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We consider combinatorial semi-bandits over a set X ⊂ {0, 1} d where rewards are uncorrelated across items. For this problem, the algorithm ESCB yields the smallest known regret bound R(T ) = O d (ln m) 2 (ln T ) ∆ min after T rounds, where m = max x ∈X 1 ⊤ x. However, ESCB has computational complexity O(|X|), which is typically exponential in d, and cannot be used in large dimensions. We propose the first algorithm that is both computationally and statistically efficient for this problem with regret R(T ) = O d (ln m) 2 (ln T ) ∆ min and computational asymptotic complexity

, where δ T is a function which vanishes arbitrarily slowly. Our approach involves carefully designing AESCB, an approximate version of ESCB with the same regret guarantees. We show that, whenever budgeted linear maximization over X can be solved up to a given approximation ratio, AESCB is implementable in polynomial time O(δ -1

T poly(d )) by repeatedly maximizing a linear function over X subject to a linear budget constraint, and showing how to solve these maximization problems efficiently. Additional algorithms, proofs and numerical experiments are given in the complete version of this work.

COMBINATORIAL SEMI-BANDITS

We consider combinatorial semi-bandits: time is discrete, and at times t = 1, ...,T a learner chooses a decision x (t ) ∈ X, where X ⊂ {0, 1} d is a combinatorial set which is known to the learner. Set X may be any combinatorial set, including the bases of a matroid, the set of paths in some graph, the set of matchings in a bipartite graph, etc. The problem dimension is d, and we define m = max x ∈X 1 ⊤ x the size of the largest decision. After selecting decision x (t ), the learner then receives a reward Z (t ) ⊤ x (t ) and observes a feedback vector

Y (t ) = (x 1 (t )Z 1 (t ), . . . ,x d (t )Z d (t )), where Z (t ) ∈ [0, 1] d is a random vector.
We assume that (Z (t )) t are i.i.d. with mean θ ∈ [0, 1] d and that the entries of Z (t ) are independent as well. Vector θ is initially unknown to the learner, and must be learnt by repetitively selecting decisions and observing subsequent feedback. For i ∈ {1, ...,d}, if x i (t ) = 1, then the learner obtains a noisy realization of θ i and nothing otherwise, so that decisions must be carefully selected to obtain a good estimate of θ . This is the "semi-bandit feedback" model. Since θ is unknown to the learner, decision x (t ) must be selected solely as a function of the feedback information available at time t, i.e. Y (t -1), ...,Y (1).

The expected reward received by selecting decision x ∈ X is θ ⊤ x (i.e. rewards are linear in the decision), so that θ i represents the amount of reward received by selecting x i = 1. The optimal decision is x ⋆ ∈ arg max x ∈X {θ ⊤ x } (there may be several optimal decisions). We define the reward gap ∆ x = θ ⊤ (x ⋆ -x ), i.e. the amount of regret incurred to the learner by selecting decision x instead of x ⋆ . We denote by ∆ min = min x :∆ x >0 ∆ x the smallest non-null gap.

The goal of the learner is to minimize the regret, which is simply the difference in terms of expected cumulative rewards between the learner and an oracle who knows the latent vector θ in advance and who always selects the optimal decision x ⋆ , that is:

R(T ) = T t =1 E(∆ x (t ) ).
Known algorithms for this problem include CUCB [START_REF] Branislav Kveton | Tight Regret Bounds for Stochastic Combinatorial Semi-Bandits[END_REF], ESCB [START_REF] Richard Combes | Combinatorial Bandits Revisited[END_REF] and TS [START_REF] Wang | Thompson Sampling for Combinatorial Semi-Bandits[END_REF].

THE AESCB ALGORITHM

We now propose AESCB (Approximate-ESCB), an algorithm that approximates ESCB and enjoys the same regret bound, while being implementable with polynomial complexity (unlike ESCB). The AESCB algorithm requires two sequences (ε t ,δ t ), which quantify the level of approximation at each time step. We define the following SIGMETRICS '21 Abstracts, June 14-18, 2021, Virtual Event, China Thibaut Cuvelier, Richard Combes & Eric Gourdin statistics, for i = 1, ...,d:

n i (t ) = t -1 t ′ =1 x i (t ′ ) θ (t ) = t -1 t ′ =1 x i (t ′ )Z i (t ′ ) max(1, t -1 t ′ =1 x i (t ′ )) σ 2 i (t ) =      f (t ) 2n i (t ) if n i (t ) ≥ 1 +∞ otherwise.
where, at time t, n i (t ) is the number of samples obtained for θ i , θi (t ) is the estimate of θ i , and σ 2 i (t ) is proportional to the variance of estimate θi (t ). f (t ) is defined as ln t +4m ln ln t. We denote by n(t ) = (n i (t )) i=1,...,d , θ (t ) = ( θi (t )) i=1,...,d , and σ 2 (t ) = (σ 2 i (t )) i=1,...,d the corresponding vectors. Definition 2.1 (AESCB). The AESCB algorithm with approximation factors (ε t ,δ t ) t ≥1 is the policy which at any time t ≥ 1 selects a decision x (t ) verifying:

arg max x ∈X { θ (t ) ⊤ x + σ 2 (t ) ⊤ x } ≤ δ t + θ (t ) ⊤ x (t ) + 1 ε t σ 2 (t ) ⊤ x (t )
where ties are broken arbitrarily.

When (ε t ,δ t ) = (1, 0) for all t ≥ 1, AESCB reduces to ESCB. Our first main result is Theorem 2.2, which provides a regret upper bound for AESCB. We show that, if one chooses approximation parameters (ε t ,δ t ) with ε t = ε > 0 some fixed number and δ t any sequence such that lim t →∞ δ t = 0, then AESCB verifies the same (state-of-the-art) regret as ESCB up to a multiplicative constant. For m-sets, knapsack sets, and source destination paths, we choose ε = 1.

For spanning trees, matroids, matchings, and matroid intersection, we choose ε = 1 2 (see Section 3). This choice of parameters does not require any knowledge about the time horizon T , nor about the unknown problem parameters θ , nor about the minimal gap ∆ min . Nevertheless, if ∆ min is known as well, we can select δ t to yield an even better algorithm; however, knowing this parameter is by no means required. We can show that, with this choice of parameters, AESCB can be implemented in polynomial time. Theorem 2.2 (Regret of AESCB). The regret of AESCB with parameters (ε t ,δ t ) admits the following upper bound for all T ≥ 1:

R(T ) ≤ C 4 (m) + 2 d m 3 ∆ 2 min + 24d f (T ) (min t ≤T ε t ) 2 ∆ min ln m 1.61 2 +4 T t =1 δ t 1(∆ min ≤ 4δ t ).
with C 4 (m) a positive number that solely depends on m. By corollary, for ε t = ε and lim t →∞ δ t = 0, we have:

R(T ) = O d (ln m) 2 1 ∆ min lnT as T → ∞.
Similarly, with ε t = ε and δ t < 1 4 ∆ min , we have, for all T ≥ 1:

R(T ) ≤ C 4 (m) + 2 d m 3 ∆ 2 min + 24d f (T ) ε 2 ∆ min ln m 1.61 2 .

AESCB IN POLYNOMIAL TIME

We now show a technique to implement AESCB that ensures polynomial time complexity. While our methodology is generic, the precise value of the computational complexity depends on the combinatorial set X. Our approach involves three steps: rounding and scaling to ensure that the weights are integer, then solving a budgeted linear maximization over X several times, and finally maximizing over the budget to obtain the result. Given time t, statistics θ (t ) and σ 2 (t ), and approximation factors (ε t ,δ t ), the method works as follows.

Step 1: rounding and scaling. Define a(t ) and b (t ):

ξ (t ) = ⌈m/δ t ⌉. a i (t ) = ⌈ξ (t ) θi (n)⌉ , i ∈ {1, ...,d } b i (t ) = ξ (t ) 2 σ 2 i (t ) , i ∈ {1, ...

,d}

Step 2: budgeted linear maximization. For all s ∈ {0, ...,mξ (t )}, compute xs (t ), an ε t -optimal solution to budgeted linear maximization problem:

xs (t ) ≥ ε t max
x ∈X:a (t ) ⊤ x ≥s {b (t ) ⊤ x } and a(t ) ⊤ xs (t ) ≥ s.

Step 3: optimizing over a budget. Return decision x (t ):

x (t ) = xs ⋆ (t ) (t ) with s ⋆ (t ) ∈ arg max s=0,...,mξ (t ) s + 1 ε t b (t ) ⊤ xs (t ) .
a(t ) is defined using a ceiling operation in order to ensure that a(t ) ⊤ x has an integer value for any x ∈ X, while b (t ) does not need to have integer entries. Theorem 3.1 states that this technique returns the decision chosen by AESCB, in a time proportional to solving budgeted linear maximization at most mξ (t ) times (where ξ (t ) is bounded by a polynomial in d), and that the input parameters a(t ) and b (t ) are positive vectors and where the entries of a(t ) are in {1, ...,ξ (t )}. For many combinatorial sets of interest, budgeted linear maximization over X can be done in polynomial time in the dimension, so that AESCB is indeed implementable in polynomial time, see the complete version of this work where we provide algorithms to do so. Theorem 3.1. The above algorithm returns a decision x (t ) ∈ X verifying the AESCB definition. It does so by maximizing x ⊤ b (t ) subject to x ⊤ a(t ) ≥ s over X at most mξ (t ) times with input parameters a(t ) and b (t ), where a(t ) ∈ {1, ...,ξ (t )} d and b (t ) ∈ R d .

CONCLUSIONWe propose AESCB, the first algorithm which enjoys both the stateof-the art regret bound of ESCB and polynomial computational complexity.