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Abstract. We define cut-free display calculi for nominal tense logics ex-
tending the minimal nominal tense logic (MNTL) by addition of primitive
axioms. To do so, we use a translation of MNTL into the minimal tense
logic of inequality (MTL6=) which is known to be properly displayable by
application of Kracht’s results. The rules of the display calculus δMNTL
for MNTL mimic those of the display calculus δMTL6= for MTL6=. Since δMNTL
does not satisfy Belnap’s condition (C8), we extend Wansing’s strong
normalisation theorem to get a similar theorem for any extension of δMNTL
by addition of structural rules satisfying Belnap’s conditions (C2)-(C7).
Finally, we show a weak Sahlqvist-style theorem for extensions of MNTL,
and by Kracht’s techniques, deduce that these Sahlqvist extensions of
δMNTL also admit cut-free display calculi.

1 Introduction

Background: The addition of names (also called nominals) to modal logics has
been investigated recently with different motivations; see e.g. [Or lo84,PT85,Bla90].
A name is usually understood as an atomic proposition that holds true in a
unique world of a Kripke model. Most of the time, the addition of names is in-
tended to increase the expressive power of the initial logics. For instance, there
is a tense formula with names that characterises the class of irreflexive frames
[Bla93] although there is no such formula without names. Another remarkable
breakthrough due to the inclusion of names is the ability to define the intersection
operator (see e.g. [PT91]) although it is known that intersection is not modally
definable in the standard modal language [GT75]. Adding the difference operator
[6=], which allows access to worlds different from the current world, is another
way to obtain names (see e.g. [Koy92,Rij92,Ven93]). As far as expressive power
is concerned, adding [ 6=] is more powerful than adding only names: in [GG93],
the relationships between names and [6=] are fully established with respect to
definability. So most of the literature for modal logics with names concerns their
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expressive power, decidability, complexity (see e.g. [Bla90,Rij93,GG93,PT91])
and Hilbert-style systems [Bla90,PT91,Ven93,Rij93].

Display Logic: Display Logic (abbreviated by DL) is a proof-theoretical frame-
work due to Belnap [Bel82] that generalises the structural language of Gentzen’s
sequents by using multiple structural connectives instead of Gentzen’s comma.
Display calculi enjoy various nice properties. The first is that any display cal-
culus that obeys eight simple conditions C1-C8 (see the appendix) also enjoys
a cut-elimination theorem [Bel82]. The second is that, in the rules introducing
logical connectives, the principal formula is alone as an antecedent or succedent,
thereby giving a clear definition of the introduced connective. Consequently, in-
teractions between logical connectives are reduced to a minimum. All of this is
possible because any occurrence of a structure in a sequent can be displayed
either as the entire antecedent or as the entire succedent of some sequent struc-
turally equivalent to the initial sequent.

Our contribution: We define cut-free display calculi for two classes of exten-
sions of the minimal nominal tense logic (MNTL) [Bla90], by addition of two types
of primitive axioms in the sense of [Kra96]. These display calculi break (C8). We
extend various results for displayed tense logics (including strong normalisation)
from [Wan94,Kra96,Wan98] to nominals. Our main contribution is to show that
Belnap’s condition C8 can be weakened while preserving cut-elimination.

We first define the basic display calculus δMNTL by using a natural translation
from MNTL into MTL6=, the minimal tense logic augmented with the difference
operator. Indeed, MTL6= is properly displayable in the sense of [Kra96] thanks to
the Hilbert-style axiomatisation given in [Rij92] (see also [Seg81,Koy92]). The
rules for δMNTL mimic those of δMTL6=, the display calculus for MTL6=. We prove
soundness of δMNTL by showing that the rules preserve MNTL-validity. We prove
completeness of δMNTL by showing that δMNTL can simulate the rules of the
Hilbert-style calculus `MNTL for MNTL given in [Bla90]. Cut-elimination cannot be
proved via that proof because cut is needed to simulate the modus ponens rule.

An interesting (and at first glance very unpleasant) feature of δMNTL is that it
does not satisfy the condition (C8) [Bel82] which is crucial for the cut-elimination
proofs from [Bel82,Wan98]. We show that the failure of (C8) is caused by the in-
troduction rules for nominals and then show a limited cut-elimination theorem
by observing that one of these rules is not really necessary. By appropriately
modifying a proof from [Wan98], we then prove a strong normalisation theorem
for any extension of δMNTL obtained by the addition of structural rules satisfy-
ing the conditions (C2)-(C7) from [Bel82] (condition (C8) only makes sense for
logical rules). From a technical viewpoint, we have modified the definitions of
parametric and principal moves to view a sequent in a proof as its equivalence
class with respect to structural equivalence. Consequently, a display postulate
inference in a proof does not add to the size of the proof. This can be generalised
for any invertible structural rule with a single premiss.

We then have to make a connection between axiomatic extensions of `MNTL
and corresponding extensions of δMNTL obtained by adding structural rules à
la Kracht [Kra96]. Since δMNTL is based upon δMTL6=, we proceed via axiomatic



extensions of 6̀=, the Hilbert-style calculus for MTL6=. Many such extensions of
MTL6= require the powerful (and sometimes redundant) irreflexivity rule (see e.g.
[Gab81]) and, unfortunately, the corresponding rule in DL lacks various nice
properties of standard display calculi. Although it is not always known when the
irreflexivity rule is really needed, it is not needed in the axiomatisation ` 6= of
MTL6=. We therefore prove cut-elimination and completeness of δMNTL with respect
to primitive axiomatic extensions of `MTL6= which do not require the irreflexivity
rule, by backward translation (Theorem 10). These primitive axioms possibly
contain the difference operator, which is foreign to MNTL.

Finally, although many extensions of MNTL are not canonical [Bla90], we show
a weak Sahlqvist-style theorem for nominal tense logics. This allows us to define
cut-free display calculi for any extension of `MNTL by addition of another class
of primitive axioms using only the language of MNTL, and hence without the
difference operator. Furthermore, we can characterise the semantical extensions
of MNTL which correspond to these calculi.

Related work: Existing proof systems for nominal tense logics [Bla90,Bla93]
or for modal logics with the difference operator [Seg81,Koy92,Rij92,Ven93] are
mostly Hilbert-style. And although the prefixed tableaux defined in [BD97] for
several modal logics with the difference operator give decision procedures, a cut
rule present in these calculi is not eliminable in many cases (for reasons similar
to those that apply to calculi from [dM94]). Gentzen-style calculi for similarity
logics with names have been defined in [Kon97] where the nominals play the rôle
of prefixes in an elegant manner. These calculi contain no prefixed formulae as
such since the language of the logic already contains names.

Our treatment of nominals in δMNTL is different since we instead use the
double nature of a nominal: as atomic proposition i and as necessity formula
[6=]¬i. In that sense, it is similar to the treatment of atomic propositions in
display calculi for intuitionistic logic in [Gor95]. In [Bla98,Dem99], sequent cal-
culi for nominal tense logics are given in which the nominals roughly play the
role of labels. Cut-free display calculi have also been defined for substructural
logics (see e.g. [Gor98]) and for modal and polymodal logics [Wan94,Kra96]. In
[Ven93], a Sahlqvist theorem for tense logics with the difference operator has
been established for calculi with the irreflexivity rule (see also [Rij93]).

Plan of the paper: In Section 2, we recall the definitions of the logics under
study [Bla90,Rij92,Ven93]. In Section 3, we define the cut-free display calculus
δMNTL for MNTL, show its completeness and prove a (weak) cut-elimination the-
orem. In Section 4, we prove a strong normalisation theorem for any reasonable
extension of δMNTL although δMNTL does not satisfy Belnap’s condition (C8). In
Section 5 we establish a weak Sahlqvist-style theorem and, by using [Kra96],
define cut-free display calculi for extensions of MNTL. Space limits preclude de-
tailed proofs, but these can be found in the full version [DG98a]. Belnap’s eight
conditions, and our weaker version of (C8), can be found in the appendix.



2 Nominal Tense Logics

Given a set PRP = {p0, p1, p2, . . .} of atomic propositions and a set NOM =
{i0, i1, . . .} of names, the formulas φ ∈ NTL(G,H, [ 6=]) are inductively defined
as follows for pj ∈ PRP, ik ∈ NOM:

φ ::= > | ⊥ | pj | ik | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ¬φ | Hφ | Gφ | [6=]φ

Standard abbreviations include ⇔, 〈6=〉, F , P . For instance Fφ
def
= ¬G¬φ.

For any sequence OP from {H,G, [ 6=]}, we write NTL(OP) to denote the frag-
ment of NTL(G,H, [6=]) with the unary modal operators from OP. Similarly, TL(OP)
denotes the fragment of NTL(OP) with no names. In the rest of the paper, we study
logics whose languages are strict fragments of NTL(G,H, [6=]) (the whole language
contains all that we need in the paper). For any φ ∈ NTL(G,H, [ 6=]), we write
dg(φ) to denote the degree of φ: that is the number of occurrences of members of
PRP∪NOM∪{>,⊥}∪{¬,∧,∨,⇒, G,H, [6=]}. For instance dg(⊥⇒ (i0∨¬p1)) = 6.

A modal frame (W,R) is a pair where W is a non-empty set and R is a
binary relation over W , with R−1 the converse of R. We write Fr for the set

of all modal frames and use R(w)
def
= {v ∈ W : (w, v) ∈ R}. A model is a triple

(W,R,m) such that (W,R) is a frame, P(W ) is the set of all subsets of W , and
m is a mapping m : PRP ∪ NOM→ P(W ) where for i ∈ NOM, m(i) is a singleton.

Let M = (W,R,m) be a model and w ∈ W . As usual, the formula φ is

satisfied by the world w ∈W inM def⇔ M, w |= φ where the satisfaction relation
|= is inductively defined as follows:

M, w |= p
def⇔ w ∈ m(p), for every p ∈ PRP ∪ NOM;

M, w |= Gφ
def⇔ for every v ∈ R(w), M, v |= φ;

M, w |= Hφ
def⇔ for every v ∈ R−1(w), M, v |= φ;

M, w |= [6=]φ
def⇔ for every v 6= w, M, v |= φ.

We omit the standard conditions for the propositional connectives and the

logical constants. A formula φ is true in a model M (written M |= φ)
def⇔ for

every w ∈ W, M, w |= φ. A formula φ is true in a frame F (written F |= φ)
def⇔ φ is true in every model based on F . By a logic L we understand a pair
〈L, C〉 consisting of a language L ⊆ NTL(H,G, [ 6=]) and a nonempty set of frames

C ⊆ Fr. A formula φ ∈ L is L-valid
def⇔ φ is true in all the models based on the

frames in C. A formula φ ∈ L is L-satisfiable
def⇔ ¬φ is not L-valid.

The minimal nominal tense logic is MNTL
def
= 〈NTL(H,G), F r〉. The minimal

tense logic of inequality is MTL6=
def
= 〈TL(G,H, [6=]), F r〉. Moreover, for any formula

φ of some language L ⊆ NTL(H,G, [6=]) with names [resp. without names], we
write NTLφ [resp. TLφ] to denote the logic 〈L, {F ∈ Fr : F |= φ}〉.

By a universal modality [resp. existential modality] σ, we mean a (possibly
empty) finite sequence of elements from {G,H} [resp. {F, P}]. We write ` 6= to
denote the axiomatic system defined in [Rij93, pp. 36-37] for MTL6=. We write
`MNTL for the smallest subset of NTL(G,H) closed under modus ponens, closed
under necessitation for G and H, and containing every formula of the form



- the tautologies of the propositional calculus;
- (G(φ⇒ ψ) ∧Gφ)⇒ Gψ; (H(φ⇒ ψ) ∧Hφ)⇒ Hψ; φ⇒ HFφ; φ⇒ GPφ;
- i ∧ φ⇒ σ(i⇒ φ) where i ∈ NOM and σ is any universal modality.

We write ` ψ to mean that ψ is derivable in the Hilbert-style calculus `. We
write ` + φ to denote the minimal extension of the axiomatic system ` by
adding all formulae of the form φ (thus φ is just an axiom schema).

Theorem 1. [Bla90] Any φ ∈ NTL(H,G) is MNTL-valid iff `MNTL φ.

3 A Display Calculus for MNTL

As stated previously there are numerous existing display calculi. We use Wans-
ing’s [Wan94] formulation since it is tailored to modal logics. On the structural
side, we have the structural connectives ∗ (unary), ◦ (binary), I (nullary), •
(unary) and • 6= (unary). A structure X ∈ struc(δMNTL) is inductively defined as

X ::= φ | ∗X | X1 ◦ X2 | I | •X | • 6=X

for φ ∈ NTL(G,H). A logical interpretation of the structural connectives can be
found in the proof of the forthcoming Theorem 3. A sequent is defined as an
expression of the form X ` Y with X the antecedent and Y the succedent. For any
finite set S of structures, we write NOM(S) for the set of names from NOM that
occur in S. We write ϕS to denote the formula (in TL(G,H, [ 6=])) below:∧

ik∈NOM(S)

(p2×k+1 ∧ [ 6=]¬p2×k+1) ∨ 〈6=〉(p2×k+1 ∧ [ 6=]¬p2×k+1)

The rules of δMNTL are those in Figures 1-5.
The display postulates (reversible rules) in Figure 2 deal with the manipula-

tion of structural connectives. In what follows, we write

s
s′

(dp)

to denote that the sequent s′ is obtained from the sequent s by an unspecified
finite number (possibly zero) of applications of display postulates.

(Id) p ` p (Id′) i ` i
X ` φ φ ` Y

X ` Y
(cut)

Fig. 1. Fundamental logical axioms and cut rule



X ◦ Y ` Z

X ` Z ◦ ∗Y

X ◦ Y ` Z

Y ` ∗X ◦ Z

X ` Y ◦ Z

X ◦ ∗Z ` Y

X ` Y ◦ Z

∗Y ◦ X ` Z

∗X ` Y

∗Y ` X

X ` ∗Y

Y ` ∗X

∗ ∗ X ` Y

X ` Y

X ` ∗ ∗ Y

X ` Y

X ` • 6=Y

•6=X ` Y

X ` •Y

•X ` Y

Fig. 2. Display postulates

In any structure Z, the structure X occurs negatively [resp. positively]
def⇔ X

occurs in the scope of an odd number [resp. an even number] of occurrences of
∗ [Bel82]. In a sequent V ` W, an occurrence of X is an antecedent part [resp.

succedent part]
def⇔ it occurs positively in V [resp. negatively in W] or it occurs

negatively in W [resp. positively in V] [Bel82]. Two sequents X ` Y and X′ ` Y′ are

said to be structurally equivalent
def⇔ there is a derivation of the first sequent

from the second (and vice-versa) using only the display postulates.

Theorem 2. [Bel82] For every sequent V ` W and every antecedent [resp. succe-
dent] part X of V ` W, there is a structurally equivalent sequent X ` Y [resp. Y ` X]
that has X (alone) as its antecedent [resp. succedent]. X is said to be displayed in
X ` Y [resp. Y ` X].

A structural rule contains only structural connectives and structure variables

like X, Y, Z. Following [Kra96], a formula is said to be primitive
def⇔ it is of the

form φ ⇒ ψ where both φ and ψ are built only from PRP ∪ {>} with the help
of ∧, ∨, F , P and 〈6=〉, and such that φ contains each atomic proposition at
most once. The rules in Figure 5 are translations of primitive axioms from the
axiomatisation 6̀= of MTL6= [Rij93] into structural rules following [Kra96]. Thus
•6= is implicitly associated with the pair 〈[6=], 〈6=〉〉 of dual modal operators (since
6= is symmetric), and • is associated with the pair of residuated operators 〈G,P 〉.

I ` > (` >)
I ` X

> ` X
(> `)

X ` I
X `⊥ (`⊥) ⊥` I (⊥`)

X ` ∗φ
X ` ¬φ (` ¬)

∗φ ` X

¬φ ` X
(¬ `)

X ◦ φ ` ψ
X ` φ⇒ ψ

(`⇒)
X ` φ ψ ` Y

φ⇒ ψ ` ∗X ◦ Y (⇒`)
X ` φ Y ` ψ
X ◦ Y ` φ ∧ ψ (` ∧)

φ ◦ ψ ` X

φ ∧ ψ ` X
(∧ `)

X ` φ ◦ ψ
X ` φ ∨ ψ (` ∨)

φ ` X ψ ` Y

φ ∨ ψ ` X ◦ Y (∨ `)
φ ` X

Gφ ` •X (G `)
X ` •φ
X ` Gφ (` G)

φ ` X

Hφ ` ∗ • ∗X (H `)
X ` ∗ • ∗φ
X ` Hφ (` H)

i ` • 6= ∗ X
X ` i

(` i)
X ` i

i ` • 6= ∗ X
(i `)

Fig. 3. Operational rules



X ` Z

I ◦ X ` Z
(Il)

X ` Z

X ` I ◦ Z
(Ir)

I ` Y

∗I ` Y
(Ql)

X ` I

X ` ∗I
(Qr)

X ` Z

Y ◦ X ` Z
(weakl)

X ` Z

X ◦ Y ` Z
(weakr) X1 ◦ (X2 ◦ X3) ` Z

(X1 ◦ X2) ◦ X3 ` Z
(assocl)

Z ` X1 ◦ (X2 ◦ X3)

Z ` (X1 ◦ X2) ◦ X3
(assocr)

Y ◦ X ` Z

X ◦ Y ` Z
(coml)

Z ` Y ◦ X
Z ` X ◦ Y (comr)

X ◦ X ` Y

X ` Y
(contrl)

Y ` X ◦ X
Y ` X

(contrr)

I ` X

•I ` X
(neclG)

X ` I
X ` •I (necrG)

I ` X

• 6=I ` X
(necl)

X ` I
X ` • 6=I

(necr)

Fig. 4. Other basic structural rules

X ` Y ∗ • 6= ∗ X ` Y

∗ • 6= • 6= ∗ X ` Y
(alio)

∗ • 6= ∗(Z ◦ ∗ •6= ∗X) ` Y

X ◦ ∗ •6= ∗Z ` Y
(sym)

X ` Y ∗ • 6= ∗ X ` Y

∗ • ∗X ` Y
(uni1)

X ` Y ∗ • 6= ∗ X ` Y

•X ` Y
(uni2)

Fig. 5. Other structural rules

An easy way to understand the way the rules (i `) and (` i) in Figure 3
work is to observe that the formula i ⇔ [6=]¬i from the language NTL([6=]) is
valid in any Kripke model. Thus, the rules (i `) and (` i) use the intensional
nature of a name whereas the fundamental axiom i ` i uses its atomic nature.

Theorem 3. (soundness) If I ` φ is derivable in δMNTL, then φ is MNTL-valid.

Proof. Consider maps a and s from struc(δMNTL) to TL(H,G, [6=]) as below:



a and s are homomorphic for ¬, ∧, ∨, ⇒, H and G

for every pj ∈ PRP, a(pj)
def
= s(pj)

def
= p2×j

for every ik ∈ NOM, a(ik)
def
= s(ik)

def
= p2×k+1 ∧ [ 6=]¬p2×k+1

a(>)
def
= s(>)

def
= > a(⊥)

def
= s(⊥)

def
=⊥

a(I)
def
= > s(I)

def
= ⊥

a(∗X)
def
= ¬s(X) s(∗X)

def
= ¬a(X)

a(X ◦ Y)
def
= a(X) ∧ a(Y) s(X ◦ Y)

def
= s(X) ∨ s(Y)

a(•X)
def
= P a(X) s(•X)

def
= G s(X)

a(• 6=X)
def
= 〈6=〉a(X) s(•6=X)

def
= [ 6=]s(X)

By induction on the length of the given derivation of X ` Y, we can show
that if X ` Y is derivable in δMNTL, then ϕ{X,Y} ⇒ (a(X) ⇒ s(Y)) is MTL6=-valid.
Furthermore, for any φ ∈ NTL(H, G), φ is MNTL-valid iff a(φ) is MTL6=-valid iff
s(φ) is MTL6=-valid iff ϕ{φ} ⇒ a(φ) is MTL6=-valid iff ϕ{φ} ⇒ s(φ) is MTL6=-valid.
In particular, if I ` φ is derivable in δMNTL, then ϕ{φ} ⇒ (a(I) ⇒ s(φ)) (i.e.
> ⇒ s(φ)) is MTL6=-valid and hence φ is MNTL-valid.

Next, we give a completeness proof of δMNTL using the system `MNTL.

Lemma 1. Let X ` Y and X′ ` Y′ be sequents such that X′ ` Y′ can be obtained
from X ` Y by replacing some occurrences of ∗ •6= ∗Z by •6=Z and by replacing
some occurrences of •6=W by ∗ • 6= ∗W. Then, any display calculus δ containing the
display postulates from Figure 2, (sym), (contrr), (weakr) and (weakl) satisfies:
X ` Y is derivable [resp. has a cut-free proof] in δ iff X′ ` Y′ is derivable [resp.
has a cut-free proof] in δ.

Lemma 1 is unsurprising since (sym) corresponds to the axiom schema F φ⇔
P φ characterising symmetry. However, Lemma 1 is purely syntactic.

Theorem 4. (completeness) If `MNTL φ, then I ` φ is derivable in δMNTL.

The proof of Theorem 4 relies only on the completeness of δKt [Kra96] and on
the derivability of the axiom schema i ∧ φ⇒ σ(i⇒ φ). Moreover, it highlights
how the rules (uni1), (uni2), (sym) and (alio) are needed to get completeness.
In what follows, we write

.... Π
s

to denote that the sequent s has a proof Π in δMNTL.

Proof. (sketch) The proof is by induction on the length of the derivation of φ in
`MNTL. Actually, most of the cases have been already proved in [Wan94,Kra96,Wan98].
It remains to show that I ` i ∧ φ ⇒ σ(i ⇒ φ) is derivable in δMNTL where
i ∈ NOM, φ ∈ NTL(H,G) and σ is a (possibly empty) finite sequence of ele-
ments from {H,G}. To do so, we prove by induction on the length of σ that
i◦φ ` σ(i⇒ φ) and •6=(i◦φ) ` σ(i⇒ φ) are derivable in δMNTL (see [DG98a]).



Unfortunately, as shown shortly in Example 1, the rules (` i) and (i `
) from δMNTL do not satisfy (C8), so we cannot prove cut-elimination using
[Bel82,Wan98]. However, δMNTL minus the rule (` i), say δ−MNTL, obeys (C1)-
(C8) since, in δ−MNTL, i can be a succedent principal formula only in the fun-
damental axiom i ` i. Belnap’s cut-elimination proof applies and therefore
X ` Y has a proof in δ−MNTL iff X ` Y has a cut-free proof in δ−MNTL. A similar
“trick” is used in [Gor95]. Surprisingly, the proof of Theorem 4 also shows that
if `MNTL φ, then I ` φ is derivable in δ−MNTL since the (` i)-rule is simply not
used. Consequently,

Theorem 5. (weak cut-elimination) If `MNTL φ, then I ` φ has a cut-free proof
in δ−MNTL.

Whether δMNTL enjoys cut-elimination is still open at this stage of the pa-
per since all the provable sequents X ` Y are not necessarily of the form I ` φ.
Moreover, Theorem 5 does not guarantee that any reasonable extension of δMNTL
enjoys cut-elimination. In the next section we extend Wansing’s strong normal-
isation theorem to δMNTL in such a way that any extension of δMNTL by addition
of structural rules satisfying (C2)-(C7) also satisfies the strong normalisation
theorem (condition (C8) is relevant only for logical rules).

4 A Strong Normalisation Theorem

A very important feature of the proof-theoretical framework DL is the existence
of a very general cut-elimination theorem [Bel82]. Indeed, any display calculus
satisfying the conditions (C2)-(C8) [Bel82] admits cut-elimination. In [Wan98],
such a result is strengthened by proving that any classical modal display calculus
defined from [Kra96] for a properly displayable classical modal logic [Kra96]
admits a strong normalisation theorem: that is, the process of cut-elimination
terminates for any sequence of the reduction steps to be defined shortly. Similar
theorems exist for numerous formal systems such as for example those for typed
λ-terms (see e.g. [TS96]).

Unfortunately δMNTL does not satisfy (C8) recalled below (see e.g. [Wan98]):

(C8) If there are inferences I1 and I2 with respective conclusions X ` φ and φ ` Y
with φ principal in both inferences, and if cut is applied to obtain X ` Y, then
either X ` Y is identical to one of X ` φ and φ ` Y; or there is a derivation
of X ` Y from the premisses of I1 and I2 in which every cut-formula of any
application of cut is a proper subformula of φ.

Example 1. Consider the proof,

.... Π1

i ` •6= ∗ X
X ` i (` i)

.... Π2

Y ` i
i ` •6= ∗ Y

(i `)

X ` •6= ∗ Y
(cut)



Since i does not have proper subformulae, δMNTL does not satisfy (C8) which
is absolutely crucial in the proofs of cut-elimination in [Bel82,Wan98]. However,
δMNTL enjoys a (weak) cut-elimination theorem (see Theorem 5).

At first sight, C4 also seems to be violated since an inference of (i `) [resp.
(` i)] changes the displayed antecedent [resp. succedent] part occurrence of
i in the conclusion into a succedent [resp. antecedent] part occurrence in the
premiss. However, all is well, for the occurrences of a name in some (i `)-rule
[resp. (` i)-rule] inference are not parameters since they are not substructures
of some structure obtained by instantiating some structure variable.

We now show that any reasonable extension of δMNTL admits a strong normal-
isation theorem by adapting arguments from [Wan98]. By a reasonable extension,
we mean a calculus δ obtained from δMNTL by addition of structural rules that
satisfy the conditions (C2)-(C7) (see e.g. [Bel82,Kra96,Wan98]).

As usual, our strong normalisation theorem is relative to a given reduction
concept. Indeed, we shall define legitimate moves that define the authorised
reductions. Basically, each reduction removes a cut at the cost of cuts of lesser
rank, or permutes a cut with a rule application in one of its premisses or replaces
a cut by a cut of the same rank but decreases the number of significant inferences.
In the rest of the section, δ is assumed to be reasonable.

The reduction process consists of SE-principal moves and parametric moves.
First, let us recall that in DL, every structure occurrence in an inference I
is called a constituent of I. Constituents of an inference I are congruent

def⇔
they occupy similar positions in occurrences of structures assigned to the same
structure variable.

Definition 1. In the proof Π1 from Definition 2 below left, the congruence class
of φ is the smallest set Qφ of occurrences of φ in Π1 such that

- the displayed occurrence of φ in X ` φ is in Qφ;
- for every inference I in Π1, each constituent of a premiss of I which is

congruent (w.r.t. I) to a constituent of the conclusion of I already in Qφ,
is in Qφ.

Qφ can be viewed as a finite tree of occurrences of φ. A path in the tree defined
by Qφ is a maximal finite sequence φocc1 , . . . , φoccl (l ≥ 1) of elements of Qφ
such that for k ∈ {1, . . . , l−1}, φocck is congruent to φocck+1

for some inference.

Definition 2. In the proof Π below left, φ is said to be SE-principal (‘principal

modulo structural equivalence’) in X ` φ
def⇔ the subproof Π1 is of the form

Π ′1 shown below right, φ is principal in the instance of rule (ru) and the two
occurrences of φ in X′ ` φ and X ` φ in Π ′1 belong to the same congruence class:

.... Π1

X ` φ

.... Π2

φ ` Y
X ` Y (cut)

.... Π
′
1

X′ ` φ
(ru)

X ` φ (dp)

We use an analogous definition for φ, SE-principal in φ ` Y.



Consider an application of (cut) as shown in proof Π from Definition 2. If
the cut-formula φ is SE-principal in X ` φ and φ ` Y, then an SE-principal move
is done otherwise a parametric move is done.

SE-principal moves There are three cases:
Case 1: X ` Y is X ` φ [resp. φ ` Y]. Then, Π is transformed into Π1 [resp. Π2].
Case 2: φ is not a name. The treatment of the similar case in [Wan98] (see
also [Bel82]) applies except that one has to take into account the display pos-
tulate inferences. For instance, when φ = ¬ψ the proof fragment below left is
transformed into the proof fragment below right:

X′ ` ∗ψ
X′ ` ¬ψ

(` ¬)

X ` ¬ψ (dp1)

∗ψ ` Y′

¬ψ ` Y′
(¬ `)

¬ψ ` Y (dp2)

X ` Y (cut)

X′ ` ∗ψ
ψ ` ∗X′

(dp)
∗ψ ` Y′

∗Y′ ` ψ
(dp)

∗Y′ ` ∗X′
(cut)

X′ ` Y′
(dp)

X ` Y′
(dp1)

X ` Y (dp2)

Observe that, in the transformed proof, the cut-formula ψ has dg(ψ) < dg(φ).
Case 3: φ is the name i. Then Π is as shown below left and is transformed into
the proof Π ′ shown below right:

i ` •6= ∗ X′

X′ ` i
(` i)

X ` i (dp1)

Y′ ` i
i ` •6= ∗ Y′

(i `)

i ` Y (dp2)

X ` Y (cut)

i ` •6= ∗ X′ Y′ ` i
Y′ ` ∗ • 6= X′

(cut)

X′ ` •6= ∗ Y′
(dp)

X ` •6= ∗ Y′
(dp1)

X ` Y (dp2)

It is obvious that (dp) moves do not alter a sequent in any significant way. So let
us consider only significant (i.e. non (dp)) inferences. In Case 3, the degree of the
cut-formula in Π ′ equals the degree of the cut-formula φ but the number of sig-
nificant inferences in Π ′ is less than in Π. In the proof of the strong normalisation
theorem (see [DG98a]), the measure on the size of proofs counts only the number
of significant inferences (and this measure decreases when required). Indeed, we
implicitly consider as identical the sequents that are structurally equivalent (i.e.
interderivable by using only the display postulates from Figure 2).

Parametric moves The parametric moves can be viewed simply as non SE-
principal moves. Suppose φ is not SE-principal in the inference ending in X ` φ
from Definition 2 in proof Π (the other case is analogous). Viewing the con-
gruence class Qφ of this occurrence of φ as a tree, if the tree Qφ contains an
application of cut, then no reduction is performed and we instead consider one
of the applications of cut above X ` φ for reduction. Thus the shown application
of cut from Π is not subject to reduction at this stage. If the tree contains no
application of cut, then for each path in Qφ consider φu the uppermost member



of Qφ on the path and let Iu be the inference ending in the sequent s which
contains φu.
Case (i): φu is principal in Iu. So φu is the entire succedent of s. We cut with
Π2 and replace every occurrence of φ below φu in the path by Y.
Case (ii): φu is not principal in Iu. Then, w.r.t. I, φu is congruent only to itself
so we just replace every occurrence of φ below φu in the path by Y. Π2 is deleted.

Primitive Reduction. The result of simultaneously carrying out these opera-
tions for every path of occurrences of φ in Π1 and removing the initial occurrence
of X ` Y is by definition a primitive reduction.

The treatment of the last two cases is exactly what is done in [Wan98] (see
also [Bel82]). Fortunately, by close examination of Case (i) and Case (ii), it also
works when φ is a name. Indeed, as mentioned previously, the two occurrences
of i in both rules (i `) and (` i) are not congruent by definition, and therefore,
there is no need to treat the case φ = i separately.

The reduction process does not systematically remove the uppermost cut
(this is just a particular case) and not all the cuts in a proof are necessarily
subject to primitive reduction. For any non cut-free proof Π, we write Π ′ < Π
to denote that Π ′ is obtained from Π by application of a primitive reduction.

Theorem 6. (strong normalization) The relation < on proofs of δ is well-
founded (no infinite decreasing chains) and the terminal proofs (those that can-
not be reduced) are cut-free.

These proofs are impervious to additional structural rules obeying (C1)-(C7).
The full proof of Theorem 6 can be found in [DG98a].

5 Properly Displayable Nominal Tense Logics

The aim of this section is to identify classes of properly displayable nominal
tense logics by adapting developments from [Bla90,Kra96]. In what follows, we
write δ+ R to denote the display calculus δ augmented with the set R of rules.

Definition 3. Logic L = 〈NTL(H,G), C〉 is properly displayable
def⇔ there is a

display calculus δ
def
= δMNTL+R such that R is a set of structural rules satisfying

(C2)-(C7) and for any φ ∈ NTL(H,G), φ is L-valid iff I ` φ is derivable in δ.

Theorem 7. Every properly displayable logic has a cut-free display calculus.

Indeed, by Theorem 6, δMNTL + R admits a (strongly normalising) cut-
elimination theorem since all the rules in R satisfy the conditions (C2)-(C7).

Sahlqvist tense formulae are useful to study the nominal tense logics char-
acterized by classes of frames modally definable by such formulae. A formula is

positive [resp. negative]
def⇔ every propositional variable occurs under an even

[resp. odd] number of negation symbols (when φ1 ⇒ φ2 is treated as ¬φ1∨φ2). A
simple Sahlqvist tense formula in TL(H,G) is an implication φ⇒ ψ such that ψ



is positive and φ is built up from negative formulae, formulae without occurrences
of atomic propositions and formulae of the form σp with σ a universal modality
and p ∈ PRP using only ∧,∨ and the existential modalities; see e.g. [Rij93]. A
Sahlqvist tense formula is a conjunction of formulae of the form σ(φ⇒ ψ) where
σ is a universal modality and φ⇒ ψ is a simple Sahlqvist tense formula.

Theorem 8. Let φ be a Sahlqvist tense formula and let ` def
= `MNTL + φ. Then,

any ψ ∈ NTL(H,G) is NTLφ-valid iff ` ψ.

Theorem 8 does not follow from Sahlqvist’s Theorem [Sah75] since NTLφ is
known to be non canonical for any Sahlqvist tense formula φ where {F ∈ Fr :
F |= φ} contains a frame with a reflexive world and a frame with an irreflexive
world [Bla90, Proof of Theorem 4.3.1]. For instance take φ to be p ⇒ p. That
is, there is no (single canonical) NTLφ-modelM = (W,R,m) such that for every
`-consistent set X there is w ∈W such that for all ψ ∈ X, M, w |= ψ.

Theorem 9. Any logic L = 〈NTL(H,G), C〉 where C = {F ∈ Fr : F |= φ} for
some conjunction φ of primitive formulae in TL(G,H) is properly displayable.

The primitive formulae in Theorem 9 do not contain the difference operator.
Another class of properly displayable nominal tense logics can be identified.

Theorem 10. Let L 6= = 〈TL(H,G, [6=]), C〉 and let γ be a conjunction of prim-
itive formulae over the language TL(H,G, [6=]) such that 6̀= + γ axiomatizes
L6= and C is closed under disjoint unions and isomorphic copies. Then the logic
L = 〈NTL(H,G), C〉, is properly displayable.

The irreflexivity rule is not present in 6̀= + γ. However, unlike Theorem 9,
the primitive axioms in Theorem 10 may contain the difference operator.

Proof. (sketch) Since struc(δMNTL) contains •6=, we first transform γ into a col-
lection Rγ of structural rules over struc(δMNTL) using Kracht’s method [Kra96].

This gives a display calculus δL6=
def
= δMTL6= + Rγ where δMTL6= is the display

calculus for MTL6=. Actually, δMTL6= can be defined from δMNTL by: consider-
ing the same set of structural connectives but building up the structures from
TL(H,G, [ 6=]) instead of TL(H,G); deleting the fundamental axioms of the form
i ` i and the rules (i `) and (` i); and adding the rules below:

φ ` X
[6=]φ ` •6=X

([6=] `)
X ` •6=φ
X ` [ 6=]φ

(` [ 6=])

Since δL 6= obeys (C1)-(C8), it enjoys cut-elimination. To show that δL def
= δMNTL+

Rγ properly displays L, let struc(δL6=) be the set of structures involved in δL6=
and define a partial function g : struc(δL6=)→ struc(δMNTL) as follows:

- g(X) is undefined if X contains some occurrences of [ 6=]ψ where ψ is not of
the form ¬p2×k+1 for k ∈ ω; otherwise

- g is homomorphic for the Boolean connectives, for H and for G;



- for any k ∈ ω, g(p2×k+1)
def
= g([6=]¬p2×k+1)

def
= ik and g(p2×k)

def
= pk;

– g(⊥)
def
=⊥; g(>)

def
= >;

- g is homomorphic for the structural connectives and g(I)
def
= I.

Let φ be a formula of NTL(G,H).

- (soundness) If I ` φ has a cut-free proof in δL, then s(φ) is L6=-valid (where
s is from the proof of Theorem 3 and we use the closure properties of C).
We also have that φ is L-valid iff s(φ) is L6=-valid. Hence, φ is L-valid. Note
that in general φ 6= s(φ)!

- (completeness) We must show that if φ is L-valid, then I ` φ has a cut-free
proof in δL. The proof contains five parts: (1) if φ is L-valid, then a(φ) is
L 6=-valid (here we use the closure properties of C); (2) if a(φ) is L6=-valid,
then I ` a(φ) has a cut-free proof in δL 6=; (3) if I ` a(φ) has a cut-free proof
in δL6=, then I ` g(a(φ)) has a cut-free proof in δL; (4) I ` g(a(φ)) has a
cut-free proof in δL iff I ` φ has a cut-free proof in δL; (5) hence, if φ is
L-valid, then I ` φ has a cut-free proof in δL (see the details in [DG98a]).

The proof of Theorem 10 is very informative since for instance, it also shows
that any formula φ ∈ NTL(H,G) is MNTL-valid iff I ` φ has a cut-free proof in
δMNTL. Unlike the proof of Theorem 4, the (` i)-rule is used. The rules (i `)
and (` i) are obviously equivalent to the reversible rule below:

X ` i

i ` •6= ∗ X

Hence, as in the case with the display postulates, or indeed any reversible rule,
backward proof search may enter loops. However, all is not lost, for the proof of
Theorem 10 also yields

Corollary 1. In a backward proof attempt, if we apply (i `) [resp. (` i)], giving
rise to some name i in the premiss, then we do not need to apply (` i) [resp.
(i `)] to this name in the rest of the backward proof search.

6 Concluding Remarks

To define cut-free display calculi for nominal tense logics, we have extended
Wansing’s strong normalization theorem [Wan98] to any reasonable extension of
δMNTL. Although δMNTL does not satisfy (C8), the proof in Section 4 provides a
new condition (C′8) (see the appendix).

Are the classes of properly displayable nominal tense logics characterised by
Theorem 9 and Theorem 10 really different? One solution is to characterize the
class of Sahlqvist tense formulae φ such that 6̀= + φ axiomatizes 〈TL(H,G, [ 6=
]), {F : F |= φ}〉. This is roughly equivalent to knowing when the irreflexivity
rule is superfluous (see e.g. [Ven93]). How to define structural rules in DL from
axioms containing names?



Kracht and Wolter [KW97] show how to eliminate the difference operator by
means of a pair of tense operators. Unfortunately, one operator must satisfy the
Gödel-Lob axiom G, which is not Sahlqvist. Using our recent work on cut-free
display calculi for such “second-order” modal logics [DG99], we may be able to
design yet another display calculus for nominal tense logics.
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Appendix: Belnap’s Conditions.

For every sequent rule Belnap [Bel82, page 388] first defines the following
notions: in an application Inf of a sequent rule (ρ), “constituents occurring as
part of occurrences of structures assigned to structure-variables are defined to
be parameters of Inf ; all other constituents are defined as nonparametric,
including those assigned to formula-variables. Constituents occupying similar
positions in occurrences of structures assigned to the same structure-variable
are defined as congruent in Inf ”. The eight (actually seven) conditions shown
below are from [Kra96]:

(C1) Each formula which is a constituent of some premiss of a rule ρ is a
subformula of some formula in the conclusion of ρ.

(C2) Congruent parameters are occurrences of the same structure.
(C3) Each parameter is congruent to at most one constituent in the conclusion.

Equivalently, no two constituents of the conclusion are congruent to each
other.

(C4) Congruent parameters are either all antecedent parts or all succedent parts
of their respective sequent.

(C5) If a formula is non-parametric in the conclusion of a rule ρ, it is either
the entire antecedent, or the entire succedent. Such a formula is called a
principal formula.

(C6/7) Each rule is closed under simultaneous substitution of arbitrary struc-
tures for congruent parameters.

(C8) If there are inference rules ρ1 and ρ2 with respective conclusions X ` φ
and φ ` Y with φ principal in both inferences (in the sense of C5), and if
(cut) is applied to yield X ` Y then, either X ` Y is identical to X ` φ or
to φ ` Y; or it is possible to pass from the premisses of ρ1 and ρ2 to X ` Y

by means of inferences falling under (cut) where the cut-formula is always
a proper subformula of φ. If φ satisfies the “if” part of this condition it is
known as a “matching principal constituent”.

Our new condition (C8′)

(C8′) There exist a non-empty set S with < a well-founded ordering on S and a
map dg : For→ S such that if there are inferences I1 and I2 with respective
conclusions X ` φ and φ ` Y with φ SE-principal in both inferences, and if
cut is applied to obtain X ` Y, then
• either X ` Y is identical to one of X ` φ and φ ` Y;
• or there is a derivation of X ` Y from the premisses of I1 and I2 in which

every cut-formula ψ of any application of cut satisfies dg(ψ) < dg(φ);
• or there is a derivation of X ` Y from the premisses of I1 and I2 in which

every cut-formula ψ of any application of cut satisfies dg(ψ) = dg(φ)
and in that derivation every inference, except possibly one, falls under
an invertible structural rule with a single premiss.


