets and the estimation of the final pixel value.

MoN-based integrators require rendering to M differ-
ent sets, each one representing a mean. This involves
an additional memory cost, that stays however relatively
low. Each set has to store a partial sum and the number of
samples included in the sum, thus 8 bytes if computations
are performed in single precision. Consequently, if pixels
are computed independently only 8 x M additional bytes
are required for each channel of the spectrum. When fil-
tering is used, several pixels have to be stored simultane-
ously. However, parallel computation often operates on
a pixel-patch basis and only the memory needed for the
path size is required. Assuming 32 x 32 sized patches, (R,
G, B) spectrum and M = 21, this will require less than
500 kB of additional memory per patch.

Let us note that in case of progressive rendering the
buffers of all the pixels have to be saved in order to allow
the integrator to continue the computation. This is thus
similar to store M image buffers. The buffers used in the
Zirr’s approach must also be stored, with the advantage
that their number is smaller.

6. Conclusion

In this paper we have focused on the fireflies problem,
artefacts that reduce the quality of images produced by
lighting simulations. We have recalled the problem of the
mean estimator when outliers values appear and review
the Median of meaNs as a valuable alternative to this
classical estimator. The Gini coefficient is introduced, in
order to investigate the presence of outlier values locally
for each pixel. Then two new estimators are proposed by
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Scene Veach Bathroom Crown Villa
SSIM 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8
Mean 20007 (5) | 52592 (5) NR (5) | 1074 (4) | 2236 (3) | 5021 (1) | 244(4) | 308(4) | 392(4) | 498 (4) | 2507 (5) | 14515(5)
v [ MoN 1518 (3) 4256 (1) | 20353 (1) 729 (3) | 2846(5) | 7501 (5) | 239(2) | 302(2) | 383(2) | 343(3) 469 (3) 1519 (3)
g Jung et al. 9163 (4) | 20644 (4) | 44387 (4) | 1261 (5) | 2430(4) | 5233 (3) | 265(5) | 337(5) | 435(5) | 525(5) | 2412(4) | 12310(4)
= G-MoN,, 1491 (2) 7515 (3) | 37626 (3) 646 (2) | 2180(2) | 5152(2) | 241 (3) | 304(3) | 387 (3) | 340(2) 463 (2) 1422 (2)
G-MoN 1378 (1) 4300 (2) | 20394 (2) 627 (1) | 2163 (1) | 5547 (4) | 233(1) | 293(1) | 370(1) | 332(1) 448 (1) 1368 (1)
Mean 20007 (5) | 52592 (5) NR(5) | 1074 (4) | 2236(4) | 5021 (2) | 244 (4) | 308 (4) | 392(4) | 498 (4) | 2507 (5) | 14515(5)
= | MoN 1060 (3) 2222 (2) 6835 (2) 619 (3) | 1641 (3) | 7066 (5) | 240(3) | 303(3) | 384 (3) | 364 (3) 503 (3) 1395 (3)
II'] Jungetal. 9163 (4) | 20644 (4) | 44387 (4) | 1261 (5) | 2430(5) | 5233 (4) | 265(5) | 337(5) | 435(5) | 525(5) | 2412(4) | 12310(4)
G-MoN, 1031 (2) 2411 (3) | 19398 (3) 607 (2) | 1532(2) | 5198(3) | 239(2) | 302(2) | 383(2) | 363(2) 500 (2) 1378 (2)
G-MoN 671 (1) 1566 (1) 5243 (1) 508 (1) | 1254(1) | 4537(1) | 229(1) | 288(1) | 362(1) | 344 (1) 465 (1) 1126 (1)
Mean 20007 (5) | 52592 (5) NR (5) | 1074 (4) | 2236(4) | 5021 (3) | 244 (4) | 308 (4) | 392(4) | 498 (4) | 2507 (5) | 14515(5)
‘2 | MoN 986 (3) 1977 (2) 5224 (2) 649 (3) | 1474 (3) | 5636(5) | 242(3) | 305(3) | 387 (3) | 392(3) 551(3) 1448 (3)
II'] Jungetal. 9163 (4) | 20644 (4) | 44387 (4) | 1261 (5) | 2430(5) | 5233 (4) | 265(5) | 337(5) | 435(5) | 525(5) | 2412(4) | 12310(4)
= G-MoN, 983 (2) 2100 (3) | 12702 (3) 642 (2) | 1447(2) | 4734(2) | 240(2) | 303(2) | 386(2) | 390(2) 549 (2) 1444 (2)
G-MoN 634 (1) 1361 (1) 3676 (1) 520 (1) | 1061 (1) | 3706 (1) | 230 (1) | 288 (1) | 362 (1) | 366 (1) 501 (1) 1199 (1)
Mean 20007 (5) | 52592 (5) NR (5) | 1074 (4) | 2236(4) | 5021 (4) | 244 (3) | 308 (3) | 392(3) | 498 (4) | 2507 (5) | 14515 (5)
< | MoN 941 (2) 1819 (2) 4377 (2) 719(3) | 1416(2) | 4179 (3) | 245(4) | 309 (4) | 393 (4) | 442(3) 652 (3) 1593 (2)
II'] Jungetal. 9163 (4) | 20644 (4) | 44387 (4) | 1261 (5) | 2430(5) | 5233(5) | 265(5) | 337(5) | 435(5) | 525(5) | 2412(4) | 12310 (4)
= G-MoN, 964 (3) 1927 (3) 7142 (3) 716 (2) | 1418(3) | 3961 (2) | 243(2) | 307(2) | 391(2) | 441(2) 650 (2) 1596 (3)
G-MoN 625 (1) 1236 (1) 2829 (1) 567 (1) | 1017 (1) | 2766 (1) | 231 (1) | 290(1) | 365(1) | 411(1) 580 (1) 1342 (1)
Mean 20007 (5) | 52592 (5) NR (5) | 1074 (4) | 2236(4) | 5021 (4) | 244 (2) | 308(2) | 392(2) | 498 (4) | 2507 (5) | 14515 (5)
& | MoN 932 (2) 1780 (2) 4112 (2) 774 (3) | 1422(2) | 3804 (3) | 246(4) | 311 (4) | 395(4) | 479(3) 736 (3) 1727 (2)
II'] Jungetal. 9163 (4) | 20644 (4) | 44387 (4) | 1261 (5) | 2430(5) | 5233(5) | 265(5) | 337(5) | 435(5) | 525(5) | 2412(4) | 12310(4)
= G-MoN,, 962 (3) 1886 (3) 6025 (3) 772(2) | 1428 (3) | 3742(2) | 244(2) | 309(3) | 394 (3) | 477 (2) 734 (2) 1732 (3)
G-MoN 631 (1) 1199 (1) 2626 (1) 609 (1) [ 1040 (1) | 2517 (1) | 232(1) | 291 (1) | 366 (1) | 443 (1) 644 (1) 1446 (1)

Table 2: Required samples per pixel in order to reach a SSIM score compared to reference images with different M
values. The maximum number of samples is fixed at 100,000, NR, for Not Reached is indicated when SSIM score cannot

be reached. Mean and Jung et al are added for each different M row for comparison purposes.
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(a) Comparisons of Zirr and previous studied estimators using (b) Comparisons of Zirr and previous studied estimators using

SSIM and M = 5 on Veach scene.

SSIM and M = 25 on Veach’s scene.

Figure 11: Convergence study of Zirr’s method and previous studied estimators with M € {5,25} using SSIM indicator
until 100,000 samples. Estimators are compared on Veach’s scene with a large amount of fireflies.

combining the MoN with this coefficient with so as to
increasing the robustness of the MoN.

These estimators use only pixel internal information
and their comparisons with similar estimators previously
proposed showed that G-MoN was robust enough to
remove fireflies fairly quickly. G-MoN implementation
within any integrator is simple and its additional process-
ing cost remains low in comparison with the proposed
results. The method is furthermore very simple to paral-
lelize as it does not require any global information, but

only local information from the pixel itself. The com-
parison we made with the Zirr’s method highlights that
this last one provides a better convergence than the pro-
posed method. But it requires neighborhood information
in order to compute buffers weight with more reliability.
When M is large enough, G-MoN seems to be quite close
to Zirr et al but with only local information.

Future works should focus on some other recent esti-
mators based on the MoN, such as the Permutation Invari-
ant Median of Means Estimator [Poe21], the Tournament
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Reference
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Figure 12: Comparisons of G-MoN and Zirr et al methods with M = 25 after 100,000 samples on Veach’s scene.

MoN [LM16] or the Bayesian MoN [Ore19], in order to
determine whether they could have any interest in fire-
flies removal or noise reduction. Then, we plan to more
deeply study the choice of the best value for the Gini Co-
efficient. We have experimentally found that G = 0.25
appears to provide good results globally on the images.
However, it could be relevant to study whether its value
could be adjusted more locally according to the sample
distributions that can be very different between the pix-
els. As illustrated by Zirr’s method neighborhood infor-
mation is able to improve the results of the estimators.
Thus we will study the ways to use such neighbor pixel
information (buffer data, Gini coefficients, ...) in order to
improve the convergence rate of G-MoN.

The behaviour of these methods should also be stud-
ied and compared on sequences and animations to check
whether temporal artefacts can be visible.

Finally, it could be interesting to investigate the use of
Gini coefficient for noise detection and/or denoising, due
to its ability to judge the equality in a set of data.
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Appendix A: Gini coefficient formulation

The formulation of the Gini coefficient G used in
equation 4 has been easily derived from the formula-
tion provided in [DWO00] and [Dam03], when data are
ordered by increasing size of values. G is given as G =
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