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Complexity and algorithms for injective edge-coloring in graphs *

An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1, . . . , k}, to the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive distinct colors. The problem of determining whether such a k-coloring exists is called Injective k-Edge-Coloring. We show that Injective 3-Edge-Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-Coloring remains NP-complete for cubic graphs. For any k ≥ 45, we show that Injective k-Edge-Coloring remains NP-complete even for graphs of maximum degree at most 5 √ 3k. In contrast with these negative results, we show that Injective k-Edge-Coloring is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum degree at most k/2 is injectively k-edge-colorable.

Introduction

We study the algorithmic complexity of the injective edge-coloring problem. Our aim is to determine restricted graph classes where the problem is NP-hard, while in contrast, designing algorithms for other graph classes. An injective k-edge-coloring of a graph G = (V (G), E(G)) is an assignment of colors, i.e. integers in {1, . . . , k}, to the edges of G in such a way that two edges that are each incident with one distinct endpoint of a third edge, receive distinct colors. In other words, for any 3-edge path of G (possibly forming a triangle), the rst and last edge of the path receive distinct colors. The injective chromatic index of G, denoted χ i (G), is the least integer k for which G admits an injective k-edge-coloring.

This concept was recently introduced in [START_REF] Domingos | Injective edge coloring of graphs[END_REF], where it is studied for some classes of graphs, and proved to be NP-complete. Bounds on the injective chromatic index of planar graphs, graphs of given maximum degree, and other important graph classes, have been recently determined in [START_REF] Axenovich | Induced and weak induced arboricities[END_REF][START_REF] Bu | Injective edge coloring of sparse graphs[END_REF][START_REF] Ferdjallah | Injective edge-coloring of sparse graphs[END_REF][START_REF] Alexandr | Injective edge coloring of graphs with given maximum degree[END_REF][START_REF] Yue | Note on the perfect EIC-graphs[END_REF]. In particular, as mentioned in [START_REF] Ferdjallah | Injective edge-coloring of sparse graphs[END_REF], it follows from [START_REF] Axenovich | Induced and weak induced arboricities[END_REF] that all planar graphs are injectively 30-edge-colorable, while outerplanar graphs are injectively 9-edge-colorable [START_REF] Ferdjallah | Injective edge-coloring of sparse graphs[END_REF]. It is also proved in [START_REF] Alexandr | Injective edge coloring of graphs with given maximum degree[END_REF] that subcubic graphs are injectively 7-edge-colorable, while subcubic bipartite graphs [START_REF] Ferdjallah | Injective edge-coloring of sparse graphs[END_REF] and subcubic planar graphs [START_REF] Alexandr | Injective edge coloring of graphs with given maximum degree[END_REF] are injectively 6-edgecolorable. Moreover all subcubic planar bipartite graphs are injectively 4-edge-colorable [START_REF] Alexandr | Injective edge coloring of graphs with given maximum degree[END_REF].

Note that in [START_REF] Axenovich | Induced and weak induced arboricities[END_REF], this notion is studied as the induced star arboricity of a graph, that is, the smallest number of star forests into which the edges of the graph can be partitioned: this is an equivalent way to interpret injective edge-coloring (see [START_REF] Ferdjallah | Injective edge-coloring of sparse graphs[END_REF]). The concept of an injective edge-coloring is the natural edgeversion of the notion of an injective vertex-coloring, introduced in [START_REF] Hahn | On the injective chromatic number of graphs[END_REF] and well-studied since then.

Another closely related notion is the one of strong edge-coloring of a graph G, introduced in [START_REF] Fouquet | Strong edge-coloring of graphs and applications to multi-kgons[END_REF] and well-studied since then, especially in view of a celebrated conjecture by Erd®s and Ne²et°il [START_REF] Erd®s | Problems and results in combinatorial analysis and graph theory[END_REF]. In this type of coloring, edges that are the endpoints of a same 3-edge path or 2-edge path must receive distinct colors. The strong chromatic index χ s (G) of a graph G is the least integer k for which G admits a strong edge-coloring with k colors. It follows from the denitions that for any graph G, χ i (G) ≤ χ s (G) holds.

The algorithmic complexity of determining the strong chromatic index of a graph is well-studied, see for example [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF] for a classic reference, and [START_REF] Cole | New linear-time algorithms for edge-coloring planar graphs[END_REF][START_REF] Hocquard | Strong edge-colouring and induced matchings[END_REF] for more recent ones. In this paper, we wish to undertake similar types of studies for the injective chromatic index. The problem at hand is formally dened as follows.

Injective k-Edge-Coloring

Instance: A graph G. Question: Does G admit an injective k-edge-coloring?

Injective k-Edge-Coloring was proved NP-complete (for every xed k ≥ 3) in [START_REF] Domingos | Injective edge coloring of graphs[END_REF], with no particular restriction on the inputs. We strengthen this as follows.

Theorem 1 The two following are NP-Complete:

1. Injective 3-Edge-Coloring, even for triangle-free cubic graphs, and 2. Injective 4-Edge-Coloring, even for cubic graphs.

Answering a question from [START_REF] Domingos | Injective edge coloring of graphs[END_REF] about the complexity of Injective k-Edge-Coloring for planar graphs, we also study restricted subclasses of planar graphs.

Theorem 2 Let g ≥ 3. Injective 3-Edge-Coloring is NP-Complete even for:

1. planar subcubic graphs with girth at least g, 2. planar bipartite subcubic graphs of girth 6.

The two items in Theorem 2 cannot be combined, because we can prove the following (note that all planar bipartite subcubic graphs are injectively 4-edge-colorable [START_REF] Alexandr | Injective edge coloring of graphs with given maximum degree[END_REF]).

Theorem 3 Every planar bipartite subcubic graph of girth at least 16 is injectively 3-edge-colorable.

We also obtain the following positive result (tw(G) denotes the treewidth of G).

Theorem 4 For every graph G of order n and every positive integer k, there exists a 2 O(k•tw(G) 2 ) n-time algorithm that solves Injective k-Edge-Coloring.

It is proved in [START_REF] Axenovich | Induced and weak induced arboricities[END_REF] that χ i (G) ≤ 3 tw(G) 2 , and so using the above algorithm, one can determine the injective chromatic index of a graph of order n in time 2 O(tw(G) 4 ) n.

Contrasting with our hardness results for planar graphs, Theorem 4 implies that Injective k-Edge-Coloring can be solved in polynomial-time on subclasses of planar graphs: K 4 -minor-free graphs (i.e. graphs of treewidth 2), and thus, on outerplanar graphs.

In [START_REF] Domingos | Injective edge coloring of graphs[END_REF], Cardoso et al. use a reduction on graphs having their maximum degree linear in the number of colors. We improve it with the following result. Theorem 5 For every integer k ≥ 45, Injective k-Edge-Coloring is NP-Complete even for graphs with maximum degree at most 5

√

3k.

The bound of Theorem 5 is tight up to a constant factor: by a standard maximum degree argument of a conict graph, every graph with maximum degree at most k/2 is injectively k-edge-colorable. (Indeed, for every edge e of a graph G, there are at most 2(∆(G) -1) 2 edges which cannot have the same color as e, where ∆(G) is the maximum degree of G.)

Proof of Theorem 1

For these two problems, we reduce from 3-Edge-Coloring, which is NP-Complete even for cubic graphs [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF]. (Recall that a proper edge-coloring is an edge-coloring for which edges that are incident to a same vertex receive dierent colors.)

3-Edge-Coloring

Instance: A cubic graph G. Question: Does G admit a proper 3-edge-coloring? Proof. Let G be the input cubic graph. We will proceed in two steps: rst, we create a triangle-free subcubic graph G which has an injective 3-edge-coloring if and only if G is properly 3-edge-colorable. Then we describe how to make the graph cubic.

We create the graph G from G by removing all the edges of G. For each edge uv of G, we create a copy of a gadget E uv (see Figure 1(a) for an illustration) and connect it to u and v as follows. We add eight new vertices w uv , z uv , a uv , b uv , c uv , d uv , e uv and f uv . We create the following edges uw uv , vw uv , w uv z uv , z uv a uv , z uv b uv , a uv c uv , b uv c uv , a uv d uv , b uv e uv , c uv f uv , d uv f uv and e uv f uv .

Claim 6 E uv is injectively 3-edge-colorable, and for every valid edge-coloring γ of E uv , γ(uw uv ) = γ(vw uv ) = γ(w uv z uv ). Moreover, for any choice of the same color for these three edges, we can extend the coloring to an injective 3-edge-coloring of E uv .

Proof. Let us injectively 3-edge-color E uv . W.l.o.g., we can assume that d uv f uv is colored 1, b uv c uv is colored 2 and a uv z uv is colored 3. We deduce that b uv e uv is colored 2, c uv f uv is colored 1, a uv d uv and a uv c uv are colored 3, b uv z uv is colored 2 and e uv f uv is colored 1. Hence uw uv , vw uv and w uv z uv must all be colored 1. Now, given one same color for these three edges, one can color the rest of the gadget, for example using the previously constructed coloring.

If G has a proper 3-edge-coloring γ, we injectively 3-edge-color G by assigning to uw uv , vw uv and w uv z uv in G the color γ(uv); then we extend the coloring to each E uv using Claim 6.

Conversely, if G has an injective 3-edge-coloring, then we color an edge uv of G with the color of the edge uw uv (or vw uv ) of G . This coloring is proper since Claim 6 insures that uw uv and vw uv have the same color. Indeed if ux is an edge adjacent to uv, then uw uv and xw ux have dierent colors.

We now show how to make the construction cubic. We create the cubic graph G as follows. First, take three disjoint copies G 1 , G 2 and G 3 of G . To dierentiate the vertices of each copy, we add an exponent to the name of the vertex corresponding to the number of the copy. For example, vertex w uv of G 1 will be noted w 1 uv . For each edge uv of G, connect G 1 , G 2 and G 3 via K 1,3 with vertex classes {r uv } and {s uv , p uv , q uv } as follows. The vertex s uv (resp. p uv , resp. q uv ) is adjacent to d 3 uv (resp. d 1 uv , resp. d 2 uv ), e 2 uv (resp. e 3 uv , resp. e 1 uv ) and r uv (see Figure 1(b)). The graph G is simply the graph where the edge gadget is represented in Figure 1 and for each u ∈ V (G), the three copies of u i for i ∈ {1, 2, 3} are identied.

As G is cubic, G is triangle-free and cubic. Note that if G admits an injective 3-edge-coloring, then in particular G also admits an injective 3-edge-coloring and thus by our previous arguments, G is properly 3-edge-colorable.

If G is properly 3-edge-colorable, then we x such a coloring γ : E(G) → {1, 2, 3}. For i ∈ {1, 2, 3}, we color the edges incident with w i uv with the color γ(uv) + i, where the colors are considered to be taken modulo 3 (considering 0 = 3). Then it suces to extend the obtained coloring to each edge gadget (see Figure 1).

2.2

Proof of Theorem 1.2

Proof. Let G be the input graph. For each vertex u of G, we replace it by the following vertex gadget S u (see Figure 2). The gadget S u is made of a 9-cycle x u 0 x u 1 . . . x u 8 and three other vertices y u i (i ∈ {0, 3, 6}) that will be connected to the rest of the graph. We add the edges x u

1 x u 8 , x u 2 x u 4 , x u 5 x u 7 , x u 0 y u 0 , x u 3 y u 3 and x u 6 y u 6 .
For any edge-coloring γ of S u , we note

C u i (γ) = γ(x u i x u i+1 ), γ(x u i x u i-1
) where i ∈ {0, 3, 6} and where the indices are taken modulo 9.

Claim 7 For every injective 4-edge-coloring γ of S u and for every i ∈ {0, 3, 6}, the color γ(

x u i y u i ) belongs to the set C u i (γ). Moreover, C u 0 (γ) ∪ C u 3 (γ) ∪ C u 6 (γ) = {1, 2, 3, 4}
and there exists a color a ∈ {1, 2, 3, 4} such that for all i ∈ {0, 3, 6}, a ∈ C u i (γ). Furthermore, for any choice of color for x u 0 y u 0 , x u 3 y u 3 , x u 6 y u 6 and sets of colors C u i (γ), i ∈ {0, 3, 6} verifying the previous necessary conditions, there exists an injective 4-edge-coloring γ of S u matching those choices.

Proof. Let us try to construct an injective 4-edge-coloring γ of S u . Up to permuting the colors, we assume that γ(x u 0 x u 1 ) = 1, γ(x u 0 x u 8 ) = 2 and γ(x u 8 x u 1 ) = 3. Note that x u 2 x u 4 and x u 5 x u 7 cannot both be colored 4, w.l.o.g. assume that γ(x u 2 x u 4 ) = 4. Hence γ(x u 2 x u 4 ) = 2 and γ(x u 2 x u 3 ) = 4. Remark that γ(x u 5 x u 6 ) = 2. Moreover x u 5 x u 7 and x u 6 x u 7 can only receive colors 1 or 4 and they must receive dierent colors. Hence γ(x u 5 x u 6 ) = 3, γ(x u 3 x u 4 ) = 1, γ(x u 5 x u 7 ) = 4 and γ(x u 6 x u 7 ) = 1. Now there are two ways to complete the coloring of S u , either γ(x u

1 x u 2 ) = 4, γ(x u 4 x u 5 ) = 3 and γ(x u 7 x u 8 ) = 2 or, γ(x u 1 x u 2 ) = 3, γ(x u 4 x u 5 ) = 2 and γ(x u 7 x u 8 ) = 4.
In both cases all properties of the rst part of the claim hold (with a = 1).

Finally, note that the second of the two previous coloring options allows us to color x u i y u i , i ∈ {0, 3, 6} with any color among those of x u i x u i+1 and x u i x u i-1 , and to complete the coloring.

For every edge uv of G, we construct the following edge gadget E uv (see Figure 2). First, choose y u i (resp. y v j ) of degree 1 among the vertices of S u (resp. S v ). Create two new adjacent vertices w uv and z uv such that y u i w uv y v j z uv is a 4-cycle.

Claim 8 For every injective 4-edge-coloring γ of G and every edge gadget E uv connecting y u i and y v j (i, j ∈ {0, 3, 6}), we have C u i (γ) = C v j (γ). Furthermore, any injective 4-edge-coloring γ of S u and S v such that C u i (γ) = C v j (γ) and γ(x u i y u i ) = γ(x v j y v j ) can be extended to an injective 4-edge-coloring of S u ∪ E uv ∪ S v .

Proof. Suppose, w.l.o.g. by Claim 7, that

x u i x u i+1 is colored 1, x u i x u i-1 is colored 2 and x u i y u i is colored 1. Now w.l.o.g., y u i w uv is colored 3 and y u i z uv is colored 4. This implies that w uv z uv is colored 2, y v j w uv is colored 3, y v j z uv is colored 4, y v j x v j is colored 1 and C v j (γ) = {1, 2}.
The second part of the claim is proved by taking the previous coloring and extending it using the second part of Claim 7.

Let G be the cubic graph constructed from G by the above process. By Claim 8, if uv is an edge connecting y u i and y v j then for any injective coloring γ of G , C u i (γ) = C v j (γ) = {a, b} for some a and b. Hence this set somehow characterizes the edge gadget E uv , we say that E uv is colored by {a, b}.

Suppose that there exists an injective 4-edge-coloring γ of G . For each edge uv of G, we color uv depending on the coloring of E uv . When E uv is colored {1, 2} or {3, 4} (resp. {1, 3} or {2, 4}, resp. {1, 4} or {2, 3}) then we color uv by color 1 (resp. 2, resp. 3). We argue that this edge-coloring, noted γ, is proper. Indeed suppose it is not, then for some vertex u, w.l.o.g., uv and uw are both colored 1. This means that the coloring of G is such that C u i (γ) = C u j (γ) or C u i (γ) ∩ C u j (γ) = ∅ for i = j and i, j ∈ {0, 3, 6}. This contradicts Claim 7. Hence we get a proper 3-edge-coloring of G.

Conversely, suppose that there exists a proper 3-edge-coloring of G. In G , we color each edge of the form x u i y u i by 1. If an edge uv of G is colored 1 (resp. 2, resp. 3) then we assign the color {1, 2} (resp. {1, 3}, resp. {1, 4}) to E uv . By Claim 7, this coloring can be extended to an injective 4-edge-coloring of each S u , u ∈ V (G). By Claim 8, this injective 4-edge-coloring can be extended to each edge gadget to color the whole graph.

x u 0 x v 0 x u 1 x v 1 x u 2 x v 2 x u 3 x v 3 x u 4 x v
3 Proof of Theorem 2

We will reduce from the following problem:

Planar 3-Vertex-Coloring Instance: A planar graph G with maximum degree 4.

Question: Does G admit a proper 3-vertex-coloring?

This problem was proven to be NP-Complete in [START_REF] Michael | Some simplied NP-complete graph problems[END_REF]. Let G be a planar graph with maximum degree 4.

Proof of Theorem 2.1

Proof. Recall that we want to construct a graph G with girth at least g.

For each vertex u ∈ V (G), we construct a vertex gadget S u as follows (see Figure 3). First create a cycle x u 1 x u 2 . . . x u where ≥ g and is an odd multiple of 3. To each x u i add a single pendant neighbor y u i of degree 1. To the vertex y u 1 , add two non-adjacent neighbors w u and z u . Create four more vertices a u 1 , b u 1 , c u 1 and d u 1 . The vertex w u is adjacent to a u 1 and b u 1 while z u is adjacent to c u 1 and d u 1 . Now construct a path a u 1 a u 2 . . . a u g of length g and add to each a u i for i ≤ g -1 a pendant vertex of degree 1 called a u i . Similarly we create the vertices b u

1 . . . b u g , b u 1 . . . b u g-1 , c u 1 . . . c u g , c u 1 . . . c u g-1 and d u 1 . . . d u g , d u 1 . . . d u g-1 .
Finally add a vertex α u (resp. β u , resp. γ u , resp. δ u ) adjacent to a u g (resp. b u g , resp. c u g , resp. d u g ).

Claim 9 For any injective 3-edge-coloring

ρ of S u , ρ(a u g α u ) = ρ(b u g β u ) = ρ(c u g γ u ) = ρ(d u g δ u )
. We call this color ρ(S u ). Moreover, for any choice of a color ρ(S u ), there exists an injective 3-edge-coloring ρ with these properties.

Proof. Suppose that there exists i ∈ {1, . . . , } such that the property P(i

) := "ρ(x u i x u i+1 ) = ρ(x u i y u i ) = ρ(x u i x u i-1
) holds (the indices are taken modulo , considering 0 = ). Then P(i) holds for all i ∈ {1, . . . , }. Indeed, take such an i, then ρ(

x u i+1 x u i+2 ) = ρ(x u i+1 y u i+1 ) is the color {1, 2, 3} \ ρ(x u i y u i ), ρ(x u i x u i-1
) . Hence the property holds for i + 1, by induction it holds for every i. Note that the same can be said for the property

P (i) = "ρ(x u i x u i-1 ) = ρ(x u i y u i ) = ρ(x u i x u i+1
). Also note that if ρ(x u i x u i-1 ) = ρ(x u i x u i+1 ) = ρ(x u i y u i ) then we have P(i + 1) which is a contradiction because we do not have P(i).

Suppose now that for all i, neither P(i) nor P (i) holds. This means that the edges incident to a vertex x u i are either of the same color, or of three distinct colors. If they have the same color, then the edges incident with x u i+1 have three distinct colors, the ones incident to x u i+2 have the same color, and so on. This would imply that the cycle x u 1 . . . x u is even, which is a contradiction. Moreover, if the edges incident to x u i have three distinct colors, then the edges incident to x u i+1 (or x u i-1 ) would all have the same color, and therefore no injective 3-edge-coloring would be possible.

5 Proof of Theorem 4

Proof. We give an xed-parameter tractable (FPT) algorithm parameterized by the treewidth tw(G) of our input graph G. We use a nice tree decomposition (see [START_REF] Kloks | Computations and Approximations[END_REF]) of the input graph for our dynamic programming algorithm. Nice tree decompositions are a well-known tool for designing algorithms on graphs of bounded treewidth using dynamic programming. In our notation, the set of vertices of the graph associated to a node v of the tree, its bag, is denoted X v . A nice tree decomposition of a graph is a tree decomposition, rooted at a node Root, with the following types of nodes. A join node has exactly two children, with the same bags as their parent join node. An introduce node has a unique child and contains exactly one more vertex in its bag than its child's bag. A forget node also has a unique child, but the forget node's bag has exactly one less vertex than its child's bag. A leaf node is a leaf of the tree and contains no vertices. We call G ≤v the subgraph of G induced by the subtree of the decomposition rooted at v and G v the subgraph of G induced by X v . We note N H (u) for the neighborhood of a vertex u in a subgraph H of G.

We dene the following set associated with a node v:

T v = t 1 : X v → P({1, 2, . . . , k}) 2 × {t 2 : E(G v ) → {1, 2, . . . , k}} ,
where P(X) is the power set of X. For T ∈ T v with T = (t 1 , t 2 ), to simplify notation, we note T [u] for t 1 (u) when u ∈ X v and T [e] = t 2 (e) when e ∈ E(G v ). For a vertex u ∈ X v , we also note A u and B u the two sets such that T

[u] = t 1 (u) = (A u , B u ). The set V al (v) is the subset of T v such that T ∈ V al (v)
if and only if there exists an injective k-edgecoloring γ of G ≤v such that:

1. for all u ∈ X v , A u = {γ(uw), w ∈ V (G ≤v ) \ X v }, i.e. A u is the set of colors of the edges of G ≤v (not in G v ) incident with u, 2. for all u ∈ X v , B u = γ(zw), zw ∈ E(G ≤v ) \ E(G v ) and z ∈ N G ≤v (u) , i.e. B u is the set of colors of the edges of G ≤v (not in G v ) at distance 2 of u (or contained in a triangle containing u), 3 
. for all e ∈ E(G v ), T [e] is the color γ(e).

In this case we say that γ is associated with T . Note that for each injective k-edge-coloring of G ≤v , there exists an associated T ∈ T v and hence, T ∈ V al (v). The set V al (v) is thus the set of T ∈ T v associated with an injective k-edge-coloring of G ≤v . Note that V al (Root) = ∅ if and only if there exists an injective k-edge-coloring of G. We will compute V al (Root) with a dynamic programing algorithm. Also note that |T

v | ≤ 2 O(k•tw(G) 2 ) . First suppose that v is a leaf node. Then V al (v) = T v = {(∅, ∅)}.
Suppose that v is a forget node where v is its child node such that X v ∪ {a} = X v . Let T ∈ T v , T ∈ V al (v) if and only if there exists an associated coloring γ of G ≤v . This coloring γ is also a coloring of G ≤v and thus is associated to a T ∈ V al (v ). In this case, since T and T share the same coloring γ, we have the following constraints on T and T :

• for all e ∈ E(G v ), T The last two constraints reect the fact that A u and B u must be updated after the removal of a. The only new colors that can be added to these sets come from edges incident with a. There are multiple cases, depending on whether u and a are adjacent or not, determining which colors of edges need to be added to these sets.

Hence, for all T ∈ V al (v), it suces to check whether there exists a T ∈ V al (v ) for which the previous conditions are veried. This can be done in time 2 O(k•tw(G) 2 ) , as T is uniquely determined by T in the above constraints. Finally, for each edge uv of G, we identify the 2 vertices s uv 1 , . . . , s uv 2 with the vertices of S u corresponding to v (since v is a neighbour of u, by the construction of S u in the previous paragraph, there are such vertices in S u ) and with the vertices of S v corresponding to u. This creates the graph G . Note that its maximum degree is max(2 + p -1, k + 2) ≤ 5p ≤ 5 √ 3k.
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 1 Figure 1: Edge gadgets used in the proof of Theorem 1.1.

Figure 2 :

 2 Figure 2: Two vertex gadgets S u and S v , corresponding to the vertices u and v of a graph G, connected by an edge gadget corresponding to the edge uv of G.

  [e] = T [e] = γ(e), • for all u ∈ X v such that au ∈ E(G v ), A u = A u ∪ {T [au]} and B u = B u ∪ {T [aw], w ∈ X v ∩ N G (a), w = u} where T [u] = (A u , B u ) and T [u] = (A u , B u ), • for all u ∈ X v such that au / ∈ E(G v ), A u = A u and B u = B u ∪ {T [aw], w ∈ X v ∩ N G (u) ∩ N G (a)} where T [u] = (A u , B u ) and T [u] = (A u , B u ).

Figure 5 :

 5 Figure 5: The edge gadget E uv when r > 0. The vertices inside each of the two rectangle form a clique. The vertex c uv is adjacent to every vertex inside the largest rectangle. The vertex d uv is adjacent to every vertex inside the two rectangles.
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Figure 3: Vertex gadget S u for planar subcubic graphs with girth at least g (in this example g = 4 and = 9). Thus, w.l.o.g. we can suppose that ρ(x u 1 x u 2 ) = ρ(x u 1 y u 1 ) = 1 and ρ(x u 1 x u ) = 3. By extending the coloring to the rest of S u , we can infer that ρ(y u 1 w u ) = ρ(y u 1 z u ) = 2, ρ(w u a u 1 ) = ρ(w u b u 1 ) = 3 and ρ(z u c u 1 ) = ρ(z u d u 1 ) = 3. By the same reasoning, we can see that all the edges of S u (ignoring the edges involving one of the vertices x u i ) have only one possible color which depends only on their distance to y u 1 and in particular ρ(a u g α u ) = ρ(b u g β u ) = ρ(c u g γ u ) = ρ(d u g δ u ). Conversely, S u admits a coloring (see Figure 3 for an example). To choose a coloring of S u having the desired color ρ(S u ), it suces to permute the colors in the previous coloring.

To nish the construction, for any edge uv ∈ E(G), we add an edge e uv to G between a vertex among {α u , β u , γ u , δ u } and a vertex among {α v , β v , γ v , δ v } such that the planarity of G is preserved. This can be done by cyclically ordering the vertices of {α u , β u , γ u , δ u } according to a planar embedding of G, and adding the edge e uv between the right pair of vertices.

Note that G is planar, subcubic with girth at least g.

Suppose that G admits an injective 3-edge-coloring ρ. Assign to the vertex u of G the color ρ(S u ). Take two adjacent vertices u and v of G. The edge e uv in G is an edge between two vertices, one of S u and one of S v : w.l.o.g. say e uv = α u α v . This implies that a u g α u and a v g α v receive dierent colors and thus ρ(S u ) = ρ(S v ). Hence this coloring of G is a proper 3-vertex-coloring.

Conversely, suppose that G admits a proper 3-vertex-coloring. Let ρ be a partial edge-coloring of G with no colored edges. We choose the color ρ(S u ) to be the color of u in G (and we color the appropriate edges of G ). By Claim 9, we can extend ρ to each gadget S u . Note that by the choice of ρ(S u ), there is no conict between edges of S u and S v when u and v are adjacent in G. It is left to color the edges of the form e uv . By construction, there are only two edges at distance 2 of e uv (and this edge does not belong to a triangle). Hence there is at least one remaining color for e uv . After coloring theses edges, ρ is an injective 3-edge-coloring of G .

3.2

Proof of Theorem 2.2

Proof. In order to prove this result, we will modify the previous construction to make it bipartite (the girth condition will be lost).

First we modify S u (see Figure 4). Create the following gadget H. Start with a complete graph on four vertices x 1 , . . . , x 4 . For each edge x i x j , create a vertex x ij adjacent to both x i and x j and remove the edge x i x j . To each of these vertices of degree 2, add a pendant edge, with y ij the vertex of degree 1 adjacent to x ij . Figure 4: Vertex gadget for planar bipartite subcubic graphs with girth at least 6.

We claim that in every injective 3-edge-coloring γ of H, for any i = j, the vertex x ij is incident to only one color. Suppose it is not the case, then there must exist an injective 3-edge-coloring γ for which we have one of x 12 x 2 and x 12 x 1 colored dierently from x 12 y 12 , say w.l.o.g. γ(x 12 x 1 ) = 1 and γ(x 12 y 12 ) = 2. We deduce that γ(x 2 x 23 ) = γ(x 2 x 24 ) = 3, γ(x 14 x 4 ) = γ(x 3 x 13 ) = 2, γ(x 3 x 34 ) = 1, and there is no color available for x 23 y 23 , a contradiction. Now, take two disjoint copies of H named H u 1 and H u 2 . Add an edge between the two vertices y u 12,1 and y u 12,2 and add the edge y u 12,1 y u 1 where y u 1 is a new vertex. Now repeat the construction process of S u , for g = 6 for example, as described in the previous section by starting at the step where the vertices w u and z u are added. As we observed, the edges incident to vertex

2 ) have the same color in any injective 3-edge-coloring ρ. Hence, ρ(y u 12,1 y u 12,2 ) = ρ(y u 12,1 y u 1 ) = ρ(x u 12,1 y u 12,1 ). Note that this graph also admits an injective 3-edge-coloring (see Figure 4). We are in the same conguration as in the proof of Theorem 2.1. Thus Claim 9 also holds for this gadget S u . Note that this gadget is bipartite.

The edge gadget does not change, it is still the edge e uv . We need to be careful with the bipartiteness of the constructed graph. To ensure that the constructed graph is bipartite, it suces that all vertices y u 1 , u ∈ V (G), belong to the same part of the bipartition. To that end, if there is a path of odd length between y u 1 and y v 1 , then w.l.o.g. this path is y u

If we increase the length of a sequence a u 1 . . . a u g in S u by 3 (and also adding a u g , a u g+1 and a u g+2 ), then this path now has even length. With this trick, we can ensure the bipartiteness of the constructed graph G as well as keeping Claim 9 true in this new setting.

Hence, as before, G admits a proper vertex-3-coloring if and only if G admits an injective 3-edge-coloring.

Proof of Theorem 3

Proof. Let G be a planar bipartite subcubic graph with girth at least 16. Let A and B be the two parts of the bipartition of G. We construct the graph G A as follows: for each u ∈ A, we create a vertex u in G A .

For each pair of vertices u, v of A which are at distance 2, we add an edge between u and v in G A . As G is subcubic, a planar embedding of G also serves as a planar embedding of G A , where the edges of G A follow their corresponding path of length 2 in G. Hence, G A is a planar graph with maximum degree at most 6.

Note that, by the girth condition on G, G A does not have any k-cycle, for all k with 4 ≤ k ≤ 7. Then, by the main result from [START_REF] Borodin | Planar graphs without cycles of length from 4 to 7 are 3-colorable[END_REF], the graph G A admits a vertex-3-coloring γ.

We now color G as follows: each edge uv of G, where u ∈ A and v ∈ B, is colored by the color γ(u) in G A . We claim that this is an injective 3-edge-coloring of G. Indeed, take any path uvwz of G. W.l.o.g., assume u, w ∈ A and v, z ∈ B. By construction, uw ∈ E(G A ) and thus uv and wz receive dierent colors.

Suppose that v is an introduce node where v is its child node such that X v = X v ∪ {a}. Let T ∈ T v , T ∈ V al (v) if and only if there exists an associated coloring γ of G ≤v . This coloring γ is also a coloring of G ≤v and thus is associated to a T ∈ V al (v ). In other words T is associated to a coloring γ obtained by extending a coloring γ associated to some T ∈ V al (v ). Thus T ∈ V al (v ), we have the following constraints on T and T , in order to ensure that γ is the extension of γ :

• for all u ∈ X v , T [u] = T [u],

• for T [a] = (A a , B a ), A a = ∅ and B a = u∈Xv,ua∈E(Gv) A u ,

• the coloring of X v is an injective k-edge-coloring,

The rst two constraints correspond to the fact that γ is an extension of γ . As a is a new vertex, A a = ∅ and the only colors in B a can be obtained by edges incident with some vertex u ∈ X v itself adjacent to a, hence the third constraint. The last two constraints correspond to the fact that the coloring of the new edges around a cannot be in conict with edges already colored. The fourth constraint checks that no such conict arises in X v and the fth constraint ensures that for each new edge ua the color T [ua] does not appear around an edge at distance 2 from a or u. For each T , there are at most 2 tw(G) possible candidates to be added to

Suppose that v is a join node where v 1 and v 2 are its children nodes such that

and only if there exists an associated coloring γ of G ≤v . As both G ≤v1 and G ≤v2 are subgraphs of G ≤v , γ is also a coloring of G ≤vi (i ∈ {1, 2}) and thus is associated to a T i ∈ V al (v i ). In this case, since T , T 1 and T 2 share the same coloring γ, we have the following constraints on T , T 1 and T 2 :

• for all uw ∈ E(G v ), A u ∩ A w = ∅.

The last constraint corresponds to the fact that the coloring is an injective k-edge-coloring (i.e. with no conicts between the two subtrees). Given T 1 ∈ V al (v 1 ) and T 2 ∈ V al (v 2 ), T is uniquely determined by the above constraints. Hence it suces to try all the pairs of T 1 , T 2 and when the obtained set T veries all conditions, we can add it to V al (v). This can be done in time

6 Proof of Theorem 5

Proof. We reduce from k-Edge-Coloring, proven to be NP-Complete even for k-regular graphs in [START_REF] Leven | NP completeness of nding the chromatic index of regular graphs[END_REF].

k-Edge-Coloring

Instance: A k-regular graph G.

Question: Does G admit a proper k-edge-coloring?

We choose p to be the largest integer such that k = p 2 + r (and thus r < p) and recall that k ≥ 45.

Moreover we set = 2p. Let G be the input k-regular graph. For uv ∈ E(G), we dene the edge gadget E uv as follows (see Figure 5). First create the following vertices a uv , b uv , x uv 1 , . . . , x uv p-3 , c uv , d uv , e uv , y uv 1 , . . . , y uv r , s uv 1 , . . . , s uv 2 . The vertices s uv i have degree 1 in E uv and will be connected to the rest of the graph. The vertices x uv 1 , . . . , x uv p-3 , a uv , b uv , c uv form a clique; this is also the case for x uv 1 , . . . , x uv p-3 , a uv , b uv , d uv and {y uv 1 , . . . , y uv r , d uv }. The vertex e uv is adjacent to c uv , d uv , x uv 1 , . . . , x uv p-3 , s uv 1 , . . . , s uv 2 . In the case where r = 0, i.e. k = p 2 , we delete d uv . Let u be a vertex of G with v 1 , . . . , v k its neighbors. We construct the vertex gadget S u from k × vertices v 1,1 , . . . , v 1, , v 2,1 , . . . , v k, and successively consider pairs v i , v j of neighbors. For each pair, we add an edge between one of v i,1 , . . . , v i, of minimum degree and one of v j,1 , . . . , v j, with minimum degree. By adding edges one by one in this way, we ensure that the maximum degree of the vertices of S u is at most k + 1.

Claim 10 For any injective k-edge-coloring γ of E uv , we have γ(e uv s uv

) and there are no other colored edges, we can extend γ to E uv .

Proof. First note that the clique x uv 1 , . . . , x uv p-3 , a uv , b uv , c uv needs exactly p 2 distinct colors. W.l.o.g.

a uv b uv is colored 1 and the colors used for this clique are 1, 2, . . . , p 2 . None of these colors can be used to color the r edges of the form d uv y uv i hence they must be colored with p 2 + 1, . . . , p 2 + r. One can observe that an edge e uv s uv i cannot have a color among p 2 + 1, . . . , p 2 + r as it is at distance 2 from the edges of the form d uv y uv j (j ∈ {1, . . . , r}). Moreover this edge cannot receive the same color as one of the edges of the clique x uv 1 , . . . , x uv p-3 , a uv , b uv , c uv except for the color 1 on the edge a uv b uv . Hence all edges of the form e uv s uv i have the same color. Now suppose we have a coloring γ such that theses edges e uv s uv i (i ∈ {1, . . . , 2 }) are all colored with the same color, say 1. We color a uv b uv with color 1 and use the p 2 + r -1 other colors to color the rest of the edges of the clique x uv 1 , . . . , x uv p-3 , a uv , b uv , c uv and the edges of the form d uv y uv j (j ∈ {1, . . . , r}). We color e uv z for z ∈ x uv 1 , . . . , x uv p-3 , c uv with the color of a uv z. If r = 0, then E uv is colored and γ is an injective k-edge-coloring. If r > 0, we color d uv e uv and d uv a uv with the color of d uv y uv 1 . We color d uv z for z ∈ x uv 1 , . . . , x uv p-3 , b uv with the color of c uv z. It is left to color the edges of the clique {y uv 1 , . . . , y uv r }, for which we have available the p-1 2 colors used to color the clique x uv 1 , . . . , x uv p-3 , a uv , b uv , which is enough as r ≤ p -1. This is an injective k-edge coloring of E uv . Suppose there is an injective k-edge-coloring γ of G . For an edge uv of G, we color it with the color γ(e uv s uv 1 ). Take two adjacent edges of G: uv 1 and uv 2 . In S u , there is an edge between v 1,i and v 2,j for some indices i and j. Thus the edges e uv1 v 1,i and e uv2 v 2,j receive dierent colors. By Claim 10, uv 1 and uv 2 receive dierent colors. Hence G admits a k-edge-coloring.

Suppose there is a k-edge coloring γ of G. For each edge uv, we color e uv s uv i with the color γ(uv). By Claim 10, we can extend this coloring to all E uv . At this point there is no conict between the colored edges. Indeed the only pairs of edges which are at distance 2 and not in the same edge gadget are of the form e uw s uw i , and since γ is proper, there is no conict here. It is left to color the edges inside the vertex gadget. Let e = v i,j v i ,j be an uncolored edge. As the maximum degree of the vertices of S u is at most k + 2, there are at most ( k + 2) 2 edges incident to a vertex of S u that can be in conict with e. We must also consider the edges incident with e uvi and e uvj . For each of the two vertices there is one forbidden color γ(uv i ) which common to 2 edges incident to e uvi to which we need to add p -1 colors for the other edges of e uvi . In the end, there are at most 2p + ( k + 2) 2 forbidden colors for e. As 2p + ( k + 2) 2 ≤ 2p + ( p-1 4 + 2) 2 = ( p-1 4 ) 2 + 3p + 3 ≤ k when k ≥ 45 and p ≥ 10, G admits an injective k-edge-coloring.

Conclusion

We proved that Injective 3-Edge-Coloring and Injective 4-Edge-Coloring are NP-complete on some restricted classes of subcubic graphs. One can ask whether Injective 5-Edge-Coloring is NPcomplete on subcubic graphs. A conjecture proposed by Ferdjallah et al. [START_REF] Ferdjallah | Injective edge-coloring of sparse graphs[END_REF] states that every subcubic graph admits an injective 6-edge-coloring (it is proved for planar graphs in [START_REF] Alexandr | Injective edge coloring of graphs with given maximum degree[END_REF]). In fact, we only know of two connected subcubic graphs which require six colors: K 4 and the prism. Perhaps these are the only examples that are not 5-colorable, in which case Injective 5-Edge-Coloring would be polynomial-time solvable for this class.

We have also proved that for planar bipartite subcubic graphs, Injective 3-Edge-Coloring is polynomial-time solvable when the girth is at least 16 (because the answer is always YES), but NP-Complete when the girth is 6. It would be interesting to determine the values of the girth of planar bipartite subcubic graphs for which Injective 3-Edge-Coloring stays NP-Complete, becomes polynomial-time solvable, and always has YES as an answer.

We also do not know whether Injective 4-Edge-Coloring is NP-Complete for bipartite subcubic graphs.
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