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Linear cases of Bragg-Hawthorne equation for steady axisymmetric incompressible ideal flows are systematically discussed. The equation is converted to a more convenient form in spherical coordinate system. A new vorticity decomposition is derived. General solutions for 12 out of 16 cases of linear equation are obtained. These solutions can be specified to gain new vortex flows, as examples demonstrate. A lot of well-known solutions like potential flow past a sphere, Hill's vortex with and without swirl, are included in these solutions as specific cases. Special relations between some solutions are also explored.

Introduction

Bragg-Hawthorne equation [START_REF] Bragg | Some exact solutions of the flow through annular cascade actuator discs[END_REF] (or "B-H equation" in short) plays a central role in study of axisymmetric steady flow of incompressible ideal fluids. Due to complexity of the equation however, analytically solvable cases are rare. With special assumptions/restrictions for Bernoulli function and the azimuthal velocity, the equation reduces to a linear one. Most of the known analytic solutions so far are for such linear cases.

In this paper, an attempt is made to explore the linear cases in a systematic way. First, the equation is rewritten in spherical coordinate system and the variable of polar angle is changed from 𝜃 to cos 𝜃. This gives a new form of the equation that is more convenient to solve in most cases. Following that, series of assumptions for Bernoulli function and the azimuthal velocity that make the equation linear are listed. These assumptions lead to 16 combinations, each associated with a special linear case of the equation. Majority of these 16 cases (except for 4) are then solved, mostly by separate variable method. The results are series of general solutions with special functions and constants. Many well-known solutions, including the potential flow around a sphere, Hill's vortex with and without swirl [START_REF] Hill | On a spherical vortex[END_REF], [START_REF] Moffatt | The degree of knottedness of tangled vortex lines[END_REF] , Bogoyavlenskij's solution of Beltrami flow [START_REF] Bogoyavlenskij | New exact axisymmetric solutions to the Navier-Stokes equations[END_REF] , the Fraenkel-Norbury family of vortex rings [START_REF] Fraenkel | On steady vortex rings with small cross-section in an ideal fluid[END_REF], [START_REF] Norbury | A family of steady vortex rings[END_REF] , etc., can be obtained from these general solutions when constants are set to certain values. Some linear cases of the equation have close relation, so do their solutions and the related flows. For example, Hill's vortex without swirl can be considered as a uniform flow plus an extra velocity. Hill's vortices with swirl can be considered as the Beltrami spherical vortex (the eigenvector field of curl operator in spherical coordinate system, discussed in Section 7) plus a special rotation. These are discussed in detail with the stream functions and velocities.

A new decomposition of vorticity is also derived. This decomposition applies to all flows (that follow B-H equation) and helps to understand the impacts of Bernoulli function and the azimuthal velocity to vorticity and to the flows.

The rest of this paper is organized as follows. In Section 2, we briefly recall the derivation of B-H equation, especially the form in spherical coordinate system. In Section 3, series assumptions for Bernoulli function and azimuthal velocity are listed and briefly discussed.

Section 4 is about the vorticity decomposition. Section 5 to Section 10 are devoted to solving different cases of the equation. Section 11 offers a summary table and some further discussion.

Bragg-Hawthorne equation in spherical coordinates

For incompressible ideal fluids, the steady motions are described by (steady) Euler equations, which can be written as 𝛻 ⋅ 𝒗 0

(2.1)

𝒗 𝛻 𝒗 𝛻𝐻 (2.2)
where 𝒗 is velocity and 𝐻 is the Bernoulli function. LHS (left-hand side) of (2.2) is also known as the Lamb vector, denoted as 𝑳 ≡ 𝒗 𝛻 𝒗 𝒗 𝝎 (𝝎 ≡ 𝛻 𝒗 is the vorticity).

For (2.2) to stand, 𝛻 𝑳 0 is required (and is sufficient, assuming the flow is in a simply connected domain). A (non-irrotational) flow meeting this requirement is a generalized Beltrami flow [START_REF] Wang | Exact solutions of the Navier-Stokes equations -the generalized Beltrami flows, review and extension[END_REF] , (or is further a Beltrami flow if 𝑳 0 in the whole domain [START_REF] Wu | Vorticity and Vortex Dynamics[END_REF] ).

In axisymmetric case, it is possible to define the Stokes stream function 𝜓 and an independent function 𝐶 so that As the flow is steady, each of 𝐻 and 𝐶 is a function of 𝜓 only [START_REF] Batchelor | An Introduction to Fluid Mechanics[END_REF] . Thus, we have the following "chain rules" for 𝐻 𝜓 and 𝐶 𝜓 :

, , , . (2.9) 
In this case, the Lamb vector components in (2. This is the Bragg-Hawthorne equation [START_REF] Bragg | Some exact solutions of the flow through annular cascade actuator discs[END_REF] (in spherical coordinate system). It is also referred to as Hicks equation [START_REF] Hicks | Researches in vortex motion. Part III. On spiral or gyrostatic vortex aggregates[END_REF] or Squire-Long equation [START_REF] Squire | Rotating fluids. Surveys in Mechanics[END_REF], [START_REF] Long | Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid[END_REF] . The Grad-Shafranov equation in ideal magnetohydrodynamics also has the same form [START_REF] Grad | Hydromagnetic equilibria and force-free fields[END_REF], [START_REF] Shafranov | Plasma equilibrium in a magnetic field[END_REF] .

Changing Mathematically, some constants in the list can be absolved or combined. But keeping them in the above format will make it convenient for discussion.

Constant 𝜓 in C1, C2 and C4 does not impact the equation, thus has no impact on the solutions. But when 𝐶 is interpreted linking to azimuthal velocity, 𝜓 can bring big difference for azimuthal velocity and for the flow. For C3, most of the feasible cases require 𝜓 0. But to maximize generality, 𝜓 is kept here as a constant, and the different impacts of 𝜓 0 and 𝜓 0 will be discussed specifically.

The cases in the list are not always independent. For example, H1 can be considered as a special case of H2 (when 𝜆 0); H4 is a "combination" of H2 and H3. But the equations and solutions for these cases are so different and are worthy to be discussed separately. For this consideration, they are listed as separated cases.

C3 and C4 actually give the same form of equation (with different denotation for the constants). So, they would share the same stream function as mathematical solution of the equation. However, when the same solution is respectively interpreted for C3 and C4, the flows can be significantly different (on velocity, vorticity and physical feasibility, etc.). For completeness consideration, they are treated as two separated cases in the list.

In a more general view, when the two terms on RHS of the linear equation are expanded, they can become up to four terms, which can be written on RHS of the following "model equation":

Λ 𝑟 sin 𝜃 𝜓 Λ 𝑟 sin 𝜃 A 𝜓 A (3.1)
or in cylindrical coordinates

Λ 𝜌 𝜓 Λ 𝜌 A 𝜓 A (3.2)
Λ , Λ , A and A here represent certain form of the constants in the list. Different cases of function 𝐻 and 𝐶 are associated with presentation/absence of these 4 terms.

Obviously, with H1 ~ H4 and C1 ~ C4, there are 16 combinations, each making (2.13), (2.14) or (2.15) a linear equation of 𝜓 (i.e., each is related to a combination of the Λ , Λ , A and A terms in the model equation). For convenience, we will denote these 16 combinations as HmCn (m, n = 1,2,3,4) in the rest of this paper.

Vorticity decomposition and flow properties

Before moving to solutions of particular cases, it is worthy to further investigate impacts of the two functions, 𝐻 and 𝐶 to vorticity and to the flow.

Recalling (2.3) and (2.4), we have 𝑣 (or 𝑣 in cylindrical coordinates).

Function 𝐶 is indeed the linear azimuthal velocity multiplied by distance to the z-axis. 2𝜋𝐶 is often considered as circulation along a circle around z-axis. From another angle of view, 𝐶 can also be considered as the "azimuthal velocity moment" with respect to z-axis. As mass density is a constant in incompressible fluid, 𝐶 is also representing angular momentum density of the fluid (with respect to z-axis).

In any of these considerations, an assumption (or a restriction) on 𝐶 is basically an assumption (restriction) on azimuthal velocity related to the stream function 𝜓. This is consistent with the fact that (in ideal incompressible axisymmetric steady flows)

Lamb vector is always perpendicular to the azimuthal direction (except for points in the symmetric axis). Following this is also the corollary that Lamb vector is always coplanar with the symmetric axis in such flows.

Applying this decomposition to flows in the list in Section 3, for the H1Cn cases, as 0, azimuthal vorticity 𝝎 𝑨 vanishes. Total vorticity contains solely the Beltrami part 𝝎 𝑩 . Lamb vector thus vanishes as well. For H1C1, 𝝎 𝑩 also vanishes, so does the total vorticity. It is hence an irrotational/potential axisymmetric flow. For H1C2, 𝝎 𝝎 𝑩 𝒗. Vorticity is in parallel to velocity with a non-constant coefficient. This is a non-linear Beltrami flow (i.e., the velocity field is a non-linear Beltrami field). For H1C3, we have 𝝎 𝝎 𝑩 𝛼𝒗. Vorticity is in parallel to velocity with a constant coefficient. This is linear Beltrami case. H1C4 on the other hand, is non-linear Beltrami flow again, as 𝝎 𝝎 𝑩 𝒗.

In the H2Cn family, azimuthal vorticity 𝝎 𝑨 𝜆𝑟 sin 𝜃 𝒆 (or 𝝎 𝑨 𝜆𝜌𝒆 𝝓 in cylindrical coordinates). It is proportional to the distance to z-axis. For H2C1, 𝝎 𝑩 vanishes. Total vorticity is made up solely by 𝝎 𝑨 , thus is proportional to the distance to z-axis as well. This is actually the assumption of the Fraenkel-Norbury family of vortex rings [START_REF] Fraenkel | On steady vortex rings with small cross-section in an ideal fluid[END_REF], [START_REF] Norbury | A family of steady vortex rings[END_REF] (including the Hill's vortex without swirl). As can be expected, the general solution of H2C1 will include Hill's vortex as a special case. H2C3 is adding the Beltrami vorticity part 𝝎 𝑩 𝛼𝒗 to H2C1. This is actually the case of Hill's vortex with swirl, which will be discussed in Section 9. For H2C2 and H2C4, both

Beltrami vorticity 𝝎 𝑩 and azimuthal vorticity 𝝎 𝑨 present in the total vorticity, and the flows have more complicated dependency to 𝐻 and 𝐶.

In the H3Cn and H4Cn cases, as explicitly contains 𝜓, azimuthal vorticity is now directly tied with 𝜓 (in opposite to H1Cn or H2Cn where 𝜓 is not explicitly involved in the expression of azimuthal vorticity). The equation is still linear, but this azimuthal vorticity brings an extra term with the unknown function 𝜓 to the equation and makes the solutions complicated. These cases will be further discussed in Section 10.

As an aside, the second term on RHS of the B-H equation, 𝐶 , has a notable property of symmetric. This can also be analyzed by applying the vorticity decomposition. 

Axisymmetric potential flow (H 1 C 1 )

Combination (H1C1) is the simplest one in the list. As discussed in Section 4, all flows in this case are axisymmetric potential flow.

As both terms on RHS of B-H equation vanish, (2.14) becomes

0 (5.1)
Let 𝜓 𝑅 𝑟 𝛩 cos 𝜃 and apply variable separation method. With the separation constant denoted as 𝑛 𝑛 1 , the two separated questions are

𝑟 𝑅 𝑛 𝑛 1 𝑅 0 (5.2) sin 𝜃 𝛩 𝑛 𝑛 1 𝛩 0 (5.3) Solution of (5.2) is 𝑅 𝑘 𝑟 𝑘 𝑟 .
𝑘 , 𝑘 , 𝑛 here, as well as 𝑘 , 𝑘 , 𝑘 , 𝑘 , 𝑘 , 𝑘 and 𝐾 in expressions later in this paper are independent constants. Mathematically, they can be arbitrary real numbers, or theoretically even be imaginary numbers in some cases. However, to have the stream function and velocity physically meaningful, restrictions may apply to them.

In this paper, we will consider a flow (from a solution of the B-H equation) with no singular velocity (i.e., no infinite nor discontinuous velocity) in a domain as "physically feasible". When the domain is not the whole space, the boundary conditions can be provided by solid boundary, or by other flows outside the domain. In the latter case, the flows inside and outside the domain should have zero normal velocity and continuous tangential velocity at the boundary. With special settings for the constants, stream function 𝜓 can be in simple forms. For example, when 𝑛 1, 𝑘 0, 𝑘 1, 𝑘 0, (5.5) gives 𝜓 𝑘 𝑟 sin 𝜃. This is a uniform flow with velocity 𝑈 2𝑘 in z-direction.

If 𝑘 and 𝑘 are both non-zero, the radial portion in (5.5), 𝑅 𝑟 𝑘 𝑟 𝑘 𝑟 has a zero at 𝑟 𝑟 . In the case that such 𝑟 is a positive real number, stream function 𝜓 is zero at surface of the sphere 𝑟 𝑟 . The flow outside the sphere is a potential flow around that sphere (while the flow inside the sphere is singular at 𝑟 0, thus is not physically feasible.)

In this case, if we further have 𝑛 1, 𝑘 0, we have 𝜓 𝑟 1 sin 𝜃 (where

𝑈 2𝑘 𝑘 , 𝑎 𝑟 / )
. This is the well-known potential flow past the sphere 𝑟 𝑎.

When 𝑛 1, the associated Legendre functions in (5.5) can give more complicated potential flows around the sphere. Some examples can be found in Section 7 (see equation (7.8b) and Fig. 5).

As a property of the C1 flows (i.e., flows in any HmC1 case), as long as function 𝐶 is a constant, its value does not impact the equation, thus will not impact the solution. Azimuthal velocity 𝑣 hence is independent to the solution. In principle, velocity 𝑣 , 𝑣 in the meridian plane derived from solution of an HmC1 equation can be with any azimuthal velocity 𝑣 as long as 𝐶 is a constant. When 𝐶 0, this 𝑣 introduces a circular movement with uniform angular momentum density with respect to z-axis. This is an "irrotational rotation" (as it does not impact the vorticity). In this sense, constant 𝐶 brings a rotation to HmC1 flows without impacting vorticity nor impacting velocity in the meridian plane.

Such a rotation has singular velocity at z-axis, though. It is physically feasible only for special cases (e.g., in a domain that is not overlapping z-axis. An example can be found in When 𝑘 0, the section related to 𝑧 is unbounded on one side (or both sides, depending on 𝑘 and 𝑘 ) of 𝑧 when 𝑧 → ∞, thus the feasible flow only can exist in a domain excluding upper or lower "end" of z-axis. When 𝑘 0, the flow is periodic (and bounded) along the whole zaxis.

In passing, 𝜓 𝑘 𝜌 𝑘 𝑧 𝑘 is also a solution of (5.6). This is not from variable separation method, thus is not included in (5.7). When 𝑘 0 and 𝑘 0, it converts to 𝜓 𝑘 𝜌 , which is equivalent to the special form of (5.5), i.e., the uniform flow 𝜓 𝑘 𝑟 sin 𝜃.

Axisymmetric non-linear Beltrami flow (H 1 C 2 )

The solution of H1C1 can be "extended" to solve H1C2. Compared to (5.5), the particular solution 𝜓 * brings new features for the flow of (6.2). It actually turns the potential flow in (5.5) into a non-linear Beltrami flow.

If we calculate the velocity from (6.2) and compare it to velocity from (5.5), 𝜓 * does not impact 𝑣 , but it brings an addition 𝑣 * to the polar velocity 𝑣 . In the meridian plane, this 𝑣 * represents a "rotation" around the origin point, with different magnitudes at different polar angles (and is singular on z-axis). Fig. 1 shows this 𝑣 * in x-z plane (when 𝑎 1).

The impact of 𝜓 * to azimuthal velocity is more complicated. As 𝑣 is a nonlinear function of 𝜓, the impact of 𝜓 * to 𝑣 is not simply a linear addition.

Theoretically, (6.2) can be specified to various of flows depending on the constants.

However, most (if not all) of them may inherit the singularity from 𝑣 * thus need to be within a domain excluding z-axis. Besides, for 𝑣 to be real, it is required that 𝜓 𝑎 𝜓 0. This may add more restrictions to the flow.

As an example of the feasible H1C2 cases, when 𝑘 and 𝑛 1, 𝑘 0, 𝑘 1, 𝑘 0, stream function (6.2) becomes 𝜓 𝑟 cos 2𝜃 . This is a combination of the uniform flow of (5.5) with 𝑈 𝑎 in z-direction (i.e., 𝜓 𝑟 sin 𝜃) and the rotation of 𝑣 * shown on Fig. 1 (that is brought by the particular solution 𝜓 * 𝑟 ). 

𝑟 cos 2𝜃

. This is the domain the flow exists (as shown in Fig. 2). Velocity has no singularity in this domain. On surface of the hyperboloid, 𝜓 is a constant, 𝑣 is zero and velocity is tangential to the surface.

The requirement of 𝜓 0 is critical to ensure feasibility of the flow. If 𝜓 0, the hyperboloid has two sheets. The domain (in which 𝜓 𝑟 cos 2𝜃 0) intersects z-axis.

In that z-axis segment, 𝑣 and 𝑣 are singular and the flow is not feasible.

Similar to the spherical coordinate case, H1C2 in cylindrical coordinates, (

can be solved by adding a particular solution 𝜓 * 𝑧 or 𝜓 * 𝜌 1 2 ln 𝜌 or their combination 𝜓 * 𝑘 𝜌 1 2 ln 𝜌 1 𝑘 𝑧 to (5.7).

Fig. 2. An H1C2 flow outside a hyperboloid

Beltrami spherical vortex (H 1 C 3 )

As discussed in Section 4, for H1C3, as 𝝎 𝑎𝒗, velocity field is a linear Beltrami field.

Velocity in this case is eigenvector of the curl operator (and 𝑎 is the eigenvalue).

In [15] or [16], a solution of velocity field for this case is given by directly solving 𝝎 𝒗 with variable separation method (i.e., without employing stream function). As flows in this case have some significant properties and are important for further discussion, here we will re-solve it in stream function form. Submitting this into (2.3), the velocity can be found the same as in [15] and [16]: This is a family of multi-layer spherical vortices, indexed by 𝑛 (and will be referred to as

𝑣 𝐾 𝑛 𝑛
Beltrami spherical vortices in this paper). As descripted in [16], the field is split by zeros of 𝐽 / 𝑟 (i.e., zeros of 𝑣 and 𝑣 ) into homocentric spherical layers. Inside each layer, there are 𝑛 count of vortex rings, separated by the surfaces 𝑃 cos 𝜃 0 (i.e., 𝑣 0, 𝑣 0). Fig. 3 shows contours of stream function when 𝑛 is 1, 2 and 6. Examples of velocity field (when 𝑛 1, 2, 3) can be found in Section 15 of [16].

As shown by the contours, the zero surfaces of 𝐽 / 𝑟 and 𝑃 cos 𝜃 (i.e., zero surfaces of 𝜓) split the whole field into axisymmetric and coaxial cells that each contains one vortex ring.

On the zero surfaces, velocity is only on the tangential direction. Hence, the fluid inside each cell is contained within that cell all the time. From (7.5) and (7.6), stream function and velocity have no singularity in the whole space.

Thus, such a Beltrami vortex theoretically can steadily exist by itself in the whole space. In other words, it does not have to be moving in a potential flow (like Hill's vortex) or to be surrounded by other flow outside a restricted domain to be physically feasible.

Nevertheless, it is also possible to assemble a Beltrami vortex with potential flow outside a sphere, similar to the case of Hill's vortex.

For the first order vortices in the family (i.e., 𝑛 1), at the spherical interfaces between layers, where 𝐽 / 𝑟 0 thus 𝜓 0, both 𝑣 and 𝑣 vanish, and the polar velocity 𝑣 is When 𝑛 1, 𝑣 and 𝑣 still vanish on the interfaces between spherical layers, but the tangential velocity 𝑣 at these interfaces has more complicated dependency to 𝜃 (rather than just being proportional to sin 𝜃 when 𝑛 1). Even in this case, theoretically it is still possible to match the vortex inside a sphere by a (high order) irrotational flow outside.

Fig. 4. 1-layer and 3-layer first order Beltrami spherical vortices

Note that for H1C1, stream function (5.5) has the same polar angle section as in (7.4). With constants properly selected, a high order (i.e., 𝑛 1) axisymmetric potential flow of (5.5) outside a sphere can match the same order of Beltrami vortex of (7.4) inside that sphere with zero stream function and continuous stream function gradient at the interface. This is an extension of the "assembled flow" of (7.7).

In this case, the stream function is 𝜓 by 𝜓 so to convert it to the same form as (7.1). This gives the same result.)

𝜓 𝐾 𝑟 ⁄ 𝐽 ⁄ 𝑟
In this case, the particular solution 𝜓 * brings to the flow an additional azimuthal velocity, which is singular at z-axis. Such an H1C3 flow with 𝜓 0 is feasible only when it is inside a domain not overlapping z-axis.

In cylindrical coordinates, when 𝜓 0, equation (2.15) for H1C3, is 𝑎 𝜓 (7.9)

This can be solved the same way as that for (5.6). The solution is in the same form as (5. 

Hill's vortex and extension (H 2 C 1 )

For Hill's vortex [START_REF] Hill | On a spherical vortex[END_REF] , or a bigger group, the Fraenkel-Norbury family of vortex rings [START_REF] Fraenkel | On steady vortex rings with small cross-section in an ideal fluid[END_REF], [START_REF] Norbury | A family of steady vortex rings[END_REF], [START_REF] Wu | Vorticity and Vortex Dynamics[END_REF] ,

the flow in the "core region" is featured by (a) swirl free and (b) vorticity is proportional to distance to the symmetry axis. In terms of B-H equation, feature (a) requires 𝑣 0, thus 𝐶 0.

Considering the vorticity decomposition, vorticity by (4. Similar to the case of H1C2, as per (2.3) velocity in radial and polar directions are linear with respect to the stream function 𝜓, the particular solution 𝜓 * in (8.2) is linearly adding an extra velocity 𝒗 * in meridian plane to the flow of (5.5). This extra velocity can be calculated from 𝜓 * as 𝑣 * 𝑟 cos 𝜃, 𝑣 * 𝑟 sin 𝜃. Fig. 6 shows such a 𝒗 * when 𝜆 1. It is this extra velocity that turns the potential flows of (5.5) into H2C1 flows whose vorticity is proportional to distance to the symmetry axis.

By itself 𝒗 * is unbounded in far field. As vorticity is proportional to distance to z-axis, vorticity is also unbounded when 𝜌 𝑟 sin 𝜃 approaches infinity. To avoid such infinite velocity and vorticity, a physically feasible H2C1 flow in general should be inside a bounded region, with proper boundary conditions provided by another flow outside (or by a solid boundary). This is the case of the Fraenkel-Norbury vortex solution.

To better discuss, we can consider a more general situation that an H2C1 flow (i.e., solution Obviously, such an "assembled flow" is a candidate for Fraenkel-Norbury vortex ring solution. In other words, we can consider a flow meeting (i)/(ii)/(iii) as an extended or generalized Fraenkel-Norbury vortex solution. In this case, the inner flow does not have to be swirl-free, and the outside flow does not have to be vorticity-free. These make it more general than the original Fraenkel-Norbury solutions.

In general, such a flow could be complicated. But when 𝑛 1, (8.2) can be in simple form and we have a chance to study the inside flow explicitly.

To avoid singularity, we can further set 𝑘 0, 𝑘 1 and 𝑘 0. With that (8.2) becomes

𝜓 𝑟 𝑘 𝑟 sin 𝜃 𝜓 (8.3)
This is a combination of a uniform flow with 𝑈 2𝑘 in z-direction (i.e., 𝜓 𝑘 𝑟 sin 𝜃 as a special case of (5.5)) and the extra velocity 𝒗 * shown in Fig. 6. The polar Fig. 6. Extra velocity in x-z plane brought by 𝜓 * for H2C1 flow angle factor, sin 𝜃, is the same as in the axisymmetric potential flow (5.5) when also with 𝑘 0 and 𝑛 1 (i.e., the potential flow past a sphere).

Boundary of the region, 𝜕𝔸, is defined by 𝜓 0. That is 𝑟 𝑘 𝑟 sin 𝜃 𝜓 . This definition is equivalent to the definition by Fraenkel and Norbury in [5] and [6], which appears as 𝜓 𝑘 (𝑘 is a constant). As 𝜓 is a free constant in the solution, 𝜓 can be set to zero then 𝜓 is a constant on 𝜕𝔸. In this sense, 𝜓 here is equivalent to 𝑘 in [5] or [6].

By this definition, 𝜕𝔸 is significantly impacted by 𝜓 . Without losing generality, assume 𝜆 0, 𝑘 0. Fig. 7 shows some cross sections of 𝜕𝔸 with different values of 𝜓 (when 𝜆 1, 𝑘 1).

When 𝜓 0, 𝜕𝔸 is surface of the sphere 𝑟 . When 𝜓 0, 𝜕𝔸 becomes a "donut shape" inside the sphere. When 𝜓 , 𝜕𝔸 reaches the extreme case of a "thin core circle" in x-y plane, defined by 𝑟 , 𝜃 . The case 𝜓 0 is not feasible as 𝜕𝔸 (shown by the dot-line in Fig. 7) then encloses the whole z-axis and velocity is unbounded. Fig. 7. Cross sections of core region of H2C1 flow vorticity (and velocity) tangent to the sphere surface (i.e., in the azimuthal direction only). This matches vorticity of inside flow and provides a continuous vorticity at the interface. Another obvious difference between the inside and the outside flow is, one is swirl-free and the other one is with swirl.

Switching to cylindrical coordinates, equation for H2C1, 𝜆𝜌

is the inhomogeneous case of equation (5.6). Adding a particular solution, 𝜓 * 𝜓 𝜌 𝑘 𝜌 𝑘 𝑧 to (5.7) gives the solution of (8.5) as

𝜓 𝑘 𝜌𝐽 √𝑘𝜌 𝑘 𝜌𝑌 √𝑘𝜌 𝑘 𝑒 √ 𝑘 𝑒 √ 𝜓 𝜌 𝑘 𝜌 𝑘 𝑧 (8.6)
When 𝜓 0 and 𝑘 1, 𝑘 1, the particular solution becomes 𝜓 * 𝜌 𝜌 𝑧 .

If we consider the special solution of (5.6), 𝜓 𝑘 𝜌 (see the note in Section 5 following (5. 

and in cylindrical coordinates, that is

𝜆𝜌 . ( 8.8) 
These are still inhomogeneous equation of (5.1) and (5.6), respectively. The particular solutions for (8.7) can be found by combining the particular solution of (6.1) and the particular solution of (8.1). That gives

𝜓 * 𝑟 sin 𝜃 𝑟 𝜓 . (8.9) 
Similarly, particular solution for (8.8) can be found by combining the particular solution of (6.3) and the particular solution of (8.5). That yields

𝜓 * 𝜌 𝑘 𝜌 𝑘 𝑧 𝑘 𝜌 1 2 ln 𝜌 1 𝑘 𝑧 𝜓 (8.10) 
Adding (8.9) and (8.10) respectively to (5.5) and (5.7) gives the general solutions of (8.7) and (8.8).

For H2C2, vorticity is neither proportional to distance to z-axis, nor in parallel and proportional to velocity. According to decomposition (4.1) and (4.2), vorticity in this case has non-zero Beltrami vorticity part and non-zero azimuthal vorticity part. Thus, it is in a combined direction of azimuthal direction and direction of the velocity.

Compared to the H1C2 or H2C1 case, the restriction in H2C2 for velocity and vorticity to be bounded and for 𝐶 𝑎 𝜓 𝑎 𝜓 to be real is tighter. A feasible flow in this case would be in a more restricted region compared to that of H1C2 or H2C1 flow.

Hill's vortex with swirl (H 2 C 3 )

The Hill's vortex with swirl, discovered by Moffatt [START_REF] Moffatt | The degree of knottedness of tangled vortex lines[END_REF] and Hicks [START_REF] Hicks | Researches in vortex motion. Part III. On spiral or gyrostatic vortex aggregates[END_REF] , is a solution of the B-H equation with 𝐶 𝑎𝜓, 𝐻 𝐻 𝜆𝜓. This is the case of H2C3 (with 𝜓 0 in C3).

In spherical coordinates, the equation for H2C3 is 𝜆𝑟 sin 𝜃 𝑎 𝜓 𝛼𝜓 (9.1)

Obviously, this is the inhomogeneous case of (7.1), i.e., the equation of H1C3. A particular solution of (9.1) is 𝜓 * 𝑟 sin 𝜃 . Adding it to (7.4) The proof is straightforward. As 𝜓 * is solution of equation (5.1), 𝜓 𝜓 * is a particular solution of (9.5). Thus 𝜓 𝜓 𝜓 * solves (9.5).

This theorem is valid for the cylindrical coordinates case as well. In that case 𝜓 * is solution of (5.6), 𝜓 is solution of (7.9) and 𝜓 𝜓 𝜓 * solves the corresponding equation of (9.5) in cylindrical coordinates, which is 𝑎 𝜓 * 𝑎 𝜓 (9.6) Solution of (5.1) and (5.6) can be in many different forms. Each of them will bring an equation in form of (9.5) or (9.6) (not necessarily a B-H equation). Theoretically, this theorem enables an approach to solve these equations.

(9.2) Equation (9.1) happens to be an example of (9.5). When we take 𝜓 * 𝑟 𝑠𝑖𝑛 𝜃 as solution of (5.1) and apply the theorem, we obtain (9.2). Similarly, (9.3) as an example of (9.6) when we take 𝜓 * 𝜌 as solution of (5.6). Applying the theorem leads to (9.4).

As discussed in Section 7, solution (7.4) In a meridian plane, 𝑣 * and 𝑣 * form a constant velocity 𝑈 in z direction. 𝑣 * has two terms. The first term 𝑟 sin 𝜃 is related to a rigid rotation around z-axis; the second term is the irrotational rotation discussed previously, which has singularity on the z-axis. As the flows discussed in this case are mainly the vortices centered at 𝑟 0, to avoid the singularity, we will assume 𝜓 0 (i.e., without the irrotational rotation) hereafter in this section.

In this case, the extra velocity 𝒗 * represents a special spiral movement: uniform velocity in z-direction and a rigid rotation around z-axis. Adding this to the linear Beltrami flows of (7.4) yields the H2C3 flows in (9.2).

With 𝜓 0, when 𝑛 1, 𝑘 𝐴𝛼 / , 𝑘 0, 𝑘 1, 𝑘 0, (9.2) is exactly the inner flow of Hill's vortex with swirl, presented by Moffatt [START_REF] Moffatt | The degree of knottedness of tangled vortex lines[END_REF] as

𝜓 𝑟 sin 𝜃 𝐴 / 𝐽 / 𝑎𝑟 (9.8) 
Setting constants to other values finds other forms of solutions (9.2).

As nature of rigid rotations, azimuthal velocity 𝑣 * is unbounded in far field. As a result of that, a feasible H2C3 flow should be inside a bounded region with proper condition on the boundary. When 𝑛 1 (and 𝑘 0), (9.2) has a polar angle factor sin 𝜃. This is the same as the irrotational flow past a sphere. Thus, that irrotational flow can provide the boundary conditions.

Taking (9.8) as the special case of (9.2) and matching it with the irrotational flow outside, with some constants re-denoted, the stream function can be written as sin 𝜃 can also be matched by a hollow Beltrami Spherical vertex (similar as in Fig. 8). In this case, the inner flow is still the same as (9.9a), and the outer flow is from (7.4) Some physical background of the H3C3 case can be found in, e.g., [17] and [18].

For these two families (i.e., H3Cn and H4Cn), as H is quadratic function of 𝜓, (homogeneous part of) the first term on RHS explicitly contains 𝜓. Moreover, in the spherical coordinates case, two coordinate variables, 𝑟 and 𝜃, are explicitly coupled with 𝜓 in this term (i.e., 2𝜆 𝑟 sin 𝜃𝜓).

This makes it difficult for variables to be separated. In cylindrical coordinates, this term (i.e., 2𝜆 𝜌 𝜓) involves only one coordinate variable 𝜌. This allows variable separation method to work on the equation.

In the rest of this section, we will concentrate on possible solutions in cylindrical coordinates. The approach to solve the equation in spherical coordinates is yet to be explored.

For H3C3 with 𝜓 0 in C3, equation (2.15) is

2𝜆𝜌 𝜓 𝑎 𝜓 (10.1) 
This is the basic homogeneous equation for the two families. We will start the discussion with this equation.

Let 𝜓 𝑃 𝜌 𝑍 𝑧 and denote the separation constant by 𝑘, (10.1) could be separated to two equations: 𝜌𝑃 𝑃 2𝜆𝜌 𝑘 𝑎 𝜌𝑃 0, 𝑍 𝑘𝑍 0. The former one is solved by

𝑃 𝜌 𝜌 𝑒 𝑘 𝑀 √ 1, 2, √2𝜆𝜌 𝑘 𝑈 √ 1, 2, √2𝜆𝜌 (10.2) 
where 𝑀 𝑎, 𝑏, 𝑥 and 𝑈 𝑎, 𝑏, 𝑥 are Kummer's confluent hypergeometric functions of the first and second kind, respectively [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] .

General solution of (10.1) thus is

𝜓 𝜌 𝑒 𝑘 𝑀 √ 1, 2, √2𝜆𝜌 𝑘 𝑈 √ 1, 2, √2𝜆𝜌 𝑘 𝑒 √ 𝑘 𝑒 √ (10.3)
Similar to (5.7), in (10.3) the section related to z is periodic along z-axis when 𝑘 0 (and is unbounded on one side of z-axis when 𝑧 → ∞ if 𝑘 0). For this reason, most of the feasible flows in these 2 families are periodic along z-axis.

H3C4 with 𝜓 0 has the same form of equation as (10.1), thus is also solved by (10.3) (with some constants re-denoted).

When 𝑎 0, (10.1) reduces to equation of H3C1 as 2𝜆𝜌 𝜓 (10.4) and ( 10.3) reduces to solution of (10.4) as

𝜓 𝜌 𝑒 𝑘 𝑀 √ 1, 2, √2𝜆𝜌 𝑘 𝑈 √ 1, 2, √2𝜆𝜌 𝑘 𝑒 √ 𝑘 𝑒 √ (10.5) 
Equation ( 10.1) can also be solved by a method developed by Bogoyavlenskij [START_REF] Bogoyavlenskij | Astrophysical jets as exact plasma equilibria[END_REF] . It is a variable separation method with series of variable replacements. The solution is a special case of (10.3) when variables are properly replaced and constants are properly set.

For H3C2, a constant inhomogeneous term is added to RHS of (10.4) By replacing the unknown function 𝜓 𝜌, 𝑧 with Φ 𝜌, 𝑧 , the inhomogeneous term 𝜆 𝜌 will disappear, and equations (10.8) and (10.9) convert to equation of Φ 𝜌, 𝑧 in the same form as (10.4) and (10.6), respectively, thus they can be solved the same way as for (10.4) and (10.6).

Actually, the cases discussed so far in this section (H3C1, H3C2, H4C1, H4C2, H3C3 with 𝜓 0, H3C4 with 𝑎 0) are the only cases in H3Cn and H4Cn families with known solution in this paper. For the rest of cases in these two families, i.e., H3C3 with 𝜓 0, H3C4 with 𝑎 0, H4C3, and H4C4, due to difficulty on finding the pedicular solutions, the equations are still unsolved in this paper.

Considering these 4 cases with the model equation (3.2) in Section 3, on the RHS, both of the homogeneous terms, Λ and A , exist, together with one or both of the inhomogeneous terms, Λ and A . Solution of the homogeneous equation with Λ and A (i.e., equation (10.1)) has been obtained as (10.2). So, the question is to find the pedicular solution in these cases.

Actually, by replacement 𝜓 𝜌, 𝑧 → Φ 𝜌, 𝑧 , the Λ 𝜌 term will disappear; by replacement 𝜓 𝜌, 𝑧 → Φ 𝜌, 𝑧 , the A term will disappear. By these, one of the two inhomogeneous terms (but not both) can be eliminated. If we have an approach to find the pedicular solution for the equation with both Λ and A terns and either of Λ and A terns, adding that pedicular solution to (10.3) will solve that equation (and hence solve all the four cases). However, the approach to find such a pedicular solution is still lacking in this paper.

Summary and Discussion

As discussed in Section 3, any equation for an HmCn case can be written in (3.1) or (3.2)

form. With that, when Λ and A terms both vanish, the equation is homogeneous (and is solved by variable separation mothed). When at least one of Λ and A terms is non-zero, the equation is inhomogeneous and is to be solved by adding a pedicular solution to solution of the related homogeneous equation. Basically, this is the approach taken in this paper.

For convenience, a summary is given in Table 1 for the combinations of these 4 terms and the related forms of function 𝐻 and 𝐶, as well as the known solution of each case.

In the table, presentation/absence of the four terms are indicated by "1"/"0" on the "RHS terms" column. 𝜓 * is representing the particular solution for each inhomogeneous equation. As

𝜓 in C3 and C4 has big impacts on the equation and solution for the H1, H3 and H4 families, cases of 𝜓 0 and 𝜓 0 are listed separately. With that, there are totally 20 cases in the 
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  Mathematically, function 𝐶 can change to the opposite sign without impacting the equation. If 𝜓 is a solution of the B-H equation related to 𝐶 𝜓 , 𝜓 is also a solution of the equation related to 𝐶 𝜓 . Physically, this implies that flows governed by B-H equation are "two-way flows". The azimuthal velocity 𝑣 or 𝑣 can change to the opposite direction and the flow still satisfies the same equation. Equivalently speaking, for each flow as a solution of B-H equation, there exists its chiral symmetric flow (with opposite azimuthal velocity) to form a pair. From vorticity decomposition point of view, when 𝐶 𝜓 changes sign (and 𝜓 remains the same), velocity 𝒗 𝒆 𝒆 𝒆 changes chirality (i.e., from 𝑣 , 𝑣 , 𝑣 to 𝑣 , 𝑣 , 𝑣 , but Beltrami vorticity 𝝎 𝑩 𝒆 𝒆 𝒆 undergoes a half-round rotation along 𝒆 direction without changing chirality (i.e., from 𝜔 , 𝜔 , 𝜔 to 𝜔 , 𝜔 , 𝜔 ). At the same time, azimuthal vorticity 𝝎 𝑨 𝑟 sin 𝜃 𝒆 remains unchanged. Total vorticity 𝝎 𝝎 𝑩 𝝎 𝑨 thus changes to a new vector that in general is neither rotational symmetric nor chiral symmetric to the original vorticity before 𝐶 changes sign. Despite the change on vorticity however, Lamb vector remains the same.

Fig. 1 .

 1 Fig. 1. 𝑣 * in x-z plane brought by 𝜓 * for H1C2 flow

Fig. 3 .

 3 Fig. 3. Stream function contours of some Beltrami spherical vortices (in x-z plane)

( 7 . 5 )Fig. 5 .

 755 Fig. 5. High-order Beltrami spherical vortices surrounded by potential flow

  7), with constant 𝑘 in the 𝑃 𝜌 or in 𝑍 𝑧 section of (5.7) biased by 𝑎 . That is, 𝜓 𝑘 𝜌𝐽 √𝑘𝜌 𝑘 𝜌𝑌 √𝑘𝜌 𝑘 𝑒 √ 𝑘 𝑒 √ (7.10) Same as in the spherical coordinates case, adding 𝜓 * to (7.10) gives the solution to the 𝜓 0 case for H1C3 in cylindrical coordinates. Mathematically, H1C4 and H1C3 have the same form of equation, thus they share the same solutions. They also have the same 𝑣 and 𝑣 (or same 𝑣 and 𝑣 in cylindrical coordinates), but as these 2 cases have different function 𝐶, azimuthal velocity 𝑣 and vorticity are different. As discussed in Section 4, the flow in H1C4 is a non-linear Beltrami flow (rather than a linear Beltrami flow for H1C3).

( 8 . 2 )

 82 ) exists inside an axisymmetric domain, 𝔸, that (i) on the boundary 𝜕𝔸 the stream function 𝜓 vanishes, and (ii) outside 𝔸 (i.e., in domain 𝑅 𝔸) exists an axisymmetric flow whose 𝜓 and ∇𝜓 are continuous with that of the inside flow at 𝜕𝔸, and (iii) the inside flow has no singularity in 𝔸, the outside flow has no singularity in 𝑅 𝔸 (including 𝑟 ∞).

Fig. 8 .

 8 Fig. 8. Hill's vortex (without swirl) with hollow Beltrami spherical vortex

Fig. 9 .

 9 Fig. 9. Multi-layer of Hill's vortex with swirl

  (a) Hill's Vortex with swirl in whole space (b) 2-Layer Hill vortex with swirl in potential flow

  Fig. 10. Hill's vortex (with swirl) with hollow Beltrami vortex

  

  

  

  the variable from 𝜃 to cos 𝜃, we have

		(H2): 𝐻 𝐻	𝜆𝜓, (then 𝑟 sin 𝜃	𝜆𝑟 sin 𝜃, 𝜌	𝜆𝜌 ),
		(H3): 𝐻 𝐻	𝜆𝜓 , (then 𝑟 sin 𝜃	2𝜆𝑟 sin 𝜃 𝜓, 𝜌	2𝜆𝜌 𝜓).
		(H4): 𝐻 𝐻	𝜆 𝜓 𝜆 𝜓 , (then 𝑟 sin 𝜃	sin 𝜃 2𝜆 𝑟 sin 𝜃 𝜓 𝜆 𝑟 sin 𝜃, and
	sin 𝜃 𝜌	cos 𝜃 2𝜆 𝜌 𝜓 𝜆 𝜌 ).	. (2.13) becomes
	𝑟 sin 𝜃 For the second term to be linear, we can have	𝐶	(2.14)
	Compared to (2.13), LHS of (2.14) only has 2 terms. Considering sin 𝜃 1 cos 𝜃, (C1): 𝐶 𝛼𝜓 , (then 𝐶 0),
		(C2): 𝐶 𝑎 𝜓	𝑎 𝜓, (then 𝐶	𝑎 𝑎	𝑎, re-denoting 𝑎 ≡ 𝑎 𝑎 ),
		(C3): 𝐶 𝜓	𝛼𝜓, (then 𝐶	𝑎 𝜓 𝛼𝜓 ),
					0, 𝜌	0 ,

(2.14) has a simple form with respect to the variable cos 𝜃. This is convenient. A lot of solutions in this paper are based on this form of the equation.

The above derivation of the equation also applies to the case in cylindrical coordinate system 𝜌, 𝜙, 𝑧 . In that, equation

(2.13) 

or (2.14) takes the well-known form as 𝜌 𝐶 (2.15) This equation, either in the form of (2.13), (2.14) or (2.15), is the governing equation for ideal incompressible axisymmetric steady flows. For a specific case of the functions 𝐻 𝜓 and 𝐶 𝜓 , if we can find the stream function 𝜓 satisfying the equation, velocity can be calculated and Euler equation (2.2) is solved. In general, however, this could be difficult. Mathematically, 𝐻 𝜓 and 𝐶 𝜓 can be arbitrary (smooth) functions of 𝜓. They can make the equation complicated. Nevertheless, when 𝐻 𝜓 and 𝐶 𝜓 are in certain forms, the equation can be linear and solvable. 3. Linear cases of Bragg-Hawthorne equation LHS of the equation, either in (2.13), (2.14) or (2.15), is linear with respect to the stream function. If the two terms on the RHS are also linear, the equation is linear. Assuming 𝐻 , 𝜓 , 𝜆, 𝜆 , 𝜆 , 𝑎 and 𝑎 , 𝑎 , 𝑎 , 𝑎 are constants, for the first term on RHS to be linear, we have (H1): 𝐻 𝐻 , (then 𝑟 sin 𝜃 (C4): 𝐶 𝑎 𝜓 𝑎 𝜓 𝑎 𝜓 , (then 𝐶 𝑎 𝑎 𝜓 𝑎 𝑎 𝑎𝜓 𝑎 , redenoting 𝑎 ≡ 𝑎 𝑎 , 𝑎 ≡ 𝑎 𝑎 ).

  In other words, 𝐶 indicates how the fluid is moving around the symmetric axis. It is intuitive to expect that 𝐶 has close relation with vorticity of the flow.For convenience, we will further denote 𝝎 𝑩 ≡ 𝒗, 𝝎 𝑨 ≡ 𝑟 sin 𝜃 𝒆 (or 𝝎 𝑨 ≡ 𝜌 𝒆 𝝓 in cylindrical coordinates), and call 𝝎 𝑩 and 𝝎 𝑨 Beltrami vorticity and azimuthal vorticity, respectively. Total vorticity then is sum of these two vectors, i.e., 𝝎 𝝎 𝑩 𝝎 𝑨 .

	Bernoulli function 𝐻, on the other hand, is the inverse gradient of Lamb vector, which is just
	the cross-product of velocity and vorticity. It is also natural to expect that 𝐻 is closely related to
	vorticity. As Beltrami vorticity 𝝎 𝑩 is in parallel to velocity, it does not impact Lamb vector. We can
	With (2.3), (2.9) and (2.13), vorticity in (2.5) can be rewritten as just count on the azimuthal vorticity 𝝎 𝑨 when calculating Lamb vector. In other words,
	regardless of 𝝎 𝑩 , we always have 𝑳 𝒗 𝝎 𝑨		𝑟 sin 𝜃 𝒗 𝒆 (or 𝑳	𝜌 𝒗 𝒆 in
	𝝎 cylindrical coordinates).	𝒆	𝒆	𝒆	𝑟 sin 𝜃 𝒆
	which is also				
	𝝎	𝒗 𝑟 sin 𝜃 𝒆				(4.1)
	Same relation exists as well in cylindrical coordinates, where we have
	𝝎	𝒗 𝜌 𝒆 𝝓				(4.2)
	Either (4.1) or (4.2) indicates that vorticity 𝝎 can be split into two portions. One is in the
	velocity direction, proportional to velocity with a scale factor . The second portion is on the
	azimuthal direction, with magnitude proportional to	(and to the distance to z-axis).
	In such a sense, it can be considered that functions 𝐻 and 𝐶 construct vorticity, or more
	specifically, derivatives of 𝐻 and 𝐶 compose vorticity in the flow.	decides vorticity in the
	direction of velocity;	decides vorticity in azimuthal direction. Although these two directions
	in general are not orthogonal, these two components make up vorticity at each point in the flow.
	(4.1) or (4.2) thus can be consider as a decomposition of the vorticity. It applies to all flows
	that B-H equation stands (i.e., all axisymmetric steady flows of incompressible ideal fluid).
	Actually, the relations of 𝐻 and 𝐶 to the vorticity components are obvious and are often
	implied in derivation of equations (see, e.g., Batchelor [9], §7.5). But explicitly putting them in
	the form of (4.1) or (4.2) straightforwardly shows the impacts of 𝐻 and 𝐶 to vorticity and to the
	flow.				

  𝑘 𝑒 √ . The former one can be converted to a Bessel equation of 𝐹 𝑥 (of order 1) by further replacing 𝛲 𝜌 by 𝑥𝐹 𝑥 (with 𝑥 √𝑘𝜌 , thus is solved by linear combination of the Bessel function of the first and second kind, 𝐽 and 𝑌 . Overall, the general solution of (5.6) is

	Case H1C1 can also be solved in cylindrical coordinates. Equation (2.15) for H1C1 is
			0		(5.6)
	Let 𝜓 𝜌, 𝑧	𝛲 𝜌 𝛧 𝑧 , (5.6) can be separated to two equations as 𝜌𝑃 𝑃 𝑘𝜌𝑃=0 and
	𝑍 𝑘𝑍 0 (𝑘 is the separation constant). The latter one is solved by 𝛧 𝑧	𝑘 𝑒 √
	𝜓	𝑘 𝜌𝐽 √𝑘𝜌	𝑘 𝜌𝑌 √𝑘𝜌 𝑘 𝑒 √	𝑘 𝑒 √	(5.7)

Section 8, which is the swirled case of Fraenkel-Norbury solutions.)

  sin 𝜃 𝑃 cos 𝜃 , (𝑟 𝐷, 𝐷 is one of the zeros of 𝐽 ⁄ 𝑟 ) (7.8a)

	𝜓 𝐾	⁄	𝐷	/ 𝑟	𝐷 / 𝑟	sin 𝜃 𝑃 cos 𝜃 , (𝑟 𝐷).	(7.8b)

When 𝑛 1, (7.8) simplifies to (7.7) (with some constants re-denoted). Two examples of (7.8) are shown in Fig.

5

. Note that when 𝑛 1 the outside flow has unbounded velocity in far field. Such a vortex is more of a theoretical model, as physical feasibility is limited due to the outside flow.

  1) becomes 𝝎 𝑟 sin 𝜃 𝒆 (or 𝝎 meeting (a) and (b) hence can be described by 𝐻 𝐻 𝜆𝜓 and 𝐶 0. Obviously, this is a subset of H2C1.As discussed in Section 5, for any HmC1 case, value of constant 𝐶 is independent to the equation. Mathematically, a solution in such case is compatible with arbitrary constant 𝐶. A nonzero 𝐶 brings non-zero 𝑣 which is an irrotational rotation around the z-axis (and is singular in the z-axis, thus is feasible only in a region not intersecting z-axis). Theoretically speaking (i.e., regardless of the singularity), feature (b) does not have to be paired with feature (a) in a flow.For any flow of H2C1, (b) is always valid. In this sense, the inner flow in Fraenkel-Norbury family can be considered as the swirl-free subset of H2C1 (while Hill's vortex is a special case in the Fraenkel-Norbury family).

	Equation (2.14) for H2C1 is			
				𝜆𝑟 sin 𝜃		(8.1)
	This is equation (5.1) plus an inhomogeneous term on the RHS. A particular solution for
	(8.1) is 𝜓 *		𝑟 sin 𝜃 𝜓 . Adding it to the solution of (5.1) gives the solution of (8.1) as
	𝜓	𝑘 𝑟	𝑘 𝑟	sin 𝜃 𝑘 𝑃 cos 𝜃	𝑘 𝑄 cos 𝜃	𝑟 sin 𝜃 𝜓	(8.2)

  represents a family of Beltrami spherical vortices.

	𝜓 * in (9.2) is adding to them an extra velocity 𝒗 * , which by (2.3) can be calculated as	
	𝑣 *	cos 𝜃, 𝑣 *	sin 𝜃 , 𝑣 *	𝑟 sin 𝜃	(9.7)

  with dedicated constants to have stream function and its gradience matching the inner flow at the interface:

	𝜓 𝐴	cos 𝑎𝑟	𝑟 sin 𝜃, (𝑟 𝐷),	(9.10a)
	(𝐷 is a positive solution of	cos 𝑎𝑟	𝑟	0 as an equation of 𝑟),
	𝜓 𝐾	cos 𝑏𝑟 sin 𝜃, (𝑟 𝐷),		(9.10b)
	(𝐾		𝑎𝐴 sin 𝑎𝐷 , 𝑏 is a solution of	cos 𝑏𝐷	0).
	An example of such vortices is shown in Fig. 10. (with 𝐴 1, 𝑎 1 and 𝜆 0.01, 𝐷
	7.1798, 𝑏 1.0760).			

Table 1 .

 1 table, of which 4 (in the last 4 rows) are still unsolved. By nature of the variable separation method, solutions can be different when variables are separated in different ways (e.g., in different coordinate systems). Thus, other ways to separate variables may find other solutions. The solutions obtained so far in this paper are not expected to cover all possible solutions. Summary of equation forms and solutions

	H/C function	RHS terms	spherical coordinates	cylindrical coordinates
	(H m C n )	Λ Λ A A	Equation	Solution	Equation	Solution
	H 1 C 1 H 1 C 2	0 0 0 0 0 0 0 1	(5.1) (6.1)	(5.5) (5.5) + 𝜓 * = (6.2)	(5.6) (6.3)	(5.7) (5.7) + 𝜓 *
	H 1 C 3 , 𝜓	0 0 0 1 0	(7.1)	(7.4)	(7.9)	(7.10)
	H 1 C 3 , 𝜓	0 0 0 1 1 (7.1) + 𝛼𝜓	(7.4) + 𝜓 *	(7.9)	(7.10) + 𝜓 *
	H 1 C 4 , 𝛼	0 0 0 1 0	(7.1)	(7.4)	(7.9)	(7.10)
	H 1 C 4 , 𝛼 H 2 C 1	0 0 0 1 1 (7.1) + 𝛼𝜓 0 1 0 0 (8.1)	(7.4) + 𝜓 * (5.5) + 𝜓 * = (8.2)	(7.9) (8.5)	(7.10) + 𝜓 * (5.7) + 𝜓 * = (8.6)
	H 2 C 2	0 1 0 1	(8.7)	(5.5) + (8.9)	(8.8)	(5.7) +(8.10)
	H 2 C 3	0 1 1 1	(9.1)	(7.4) + 𝜓 * = (9.2)	(9.3)	(7.10) + 𝜓 * = (9.4)
	H 2 C 4	0 1 1 1	(9.1)	(7.4) + 𝜓 * = (9.2)	(9.3)	(7.10) + 𝜓 * = (9.4)
	H 3 C 1	1 0 0 0			(10.4)	(10.5)
	H 3 C 2	1 0 0 1			(10.6)	(10.5) + (10.7)
	H 3 C 3 , 𝜓 H 3 C 4 , 𝛼	0 1 0 1 0 0 1 0 1 0	(yet to be solved)	(10.1) (10.1)	(10.3) (10.3)
	H 4 C 1	1 1 0 0			(10.8)	(10.5)
	H 4 C 2	1 1 0 1			(10.9)	(10.5) + (10.7)
	H 3 C 3 , 𝜓	0 1 1 1 1				
	H 3 C 4 , 𝛼 H 4 C 3	0 1 1 1 1 1 1 1 1	(yet to be solved)	(10.10) or (10.11)	(10.5) + 𝜓 * (?) (𝜓 * is yet to be found)
	H 4 C 4	1 1 1 1				

As the major attention in this paper is on general mathematical solutions, only a few obvious specific flows were discussed as examples. By setting constants to other values, there could be more specific flows of interest. However, physical feasibility (and stability) of them is to be carefully investigated, especially for those "assembled vortices".

When 0 𝜓 , as the core region is avoiding z-axis, the flow inside the core region can have any irrotational rotation (i.e., with any non-zero 𝐶 and azimuthal velocity 𝑣 ).

This is a swirled case of the (generalized) Fraenkel-Norbury solutions. In this case, as a segment of z-axis is involved, there should be no irrotational rotation in the core region (so to avoid singular velocity). In other words, Hill's vortex (as the solution of H2C1 with spherical core region) is always swirl-free. In comparison, the case of Hill's vortex with swirl, found by Moffat [START_REF] Moffatt | The degree of knottedness of tangled vortex lines[END_REF] , is actually a solution of H2C3, which will be discussed in next section.

In that case, vorticity is no longer proportional to distance to z-axis, thus it does not belong to the Fraenkel-Norbury family of vortex rings.

When 𝜓 0, the outside flow with 𝜓 and ∇𝜓 matching the inside flow at the donut-shape boundary could be complicated. But when 𝜓 0, as 𝜕𝔸 is a sphere surface with polar angle factor sin 𝜃 for stream function, a potential flow past that sphere matches well the inside flow.

That forms the well-known case of Hill's vortex surrounded by uniform potential flow.

Recall that the first order Beltrami vortex (7.7a) also has polar angle factor sin 𝜃 on the layer interfaces. It is also possible to match Hill's vortex on 𝜕𝔸 with a "hollow" Beltrami vortex outside. In that case, the stream function can be written as 𝜓 𝐾 cos 𝑟 sin 𝜃, (𝑟 𝐷, 𝐷 is one of the solutions of 𝑟 tan 𝑟),

Fig. 8 shows an example of such assembled vortices (with 𝐾 1 and 𝐷 4.49).

The stream function contours in Fig. 8 appear to be similar to that of the first order Beltrami spherical vortex (Fig. 3). But certain properties are quite different inside and outside the interface (shown by the dark line in Fig. 8). Vorticity inside is only in azimuthal direction, with magnitude proportional to distance to the z-axis; vorticity outside is in parallel to velocity at each point, with magnitude proportional to magnitude of velocity. On the interface, outside flow has