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ABSTRACT
We consider combinatorial semi-bandits over a set X ⊂ {0,1}d

where rewards are uncorrelated across items. For this problem, the

algorithm ESCB yields the smallest known regret bound R (T ) =

O

(
d (lnm)2 (lnT )

∆min

)
after T rounds, wherem = maxx ∈X 1

⊤x . How-

ever, ESCB has computational complexity O ( |X|), which is typi-

cally exponential in d , and cannot be used in large dimensions. We

propose the first algorithm that is both computationally and statisti-

cally efficient for this problem with regret R (T ) = O
(
d (lnm)2 (lnT )

∆min

)
and computational asymptotic complexity

O (δ−1T poly(d )), where δT is a function which vanishes arbitrarily

slowly. Our approach involves carefully designing AESCB, an ap-

proximate version of ESCB with the same regret guarantees. We

show that, whenever budgeted linear maximization over X can be

solved up to a given approximation ratio, AESCB is implementable

in polynomial time O (δ−1T poly(d )) by repeatedly maximizing a

linear function over X subject to a linear budget constraint, and

showing how to solve these maximization problems efficiently. Ad-

ditional algorithms, proofs and numerical experiments are given in

the complete version of this work.
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1 COMBINATORIAL SEMI-BANDITS
We consider combinatorial semi-bandits: time is discrete, and at

times t = 1, ...,T a learner chooses a decision x (t ) ∈ X, where X ⊂
{0,1}d is a combinatorial set which is known to the learner. Set X

may be any combinatorial set, including the bases of a matroid, the

set of paths in some graph, the set of matchings in a bipartite graph,

etc. The problem dimension is d , and we definem = maxx ∈X 1
⊤x

the size of the largest decision. After selecting decision x (t ), the
learner then receives a reward Z (t )⊤x (t ) and observes a feedback

vector Y (t ) = (x1 (t )Z1 (t ), . . . ,xd (t )Zd (t )), where Z (t ) ∈ [0,1]
d
is

a random vector.

We assume that (Z (t ))t are i.i.d. with mean θ ∈ [0,1]d and

that the entries of Z (t ) are independent as well. Vector θ is initially

unknown to the learner, and must be learnt by repetitively selecting

decisions and observing subsequent feedback. For i ∈ {1, ...,d }, if
xi (t ) = 1, then the learner obtains a noisy realization of θi and
nothing otherwise, so that decisions must be carefully selected to

obtain a good estimate of θ . This is the "semi-bandit feedback"

model. Since θ is unknown to the learner, decision x (t ) must be

selected solely as a function of the feedback information available

at time t , i.e. Y (t − 1), ...,Y (1).
The expected reward received by selecting decision x ∈ X is

θ⊤x (i.e. rewards are linear in the decision), so that θi represents
the amount of reward received by selecting xi = 1. The optimal

decision is x⋆ ∈ argmaxx ∈X {θ
⊤x } (there may be several optimal

decisions). We define the reward gap ∆x = θ⊤ (x⋆ − x ), i.e. the
amount of regret incurred to the learner by selecting decision x
instead of x⋆. We denote by ∆min = minx :∆x >0 ∆x the smallest

non-null gap.

The goal of the learner is to minimize the regret, which is simply

the difference in terms of expected cumulative rewards between

the learner and an oracle who knows the latent vector θ in advance

and who always selects the optimal decision x⋆, that is:

R (T ) =
T∑
t=1
E(∆x (t ) ).

Known algorithms for this problem include CUCB [2], ESCB [1]

and TS [3].

2 THE AESCB ALGORITHM
We now propose AESCB (Approximate-ESCB), an algorithm that

approximates ESCB and enjoys the same regret bound, while being

implementable with polynomial complexity (unlike ESCB). The

AESCB algorithm requires two sequences (εt ,δt ), which quantify

the level of approximation at each time step.We define the following
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statistics, for i = 1, ...,d :

ni (t ) =
t−1∑
t ′=1

xi (t
′)

ˆθ (t ) =

∑t−1
t ′=1 xi (t

′)Zi (t
′)

max(1,
∑t−1
t ′=1 xi (t

′))

σ 2

i (t ) =



f (t )
2ni (t )

if ni (t ) ≥ 1

+∞ otherwise.

where, at time t ,ni (t ) is the number of samples obtained for θi , ˆθi (t )
is the estimate of θi , and σ 2

i (t ) is proportional to the variance of

estimate
ˆθi (t ). f (t ) is defined as ln t+4m ln ln t .We denote byn(t ) =

(ni (t ))i=1, ...,d , ˆθ (t ) = ( ˆθi (t ))i=1, ...,d , and σ 2 (t ) = (σ 2

i (t ))i=1, ...,d
the corresponding vectors.

Definition 2.1 (AESCB). The AESCB algorithm with approxima-
tion factors (εt ,δt )t ≥1 is the policy which at any time t ≥ 1 selects a
decision x (t ) verifying:

argmax

x ∈X
{ ˆθ (t )⊤x +

√
σ 2 (t )⊤x } ≤ δt + ˆθ (t )⊤x (t ) +

1

εt

√
σ 2 (t )⊤x (t )

where ties are broken arbitrarily.

When (εt ,δt ) = (1,0) for all t ≥ 1, AESCB reduces to ESCB.

Our first main result is Theorem 2.2, which provides a regret upper

bound for AESCB. We show that, if one chooses approximation

parameters (εt ,δt ) with εt = ε > 0 some fixed number and δt any
sequence such that limt→∞ δt = 0, then AESCB verifies the same

(state-of-the-art) regret as ESCB up to a multiplicative constant. For

m-sets, knapsack sets, and source destination paths, we choose ε = 1.

For spanning trees, matroids, matchings, and matroid intersection,

we choose ε = 1

2
(see Section 3). This choice of parameters does

not require any knowledge about the time horizonT , nor about the
unknown problem parameters θ , nor about the minimal gap ∆min.

Nevertheless, if ∆min is known as well, we can select δt to yield an

even better algorithm; however, knowing this parameter is by no

means required. We can show that, with this choice of parameters,

AESCB can be implemented in polynomial time.

Theorem 2.2 (Regret of AESCB). The regret of AESCB with
parameters (εt ,δt ) admits the following upper bound for all T ≥ 1:

R (T ) ≤ C4 (m) +
2dm3

∆2

min

+
24d f (T )

(mint ≤T εt )2∆min

⌈
lnm

1.61

⌉
2

+4

T∑
t=1

δt1(∆min ≤ 4δt ).

with C4 (m) a positive number that solely depends onm. By corollary,
for εt = ε and limt→∞ δt = 0, we have:

R (T ) = O

(
d (lnm)2

1

∆min

lnT

)
as T → ∞.

Similarly, with εt = ε and δt < 1

4
∆min, we have, for all T ≥ 1:

R (T ) ≤ C4 (m) +
2dm3

∆2

min

+
24d f (T )

ε2∆min

⌈
lnm

1.61

⌉
2

.

3 AESCB IN POLYNOMIAL TIME
We now show a technique to implement AESCB that ensures poly-

nomial time complexity. While our methodology is generic, the

precise value of the computational complexity depends on the

combinatorial set X. Our approach involves three steps: rounding

and scaling to ensure that the weights are integer, then solving

a budgeted linear maximization over X several times, and finally

maximizing over the budget to obtain the result. Given time t , statis-

tics
ˆθ (t ) and σ 2 (t ), and approximation factors (εt ,δt ), the method

works as follows.

Step 1: rounding and scaling. Define a(t ) and b (t ):

ξ (t ) = ⌈m/δt ⌉ .

ai (t ) = ⌈ξ (t ) ˆθi (n)⌉ , i ∈ {1, ...,d }

bi (t ) = ξ (t )2σ 2

i (t ) , i ∈ {1, ...,d }

Step 2: budgeted linear maximization. For all s ∈ {0, ...,mξ (t )},
compute x̄s (t ), an εt -optimal solution to budgeted linear maximiza-

tion problem:

x̄s (t ) ≥ εt

(
max

x ∈X:a (t )⊤x ≥s
{b (t )⊤x }

)
and a(t )⊤x̄s (t ) ≥ s .

Step 3: optimizing over a budget. Return decision x (t ):

x (t ) = x̄s
⋆ (t ) (t ) with

s⋆(t ) ∈ argmax

s=0, ...,mξ (t )

{
s +

1

εt

√
b (t )⊤x̄s (t )

}
.

a(t ) is defined using a ceiling operation in order to ensure that

a(t )⊤x has an integer value for any x ∈ X, while b (t ) does not
need to have integer entries. Theorem 3.1 states that this technique

returns the decision chosen by AESCB, in a time proportional to

solving budgeted linear maximization at mostmξ (t ) times (where

ξ (t ) is bounded by a polynomial ind), and that the input parameters

a(t ) and b (t ) are positive vectors and where the entries of a(t ) are
in {1, ...,ξ (t )}. For many combinatorial sets of interest, budgeted

linear maximization over X can be done in polynomial time in the

dimension, so that AESCB is indeed implementable in polynomial

time, see the complete version of this work where we provide

algorithms to do so.

Theorem 3.1. The above algorithm returns a decision x (t ) ∈ X
verifying the AESCB definition. It does so by maximizing x⊤b (t ) sub-
ject to x⊤a(t ) ≥ s over X at mostmξ (t ) times with input parameters
a(t ) and b (t ), where a(t ) ∈ {1, ...,ξ (t )}d and b (t ) ∈ Rd .

4 CONCLUSION
We propose AESCB, the first algorithm which enjoys both the state-

of-the art regret bound of ESCB and polynomial computational

complexity.
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