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Figure 1: Comparison of G-MoN (adaptive Median of meaNs with use of the Gini coefficient) and classical mean estima-
tors on Villa scene with 100,000 samples using Path Tracing for each. The mean even at 100,000 samples is still sensitive
to the high contributions while this estimator remove the whole fireflies present in the image.

Abstract
Estimating the rendering equation using Monte Carlo methods produces photorealistic images by evaluating
a large number of samples of the rendering equation per pixel. The final value for each pixel is then calcu-
lated as the average of the contribution of each sample. The mean is a good estimator but not necessarily
robust which explains the appearance of some visual artifacts such as fireflies, due to an overestimation of
the value of the mean. The MoN (Median of meaNs) is a more robust estimator than the mean which allows
to reduce the impact of outliers which are the cause of these fireflies. However, this method converges more
slowly than the mean, which reduces its interest for pixels whose distribution does not contain outliers. To
overcome this problem we propose an extension of the MoN based on the Gini coefficient in order to ex-
ploit the best of the two estimators during the computation. This approach is simple to implement whatever
the integrator and does not require complex parameterization. Finally, it presents a reduced computational
overhead and leads to the disappearance of fireflies.
• Computing methodologies → Monte Carlo Techniques; • Rendering → Global Illumination; Sampling
and Reconstruction;

1. Introduction

Realistic image computation mimics the natural process
of acquiring pictures by simulating the physical inter-
actions of light between every existing object, light and
camera lying within a 3D modelled scene. Light simula-
tion process in a 3D scene is known as global illumina-
tion and was formalised by Kajiya [Kaj86] with the light
transport rendering equation.

This equation cannot be analytically solved in most
cases and Monte Carlo (MC) approaches are generally
used to estimate the value of the final image pixels. Sam-
pling is performed through the construction of random
light paths between the camera and the light sources lying
in the 3D scene: in its simplest form, a ray is sent from the
camera location through a pixel and is randomly reflected
by the surface of the first object it encounters. The pro-
cess is applied recursively until a source is encountered

https://orcid.org/0000-0001-6071-744X
https://orcid.org/0000-0002-8897-0858
https://orcid.org/0000-0002-8350-8824


2 J. Buisine, S. Delepoulle & C. Renaud / Fireflies removing in Monte Carlo rendering with adaptive Median of meaNs

or the path construction is randomly stopped through the
use of a russian roulette. Numerous light paths are built
per pixel according to the law of large numbers and to the
MC approach. The average of the samples contribution is
then computed for each pixel. It converges to the expected
solution following a 1/

√
n rate where n is the number

of samples [SWZ96]. Computing a very large number of
samples pixel makes it possible to obtain realistic syn-
thetic images.

The final MC estimator approximation of the expected
value for n samples is obtained from the empirical mean
as specified in Eq. 1.

θ̄ =
1
n

n

∑
i=0

xi (1)

where xi is a sample obtained during rendering.

This computation initially causes considerable noise
when generating the image, but as the calculation pro-
gresses, this noise is reduced and almost invisible. When
generating such images from certain scenes however,
some visual artefacts known as fireflies may be still
present and highly perceptible to the human visual sys-
tem.

Examples of such fireflies are given in Fig. 2 where
two images have been generated from Veach scene
[Vea97] using Path Tracing and Bi-Directional Path Trac-
ing (BDPT) [LW93], the latter allowing to converge more
rapidly to the final image than a classical Path Tracing
method for some scenes. It is quickly noticeable that
many fireflies are visible when using the random path-
tracing method. Although the BDPT method seems to
give a better result, some fireflies are still present even
with 100,000 samples.

These artifacts mainly come from very low probability
paths which contribute intensely to equation 1. Even if
the mean estimator is considered as a good estimator, it is
also strongly perturbed by these kind of very large values
and their contribution can only be smoothed by evaluat-
ing many other samples (see Fig. 3). During the rendering
of a pixel, it is difficult to decide whether the contribution
of a path is such a rare value that could generate a fire-
fly or the first occurrence of an important estimate for the
pixel.

In this paper we propose to replace the mean by more
robust estimators based on the Median of meaNs (MoN),
previously introduced in [JMD15]. We detail two estima-
tors, named G-MoN and G-MoNb, which use the Gini co-
efficient [Dor79] to identify sample distributions that are
likely to exhibit firefly. The G-MoNb allows us to choose
the best estimator between the mean and the MoN, while

the G-MoN extends the amount of information taken
into account in the MoN. Both estimators compare very
favourably with the mean for firefly suppression and pro-
vide similar values to the mean when no fireflies occur.
The proposed estimators have been implemented in Path
Tracing, due to its greater use in production [Zhu20], but
their use in other integrators is straightforward.

(a) Path Tracing (b) Path-tracing

(c) BDPT (d) BDPT

Figure 2: Fireflies overview on cropped part of Veach
scene using Path Tracing and BDPT with 100,000 sam-
ples for each.

The paper is organised as follows: in Section 2, the ex-
isting methods for the elimination of outliers in a statis-
tical context are exposed as well as methods for fireflies
removing in rendering. Then the MoN estimator is de-
scribed in Section 3 as well as its use for rendering. Our
two new estimator proposals are introduced in section in
Section 4 and their results, prior to the conclusion, are
then detailed and analyzed.

2. Related work

Sample values that generate fireflies are known as out-
liers in more general scientific problems. We review here
the more classical approaches that have been studied in
statistic for removing such outliers as well as the ap-
proaches proposed in computer graphics.

2.1. Statistical approach for outlier removing

Many indicators are available in order to well estimate the
expected value in statistics where the filtered mean part
refers to methods where outliers are suppressed [HR09]
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(a) Red spectrum luminance values of firefly pixel with 1 high
contribution.

(b) Comparison of the mean without and with outlier value
on the Red spectrum luminance values.

Figure 3: Impact overview of high contribution from obtained samples contribution obtained over θ̄, the arithmetic mean
estimator. The y-axis of sub-figure 3b has been re-scaled to allow a better impact visualization of the high contribution
values and the expected mean is computed on 10M of samples. Only the red color channel (Red spectrum) is displayed
here so that highly correlated RGB spectrum values have no impact on the analysis.

by clipping process. Within these methods, a few can be
mentioned such Percentile, Sigma and Median clipping
which aim to remove certain samples values outside a
confidence interval. This requires however to know the
full information of the distribution of the samples. From
a computer graphics perspective, it is often difficult or
undesirable to have all the samples and their distribution
available, due to the high memory cost and the progres-
sive evaluation of the samples during the rendering pro-
cess.

Median of meaNs (MoN) was introduced in [Bla85,
JVV86] and designed to resist the appearance of so-called
polluting data which are treated as outliers. It consists of
separating all the samples into M sets of same size (if pos-
sible). The mean is calculated for each of the M sets, then
the median over the M sets is used as the final estima-
tor. This estimator seems to show some robustness to val-
ues that may be outside a confidence interval [AMS99].
More recently, intensive work has been carried out on
the MoN which demonstrated its robustness compared to
the mean on non-normal distributions such as heavy-tail
[BCBL13, BJL15, HS16]. It is now also widely studied
in machine learning oriented approaches [Bü03, LM19],
such as bagging and bootstrapping.

The idea of combining the robustness of the median
with the consistency of the mean has been also widely
studied. In [CH94] and [DP04] authors investigate the use
of linear combinations of mean and median with weights
picked according to asymptotic criteria.

2.2. Fireflies removal

Several works which objective is to reduce fireflies pix-
els have been studied in the field of MC image rendering
[DWR10,SD12]. In [DWR10], a density-based approach

is introduced to reduce the fireflies where the identifi-
cation of these outliers is based on sample (brightness)
distribution by storing any individual sample values. The
method proposed in [SD12] aims at exploiting the rela-
tions of the samples of the neighbouring pixels to accel-
erate the rendering of the image while suppressing most
of these fireflies.

Other approaches explore ways to better estimate the
pixel value from the contributions obtained without nec-
essarily involving additional processing, but only when
generating the final image. In [JMD15], the authors have
introduced median extraction on M estimators of sub-
sampled means which appears to be identical to the MoN
estimator. They propose a criterion for obtaining the
value of M to be used, by evaluating the ratio between
the standard deviation of the pixel and the standard de-
viation of the scene. If the pixel is not likely to be firefly
then M = 1, leading to the use of the mean estimator. Oth-
erwise, M > 1 ( with M an odd value) with a maximum
value of M = 17. Fireflies tend to be all removed when the
number of fireflies in the scene is not too large. Further-
more the estimated value appears to be underestimated.
In [ZHD18], authors specify that removing fireflies can
affect the way to converge to the final solution. Accord-
ing to the authors, even if a sample can be identified as
a firefly, it should not be removed but weighted with re-
spect to the progress of the calculation and distribution.

Finally some methods offer unbiased denoising ap-
proaches, i.e. ensuring that the resulting solution con-
verges correctly. These methods are mainly oriented to-
wards the statistical study of the samples obtained during
image rendering [SD12, BB17, ETF19]. By learning how
the samples are distributed, these methods aim to reduce



4 J. Buisine, S. Delepoulle & C. Renaud / Fireflies removing in Monte Carlo rendering with adaptive Median of meaNs

variance and also reduce the appearance of fireflies while
denoising.

2.3. Fireflies in Path Tracing-based integrators

Path Tracing has been improved by many other integra-
tors, such as BDPT [LW93] or Metropolis Light Trans-
port (MLT) [VG97] methods, mainly aiming at speeding
up the convergence of the method. However, all these new
methods present fireflies, to a greater or lesser degree de-
pending on the scenes used. MLT, for example, generates
mutations through a Monte Carlo Markov Chain process
(MCMC) from an initial path with a significantly found
contribution. It can therefore be very sensitive to the con-
servation of the firefly, which comes precisely from a high
contribution.

Path-guiding oriented methods have been also pro-
posed with the aim to control the pathways that are sam-
pled through reinforcement learning and to obtain a bet-
ter knowledge of the PDF for interesting contributions
[VHH∗19]. Fireflies are a known aspect of practical path
guiding approaches even if recent development mitigates
this issue [MGN17, DGJ∗20].

3. MoN in rendering

We formally describe here the Median of meaNs that has
been introduced to account for the appearance of outliers.
Then we detail how it can be used in rendering and the
results that can be obtained.

3.1. Definition

The MoN consists of separating all the samples obtained
into M sets of same size (if possible). The mean is calcu-
lated for each of the M sets and the the median over the M
sets (the median set) is used as the final estimator. Given
independent and identically distributed random sample xi
estimation, the median of means with M sets of size k
with a total of n = k×M samples can be defined by the
following equation:

µ̂MoN = median
(

1
k

k

∑
i=1

xi, ...,
1
k

n

∑
i=n−k+1

xi

)
(2)

with minor adjustments if n/k is not an integer.

Implementing such an approach in a rendering engine
is quite simple but involves a storage of information that
is M times larger than conventional averaging methods.
However, this is still reasonable compared to saving all
calculated samples. Then during image rendering, pixels
are sampled one by one, with the value of each sample

added to one of the sets, for example cyclically. Finally
the final pixel value is estimated through Eq. 2. The al-
gorithm for pixel estimation is detailed in Algorithm 1
where getSample is a function that provides the value of
a sample contribution.

Algorithm 1: The MoN estimator for rendering
Result: final estimator µ̂MoN

input: n, number of expected samples;
input: M, number of estimators;
initialize: θ̂1,...,M , the M means;
initialize: x1,...,M , the M means sum to 0;
initialize: k1,...,M , the M sizes of each set to 0;

for i = 1 to n do
j = i % M;
s = getSample();
x j += s;
k j += 1;

end

for j = 1 to M do
θ̂ j = x j / k j;

end
return µ̂MoN (θ̂∗);

3.2. MoN behavior study

By applying the algorithm 1 during the rendering loop, it
is possible to follow the estimated value when the number
of samples increases. Fig. 4 allows the robustness of the
MoN method to be compared to the classical mean. The
number of sets used are M = {5,11,21}. MoN does not
seem to be affected at all by the high sample contribution
around the 10000th sample for each M studied (see figure
4b).

At around 30,000 samples some contributions higher
than the previous ones are successively collected and
generate a discontinuity in the convergence curve. Note
that these values are not outliers since their magnitude
is much smaller than that of the 10,000th sample. Each
of these contributions is stored in one of the M sets. The
M means are thus impacted consequently, modifying the
order of the sorted means before computing the median.
This effect is clearly visible for M = 5 and M = 11 pro-
viding a little overestimate for M = 5. The MoN using
M = 21 sets is not impacted in this case since the number
of contributions concerned is low. These contributions are
thus sorted in the higher rank sets and do not modify the
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(a) Red spectrum luminance samples without outlier. (b) Red spectrum luminance samples with outlier (in same
scale).

Figure 4: MoN and mean comparisons over rendering samples (Red spectrum) with and without outlier. MoN is studied
with M ∈ {5,11,21} to see the impact of this parameter. The expected mean value has been computed with 10M of
samples.

median set. In this case the MoN underestimates the value
of the pixel.

The arithmetic mean is a good estimator but not neces-
sarily robust. The median, although more robust than the
mean, implies a longer convergence to the expected value
than the mean [M∗19] and this also seems to be the case
when applying the MoN, which explains this underesti-
mation.

3.3. Dynamic choice of M

In [JMD15], which introduced the MoN, a dynamic
choice of M was proposed in order to reduce the addi-
tional storage cost and indirectly to avoid this underesti-
mation. The value of M is computed according to equa-
tion 3:

M =

1 for σpixel
σimage

< 1,

2×
(
blog2

σpixel
σimage
c+1

)
+1 otherwise

(3)

where σpixel is the standard deviation of the outgoing ra-
diance in a pixel and σimage is the standard deviation of
the overall image.

Fig. 5 provides an overview of the results obtained us-
ing equation 3. The value of M is shown as a heat map
(see Sub-figure 5a) on a part of the Veach scene, with val-
ues lying between 1 (blue) and 17 (red). It also illustrates
that this dynamic M parameter tends to eliminate a large
part of fireflies at 10,000 samples (see Sub-figure 5b).
However, some fireflies still remain and quite consider-
able noise remains visible. On the contrary, although the
MoN estimation with M = 17 seems to underestimate the
result, it removes the fireflies and reduce the MC noise
(see Sub-figure 5d). Some other results of the Jung et al
method with the dynamic choice of M are available in

Fig. 6 with SSIM scores and better overview of remained
fireflies.

(a) Heat map of dynamic M (b) Jung et al

(c) Mean (d) MoN (M = 17)

Figure 5: Jung et al dynamic M map overview at 10,000
samples on cropped part of Veach scene with visual re-
sults of Jung et al, mean and MoN final estimators. The
heat map is composed of possible values of M ranging
from 1 to 17.

The computation of M according to equation 3 appears
to have one weakness which is related to the amount of
fireflies in the image: when it is high it increases the over-
all variance in the image. Fireflies from pixels with a
lower intensity are therefore not suppressed.

The next section presents our approaches, which aim
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Jung et al. Reference Mean Jung et al. Reference

SSIM: 0.6099 SSIM: 1.0

0.4099 0.4261 1.0

0.4365 0.4866 1.0

Figure 6: Comparison of classical Mean, Jung et al with automated M and reference using BDPT images obtained with
10,000 samples per pixel.

to identify the presence of firefly locally rather than glob-
ally. We also not seek to dynamically reduce the size of
M, but instead extend the amount of information taken
into account in the MoN.

4. Adaptive MoN with the Gini coefficient

In this section we propose to improve the MoN estimator
that is helpful in reducing the impact of outliers and thus
the appearance of fireflies. Two approaches will be de-
scribed that will focus in identifying fireflies locally (for
each pixel independently). They are both based on the use
of the Gini coefficient, but with two different approaches.

4.1. Firefly detection

The Gini coefficient [Dor79] is used in econometrics to
highlight social inequalities. If the value obtained from
this coefficient is 0 then there is a perfect equality and
1 (which cannot be achieved) means total inequality. In
this paper we focus on this coefficient in order to detect
the presence or not of a firefly with the idea that adding
the value of a firefly to one of the MoN means should
increase the inequality between these means.

The Gini coefficient applied to the MoN can be calcu-
lated as follows:

G =
2∑

M
j=1 jθ̂ j

M ∑
M
j=1 θ̂ j

− M+1
M

(4)

with θ̂ j, j∈ [1,M], the M means computed with the MoN,
indexed in ascending order (θ̂ j ≤ θ̂ j+1).

We show in Fig. 7 the evolution of the G coefficient

(a) G coefficient evolution on samples with no outliers.

(b) G coefficient evolution on samples with some outliers.

Figure 7: Gini coefficient evolution over M-means ob-
tained during rendering with M ∈ {11,15,21} to see the
impact of outliers over G.

for the same sample distributions that appear in Fig. 4
with the firefly that appears around the 10,000th sample
removed in Sub-figure 7a . This sub-figure clearly indi-
cates that G seems to trust the obtained averages because
large outliers are not present here. If a slightly larger
sample value appears (for example around n = 30,000),
the coefficient fluctuates moderately but still specifies
that the distribution of the means is not uneven, since
G ≤ 0.4. On the contrary, in sub-figure 7b, G coeffi-
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cient reacts strongly when it encounters the outlier around
n= 10,000, reaching a value close to 1, signifying the ap-
pearance of an inequality between the means. Even with
100,000 samples the decrease of the value is not suffi-
cient for removing the lack of confidence in the equal-
ity of the obtained M means. Let us note that the larger
the value of M, the more difficult it appears to achieve
equality since inequality with respect to the other sets is
common and influence the G coefficient.

One of the advantages of using the Gini coefficient is
that it adjusts if the inequality decreases. In the context
of our approach, this would mean that a value identified
as an outlier has been detected causing high inequality
in the M sets. If, however, some other sets also get same
magnitude contributions, the value of the Gini coefficient
will reduce, trusting again in the equality of the different
means and considering that these values are meaningful
ones.

4.2. Binary Median of meaNs

Because of the behaviour of G according to the presence
or absence of fireflies, we define a threshold below which
we consider that full confidence can be given to the es-
timate provided by the classical mean. For example, a
value of G ≤ 0.25 will correspond to a case in which
the confidence indicator for the mean is risk-free (without
outlier and therefore without firefly).

We thus propose a new estimator based on this confi-
dence criterion, so called G-MoNb, defined by:

G-MoNb =

{
θ̄ if G≤ 0.25,

µ̂MoN otherwise
(5)

This estimator will exploit the G coefficient in order to
define whether it should be oriented towards the mean or
towards the MoN estimator. It is denoted G-MoNb, for bi-
nary, as it makes a purely binary choice (mean or MoN).

4.3. Adaptive Median of meaNs

As mentioned in [Ore19], in spite of its theoretical prop-
erties, the MoN under utilizes the data available by only
using the median set. Based on this idea, this adaptive
MoN approach wishes to take advantage of the informa-
tion available in the neighboring sets of the median set. It
will be defined by the following equation:

µ̂G-MoN =
∑

M−c
j=1+c θ̂ j

M−2c
(6)

with θ̂ j, j∈ [1,M], the M means computed with the MoN,

indexed in ascending order (θ̂ j ≤ θ̂ j+1) and c ∈ N[0,bM
2 c]

the number of means from each extreme side of the M
ranked means that will not be taken into account for the
final estimator.

Because of the ability of the Gini coefficient to provide
some information about the equality/inequality between a
set of information, we use it for computing dynamically
the value of the c parameter introduced in equation 6 such
as: c = bk− (1−G)× kc with k = bM

2 c. Thus if G gives
us a strong tie then the final estimator will be close to the
mean by using more neighbouring means. Otherwise it
will be close to the MoN estimator by using only the me-
dian set but with potentially some additional information
from neighbouring sets.

5. Comparisons and Results

In this section we present the results of these two estima-
tors during rendering for different images and compare
them to three other estimators: the mean, the MoN and
the Jung et al’s version of the MoN.

5.1. Experimentation setup

Our experiments were conducted using the Physically
Based rendering engine PBRT-v4 [PJH16] with GPU sup-
port and available literature scenes [Bit16]. In the context
of computer-generated images, 100,000 samples remains
a consequent large number of samples, but does not seem
to be able to erase the presence of firefly for each scene.
In order to check which estimators seem to be more in-
teresting than others when rendering, reference images of
4 scenes have been computed and are available in Fig. 8.
The Veach and Villa scenes which references are avail-
able in sub-figures 8a and 8d are highly sensitive to fire-
flies, unlike Bathroom and Crown scenes in sub-figures
8b and 8c that do not provide any firefly. The interest is
to well compare the robustness of each estimator accord-
ing to the nature of the scene.

When comparing MoN based estimators on different
M values, such as classical MoN, G-MoNb and G-MoN,
Jung et al’s method is ran using its dynamic M parameter
with recommended M = 17 as maximum possible num-
ber of sets. The mean remains fixed (not impacted by the
choice of M parameter).

5.2. Convergence study

A convergence study of the different proposed estima-
tors (i.e. G-MoN and G-MoNb) is processed in compar-
ison with the Jung et al (with automated M), MoN and
mean. The results are available in Fig. 9 using the struc-
tural similarity index measure (SSIM) [WBSS04] as the
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(a) Veach (b) Bathroom

(c) Crown (d) Villa

Figure 8: Reference images used for comparisons of esti-
mators: Veach and Villa are computed with 100,000 sam-
ples using BDPT, Bathroom and Crown with 1M samples
using Path Tracing.

error criterion. SSIM has been preferred because it is
built to be more confident to the Human Visual System
(HVS) based on the idea that the pixels have strong inter-
dependencies especially when they are spatially close.
The classical Root-Mean-Square Error (RMSE) has been
discarded since it’s sensitivity to firefly is low: it calcu-
lates an absolute error whereas a firefly generates a very
local error as compared to the reference image.

Sub-figure 9a presents results for the scene Bathroom
that does not highlight any firely. All the estimators have
a very close convergence rate, with a slightly lower rate
for MoN which is known for underestimating its results.
None of the estimators is therefore penalised by the ab-
sence of firefly. When images highlight fireflies, such as
in the Veach scene, the difference between the different
estimators becomes more important (see sub-figure 9b).
The mean as well as Jung et al’s method fail due to the
presence of a large number of fireflies that are perceived
by SSIM. The way the parameter M is computed in Jung
et al’s approach is sensitive to such situations and reduce
its efficiency. G-MoN and MoN provide the best results in
removing fireflies, with a slightly advantage to G-MoN.
Even if the two estimators finally have a similar conver-
gence when fireflies are visible, G-MoN is more robust
since providing better results in images without fireflies.
G-MoNb shows a weakness in robustness, its SSIM score
converging between those of the mean and MoN but re-
maining worse than those obtained by MoN or G-MoN.

To complete the convergence study results, table 1

presents the SSIM scores obtained by the estimators G-
MoN, G-MoNb and MoN for M = {5,11,15,21,25} for
the 4 scenes computed with 100,000 samples and Path
Tracing. These estimators are compared to Jung et al and
to the mean which SSIM score values are indicated again
for each M value (the mean is not dependent on M and we
have used a constant maximal value of M = 17 for Jung).
By studying the proposed rank based on SSIM scores, G-
MoN seems to be better each time on at least 3 scenes
when M > 11. The only scene where it seems to be a bit
further away is the Bathroom scene where its SSIM score
remains very good which confirms that it is a consistent
and reliable estimator.

Scene veach Bathroom Crown Villa

M
=

5

Mean 0.77061 (5) 0.95987 (2) 0.99377 (2) 0.86733 (5)
MoN 0.88315 (1) 0.95275 (5) 0.99296 (4) 0.89738 (2)
Jung et al. 0.84992 (3) 0.95932 (3) 0.99263 (5) 0.87744 (4)
G-MoNb 0.84036 (4) 0.95988 (1) 0.99378 (1) 0.89493 (3)
G-MoN 0.88017 (2) 0.95785 (4) 0.99363 (3) 0.89858 (1)

M
=

11

Mean 0.77061 (5) 0.95987 (2) 0.99377 (3) 0.86733 (5)
MoN 0.91602 (2) 0.95074 (5) 0.99280 (4) 0.90833 (1)
Jung et al. 0.84992 (4) 0.95932 (4) 0.99263 (5) 0.87744 (4)
G-MoNb 0.87084 (3) 0.95993 (1) 0.99378 (2) 0.90461 (2)
G-MoN 0.92090 (1) 0.95935 (3) 0.99380 (1) 0.89744 (3)

M
=

15
Mean 0.77061 (5) 0.95987 (1) 0.99377 (2) 0.86733 (5)
MoN 0.92697 (2) 0.95003 (5) 0.99279 (4) 0.91249 (2)
Jung et al. 0.84992 (4) 0.95932 (4) 0.99263 (5) 0.87744 (4)
G-MoNb 0.87818 (3) 0.95979 (2) 0.99377 (3) 0.90814 (3)
G-MoN 0.93097 (1) 0.95950 (3) 0.99383 (1) 0.91329 (1)

M
=

21

Mean 0.77061 (5) 0.95987 (1) 0.99377 (2) 0.86733 (5)
MoN 0.93711 (2) 0.94953 (5) 0.99273 (4) 0.91681 (2)
Jung et al. 0.84992 (4) 0.95932 (4) 0.99263 (5) 0.87744 (4)
G-MoNb 0.88508 (3) 0.95978 (2) 0.99374 (3) 0.91190 (3)
G-MoN 0.93976 (1) 0.95965 (3) 0.99383 (1) 0.91739 (1)

M
=

25

Mean 0.77061 (5) 0.95987 (1) 0.99377 (2) 0.86733 (5)
MoN 0.94146 (2) 0.94915 (5) 0.99278 (4) 0.91894 (2)
Jung et al. 0.84992 (4) 0.95932 (4) 0.99263 (5) 0.87744 (4)
G-MoNb 0.88769 (3) 0.95967 (2) 0.99377 (3) 0.91389 (3)
G-MoN 0.94359 (1) 0.95953 (3) 0.99387 (1) 0.91952 (1)

Table 1: SSIM comparison for each reference scene im-
age and different M values using 100,000 samples with
Path Tracing. Rank of the studied estimators is also pro-
posed from (1) to (5). The mean and Jung et al are added
for each different M row for comparison purposes.

Additional results on the convergence of each esti-
mator are also provided in the table 2. The number of
samples required is given in relation to a SSIM score
achieved for each of the 4 scenes. Proposed SSIM scores
are ∈ {0.6,0.7,0.8}. It can be quickly noticed that the
G-MoN estimator almost always reaches first the SSIM
fixed score in fewer samples than all other estimators, es-
pecially when M > 5. An interpretation of such results, is
that with a large enough value of M, i.e. M ∈ [11,25], the
Gini coefficient seems to capture more information from
the M means and allows a better final estimate.

5.3. Visual impact of estimators

We also visually compare the results obtained for the two
estimators with respect to Jung et al, mean and the clas-
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(a) Comparisons of 5 estimators using SSIM during rendering
on the Bathroom image.

(b) Comparisons of 5 estimators using SSIM during rendering
on the Veach image.

Figure 9: Convergence study of G based estimators with M = 21 using SSIM indicator until 100,000 samples. Estimators
are compared to Jung et al, classical MoN (with M = 21) and mean on two scenes using the references images available
in Fig. 8: Bathroom, with no fireflies (left) and Veach with a large amount of fireflies (right).

Scene Veach Bathroom Crown Villa
SSIM 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

M
=

5

Mean 20007 (5) 52592 (5) NR (5) 1074 (4) 2236 (3) 5021 (1) 244 (4) 308 (4) 392 (4) 498 (4) 2507 (5) 14515 (5)
MoN 1518 (3) 4256 (1) 20353 (1) 729 (3) 2846 (5) 7501 (5) 239 (2) 302 (2) 383 (2) 343 (3) 469 (3) 1519 (3)
Jung et al. 9163 (4) 20644 (4) 44387 (4) 1261 (5) 2430 (4) 5233 (3) 265 (5) 337 (5) 435 (5) 525 (5) 2412 (4) 12310 (4)
G-MoNb 1491 (2) 7515 (3) 37626 (3) 646 (2) 2180 (2) 5152 (2) 241 (3) 304 (3) 387 (3) 340 (2) 463 (2) 1422 (2)
G-MoN 1378 (1) 4300 (2) 20394 (2) 627 (1) 2163 (1) 5547 (4) 233 (1) 293 (1) 370 (1) 332 (1) 448 (1) 1368 (1)

M
=

11

Mean 20007 (5) 52592 (5) NR (5) 1074 (4) 2236 (4) 5021 (2) 244 (4) 308 (4) 392 (4) 498 (4) 2507 (5) 14515 (5)
MoN 1060 (3) 2222 (2) 6835 (2) 619 (3) 1641 (3) 7066 (5) 240 (3) 303 (3) 384 (3) 364 (3) 503 (3) 1395 (3)
Jung et al. 9163 (4) 20644 (4) 44387 (4) 1261 (5) 2430 (5) 5233 (4) 265 (5) 337 (5) 435 (5) 525 (5) 2412 (4) 12310 (4)
G-MoNb 1031 (2) 2411 (3) 19398 (3) 607 (2) 1532 (2) 5198 (3) 239 (2) 302 (2) 383 (2) 363 (2) 500 (2) 1378 (2)
G-MoN 671 (1) 1566 (1) 5243 (1) 508 (1) 1254 (1) 4537 (1) 229 (1) 288 (1) 362 (1) 344 (1) 465 (1) 1126 (1)

M
=

15

Mean 20007 (5) 52592 (5) NR (5) 1074 (4) 2236 (4) 5021 (3) 244 (4) 308 (4) 392 (4) 498 (4) 2507 (5) 14515 (5)
MoN 986 (3) 1977 (2) 5224 (2) 649 (3) 1474 (3) 5636 (5) 242 (3) 305 (3) 387 (3) 392 (3) 551 (3) 1448 (3)
Jung et al. 9163 (4) 20644 (4) 44387 (4) 1261 (5) 2430 (5) 5233 (4) 265 (5) 337 (5) 435 (5) 525 (5) 2412 (4) 12310 (4)
G-MoNb 983 (2) 2100 (3) 12702 (3) 642 (2) 1447 (2) 4734 (2) 240 (2) 303 (2) 386 (2) 390 (2) 549 (2) 1444 (2)
G-MoN 634 (1) 1361 (1) 3676 (1) 520 (1) 1061 (1) 3706 (1) 230 (1) 288 (1) 362 (1) 366 (1) 501 (1) 1199 (1)

M
=

21

Mean 20007 (5) 52592 (5) NR (5) 1074 (4) 2236 (4) 5021 (4) 244 (3) 308 (3) 392 (3) 498 (4) 2507 (5) 14515 (5)
MoN 941 (2) 1819 (2) 4377 (2) 719 (3) 1416 (2) 4179 (3) 245 (4) 309 (4) 393 (4) 442 (3) 652 (3) 1593 (2)
Jung et al. 9163 (4) 20644 (4) 44387 (4) 1261 (5) 2430 (5) 5233 (5) 265 (5) 337 (5) 435 (5) 525 (5) 2412 (4) 12310 (4)
G-MoNb 964 (3) 1927 (3) 7142 (3) 716 (2) 1418 (3) 3961 (2) 243 (2) 307 (2) 391 (2) 441 (2) 650 (2) 1596 (3)
G-MoN 625 (1) 1236 (1) 2829 (1) 567 (1) 1017 (1) 2766 (1) 231 (1) 290 (1) 365 (1) 411 (1) 580 (1) 1342 (1)

M
=

25

Mean 20007 (5) 52592 (5) NR (5) 1074 (4) 2236 (4) 5021 (4) 244 (2) 308 (2) 392 (2) 498 (4) 2507 (5) 14515 (5)
MoN 932 (2) 1780 (2) 4112 (2) 774 (3) 1422 (2) 3804 (3) 246 (4) 311 (4) 395 (4) 479 (3) 736 (3) 1727 (2)
Jung et al. 9163 (4) 20644 (4) 44387 (4) 1261 (5) 2430 (5) 5233 (5) 265 (5) 337 (5) 435 (5) 525 (5) 2412 (4) 12310 (4)
G-MoNb 962 (3) 1886 (3) 6025 (3) 772 (2) 1428 (3) 3742 (2) 244 (2) 309 (3) 394 (3) 477 (2) 734 (2) 1732 (3)
G-MoN 631 (1) 1199 (1) 2626 (1) 609 (1) 1040 (1) 2517 (1) 232 (1) 291 (1) 366 (1) 443 (1) 644 (1) 1446 (1)

Table 2: The samples per pixel required in order to reached a SSIM score compared to reference image for the 4 scenes
available in Fig. 8. Studied SSIM scores are ∈ {0.6,0.7,0.8}. The maximum number of samples is fixed at 100,000. If a
required number of samples is not reached for a SSIM score, then NR, for Not Reached is indicated. The M parameter is
also studied, with M ∈ {5,11,15,21,25} to see the impact of this parameter on the speed of convergence. The mean and
Jung et al are added for each different M row for comparison purposes.

sical MoN. For this purpose, we compare images com-
puted with 10,000 samples to the reference ones. Fig. 10
presents such comparisons for the two images Veach and
Bathroom. Two targeted areas are indicated by a respec-
tive colored dial on the full image.

For the Veach image that highlights numerous fireflies,
the MoN based approaches provide the best visual results

with the exception of the Jung’s approach which global
criterion keep several fireflies. In terms of SSIM score, G-
MoN seems closest to the reference. Adding knowledge
from neighbouring sets of the median set brings a better
precision of estimation.

For the Bathroom image, all estimators seem to be rel-
atively close to the reference either visually or in SSIM
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G-MoN Reference Mean MoN Jung et al. G-MoNb G-MoN Reference

SSIM: 0.8762 SSIM: 1.0

0.4637 0.6622 0.5123 0.6567 0.7032 1.0

0.5397 0.8391 0.6478 0.6927 0.8670 1.0

SSIM: 0.8730 SSIM: 1.0

0.9101 0.9009 0.9054 0.9070 0.9206 1.0

0.6621 0.6942 0.6658 0.6921 0.6923 1.0

Figure 10: Comparisons of SSIM obtained from different estimators with 10,000 samples on 2 images. Full size images
and targeted areas are compared to references. MoN, G-MoNb and G-MoN are set with M = 21.

score. However, MoN seems to be more accurate on uni-
form areas that are not sensitive to fireflies (see the red
area in the figure). G-MoN, on the other hand, proposes
a score faithful to the reference on more complex areas
or very close to the best estimator (such as MoN for the
red boxed area). In addition, G-MoN seems to converge
faster than the arithmetic mean. The benefit of filtering
values far from the mean by applying the median brings
better results.

All the experiments and results obtained seem to indi-
cate that the G-MoN estimator gives a good estimate. It
removes fireflies while being close to or above the clas-
sical mean on non-firefly scenes. The dynamic choice of
the c parameter set number using the G coefficient seem
to be robust enough. G-MoNb on the other hand, also
allow the suppression of the fireflies but is still not as
good as the MoN, especially on the Veach scene. G-MoN
brings robustness and fidelity of the desired estimator.

Rather than trying to automate the M parameter, ex-
ploiting the separation of the samples into sets allows us
to identify fireflies and improve the reliability of the final
estimator.

5.4. Additional costs

Fig. 1 provides a rendering overview on the Villa scene
for the G-MoN and the mean estimators. Both images

were computed on GPU using Path Tracing with 100,000
samples per pixel. Visually, all the fireflies are removed
by using G-MoN. The computation times are 3618.3s and
3576.3s for G-MoN and the classical mean respectively.
Thus G-MoN estimator only leads to an additional cost
of ≈ 1.17% for the management of the MoN sets and the
estimation of the final pixel value.

MoN-based integrators require to M different sets,
each one representing a mean. This involves an addi-
tional memory cost, that stays however relatively low.
Each set has to store a partial sum and the number of
samples included in the sum, thus 8 bytes if computations
are performed in single precision. Consequently, if pixel
are computed independently only 8×M additional bytes
are required for each channel of the spectrum. When fil-
tering is used, several pixels have to be stored simulta-
neously. However, parallel computation often operate on
a pixel-patch basis and only the memory needed for the
path size is required. Assuming 32× 32 sized patches,
(R,G,B) spectrum and M = 21, this will require less than
500 kB of additional memory per patch.

6. Conclusion

In this paper we have focused on the problem of the
fireflies that are artefacts that reduce the quality of im-
ages produced by lighting simulations. We have recall the
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problem of the mean estimator when outliers values ap-
pear and review the Median of meaNs as a valuable alter-
native to this classical estimator. We have introduced the
Gini coefficient, which allows us to investigate the pres-
ence of outlier values locally for each pixel. Then we have
proposed two new estimators combining the MoN with
this coefficient with the aim of increasing the robustness
of the MoN.

The comparisons between these estimators and those
previously used or proposed showed that G-MoN was ro-
bust in all cases and was able to remove fireflies fairly
quickly. Its implementation within any integrator is sim-
ple and both its memory footprint as well as the addi-
tional cost of its processing remains low in comparison
with the proposed results. The proposed method is fur-
thermore very simple to parallelize as it does not require
any global information but only local information from
the pixel itself.

Future works should focus on some other recent esti-
mators based on the MoN, such as the Permutation Invari-
ant Median of Means Estimator [Poe21], the Tournament
MoN [LM16] or the Bayesian MoN [Ore19], in order to
determine whether they could have any interest in fire-
flies removal or noise reduction. Then, we plan to more
deeply study the choice of the best value for the Gini Co-
efficient. We have experimentally found that G = 0.25
appears to provide good results globally on the images.
However it could be relevant to study whether its value
could be adjusted more locally according to the sample
distributions that can be very different between the pix-
els. Finally it could be interesting to investigate its use
for denoising and/or noise detection, due to its ability to
judge the equality in a set of data.
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