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Abstract We present a generalized mapping framework that can withstand
the challenges incurred by working in unstructured outdoor environments, such
as a snowy forest. The proposed method takes advantage of a sensor fusion
scheme, where sensors such as cameras and lidars are used in order to recon-
struct the surrounding natural environment. Although mapping techniques
such as SLAM and ICP cannot themselves properly handle the complexity of
natural scenes, they do have the potential to contribute to the global solution
in a proposed sensor fusion scheme, based on a factor graph architecture. In
this paper, we propose an innovative map registration scheme for visual maps,
and show how it can improve the reconstruction quality after data fusion.
We also analyze the behavior and sensitivity of factor graphs to uncertainties,
by comparing the residual error with different parameter combinations such
as variances, using an exhaustive grid search with ground truth comparison.
Finally, we suggest an ICP-inferred loop closure, capable of compensating po-
sition and attitude drift. The experiments are carried out by recording in a
snowy forest using a wearable sensor suite.

In the experiments, ground truth was acquired using a millimeter-accurate
total station. The proposed framework is shown to be robust and likewise
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E-mail: francois.pomerleau@norlab.ulaval.ca

C. Pradalier
Georgia Institute of Technology, UMI 2958 GT-CNRS, GeorgiaTech Lorraine
E-mail: cedric.pradalier@georgiatech-metz.fr



2 Georges Chahine et al.

capable of providing estimates that are otherwise unattainable using classic
techniques, such as visual SLAM and ICP for lasers. Finally, a visible improve-
ment in the map reconstruction quality is shown, and the proposed framework
achieves a translation error of 0.36 meters.

Keywords Mapping · Natural Environment · Sensor Fusion · Wearable
Robots

1 Introduction

Autonomous robotic systems require a representation of their environment,
such as a map, which is used to achieve specific objectives. For example, these
maps are used to develop autonomous movement strategies (e.g., path plan-
ning, obstacle avoidance) or to perform specific tasks such as forest inventory
[19]. In some cases, the map is the purpose of the mission. For example, data
obtained after processing a map can be used to extract features such as tree
diameters [23].

Several mapping solutions exist, yet they all depend on the environment
in which they are evaluated, and on the desired task which might also be
affected by environmental conditions. [4,29]. Based on that, the successful
execution of a given mapping technique will have to take into account the
environmental challenges that might cause it to fail. In this study, we will focus
on the three-dimensional reconstruction of unstructured environments such as
a forest, during challenging meteorological conditions. Such environments are
a challenge for mapping algorithms such as Simultaneous Localization And
Mapping (SLAM), but also for pose estimation of the robotic platform because
of the roughness of the terrain. Traditionally, several types of sensors such as
cameras and lidars can be used to obtain the pose of a robot.

Cameras are of a particular interest for applications involving robots, as
they are considered sensors that can be used for localization and mapping i.e.,
SLAM. Monocular cameras are particularly versatile, lightweight and com-
paratively cheaper than lidars, making them suitable especially for wearable
sensor suites. Visual SLAM techniques allow the generation of pose and map
estimates from a sequence of moving images. The booming of learning-based
techniques meant that cameras can also significantly contribute to the decision-
making process in artificial intelligence applications.

When extrinsics are available, cameras have the ability to complement
lidars, given that they often include color or semantic data, that can be pro-
jected onto the lidar point cloud. Unfortunately in some environments, ex-
tracting robust features from camera images can be challenging, such as when
working with featureless, snow covered landscapes. As a result, it becomes
difficult to use a method purely based on visual odometry or vision-based
SLAM.

As a result, convenience implies the use of other sensors such as lidars that
perform better under visually challenging constraints. Unlike cameras, lidars
provide high-precision point clouds and are capable of producing dense maps
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within their range. Using the Iterative Closest Point (ICP) algorithm [2], lidar
scans are incrementally matched to build a three dimensional map.

The ICP algorithm iteratively compares two point clouds in order to find
the rigid transformation that minimizes the alignment error between them.
Although this method ensures local consistency, a global drift appears over
time [20]. In case the trajectory does not loop, the drift cannot be corrected
using a loop closure, hence it is necessary to use other techniques to refine the
pose of the robotic platform. These drifts can be also attenuated by SLAM
methods that use optimization graphs [5], or by constraining the position of
the data acquisition system using Global Position System (GPS) priors.

Some research has used deep learning with range sensors in order to de-
crease the processing time during map registration such as [25]. These methods
have the advantage of not adhering to the rigid motion assumption to com-
pute the pose of the system. Other point cloud registration techniques include
the Normal Distribution Transform (NDT) algorithm [3], although favorable
results require a lidar with at least 32 beams [16]. The affordability and in-
creasing popularity of 3D lidars have driven an interest in 3D point cloud
descriptors such as 3DSmoothNet [11] and in correspondence alignment tech-
niques such as TEASER++ [28].

The state-of-the art in SLAM has so far failed to address the challenges
encountered in unstructured natural environments [6]. Further, visual SLAM
techniques lack both scale and the density seen in maps generated using 3D
lidars. In a previous work, we surveyed the performance of monocular visual
SLAM algorithms in natural environments [6], and found that Direct Sparse
Odometry (DSO) [10] has a performance edge when it comes to natural envi-
ronment applications.

We call data fusion any scheme or approach that takes advantage of mul-
tiple inputs from sensors such as GPS, Inertial Measurement Unit (IMU),
and possibly some kind of odometry including, wheel, visual and ICP-based.
The purpose of sensor fusion is to obtain a refined estimate of a quantity.
In this paper, it is the 6 Degrees of Freedom (DoF) pose, which is otherwise
unattainable using an individual sensor [13]. For the purpose of fusing pose
estimates, factor graphs are capable of integrating different estimates such as
odometry and GPS readings i.e., geometric constraints [17]. The trajectory to
be estimated is discretized into several points of reference along it, which we
call nodes. These nodes represent the robot 6 DoF pose and they are inter-
connected using geometric constraints, as well as priors that reflect absolute
knowledge on the pose of a robotic platform. What follows is a smoothing and
optimization step to refine the pose estimate at each node [9]. Factor graphs
are therefore powerful tools for sensor fusion since constraints and priors can
be inferred from multiple sources.

The goal of this paper is to evaluate and adapt available techniques such
as factor graphs, ICP and scale-lacking monocular visual odometry for the
purpose of creating visual representations of natural environments, using visual
and range sensors such as cameras and lidars, respectively. We show how we
can recover the scale in the context of a factor graph, improve the reconstructed
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visual map after sensor fusion and use visual odometry to further refine pose
estimates.

We highlight the sensitivity of factor graphs to uncertainties and deter-
mine unknown parameters such as uncertainties on visual odometry, by run-
ning an exhaustive grid search to determine the best parameter combination.
We also explain how noisy visual map reconstruction can be even after pose
optimization, and suggest as a solution a piecewise reconstruction and align-
ment scheme. The suggested framework includes a loop closure step, inferred
using ICP in revisited geographic areas. In this paper, we also evaluate the
suitability of the state-of-the-art in correspondence alignment for mapping in
natural environment. We underline performance of ICP and its suitability for
lidar scan matching on slowly moving robotic platforms such as wearable sen-
sor suites. Our approach was tested by recording data in forest during sunny
and snowy weather, with the sensor suite presented in Figure 2. In Section 4,
the results were compared to a ground truth given by a theodolite in order to
have an accurate assessment of the pose given by the factor graph.

2 Related work

The generation of 3D maps from a moving platform is an evolving field of
study, due to the increasing availability and affordability of exteroceptive sen-
sors such as cameras and lidars. Unfortunately, the majority of available tech-
niques have either focused on indoor or structured outdoor scenes, with few
of these methods such as [10] and [6] for visual methods along with [1] for
laser-based methods having partial success in unstructured outdoor scenes,
and in particular the reconstruction of trees. In the context of a natural en-
vironment, the state-of-the-art does not provide specialized solutions for 3D
reconstruction, yet recent works such as [27] and [7] are starting to address
some of the challenges associated with 3D reconstruction of natural organic
structures. The task of trees crown reconstruction remains unsolved due to
the variability of trees phenotype, with some research focused on CAD model
replacement [8] or radius estimation from flying laser measurements [15]. Ad-
ditionally, works such as [27] and [26] show that it might be easier to model
tree structure such as a trunk, branches and twigs when they are exposed and
observable, such as during winter when the trees are bare. Another challenge
is meshing the point clouds to create surfaces that are suitable for autonomous
robot navigation such as path planning, with few libraries such as [21] and [24]
providing useful meshing tools. The topological representation of a point cloud
is, however, open-ended and in many cases specific to the application. Never-
theless, some libraries such as [24] provide hole detection and filling tools, and
most point cloud processing libraries such as [21] and [24] provide some form of
plane fitting for surface estimation, usually using RANSAC or marching cube
techniques for surface fitting. HDL Graph SLAM [16] presents a graph-based
sensor fusion approach to mapping, capable of integrating GPS, IMU and laser
scanners. The use of the word “HDL” references to the authors’ experiments
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Fig. 1: Flow chart of the proposed framework, including the sensors used during
experimentation.

with the velodyne HDL-32e laser. HDL SLAM does not support the integra-
tion of visual odometry and when testing the method, it has been noticed that
there is no scheme for dense reconstruction in between graph nodes.

In a recent work [7], we presented a real-time 2D laser-supported visual
tracking solution for natural environment, dependent on a camera feed and
a sparse disparity image generated by projecting a 2D laser onto the corre-
sponding image. However, laser-supported visual odometry assumes an overlap
between the lidar field of view and that of the camera. In addition that, it does
not support the integration of multiple cameras or inertial measurements.

3 Framework

The proposed framework, shown in Figure 1, is a sensor fusion scheme based on
a factor graph and in particular the implementation of Dellaert et al . [9]. The
data is assumed to be time synchronized, as detailed in the implementation
presented in Section 4. For the purpose of this section, the system is assumed
to have, at least, one monocular camera, one 3D laser, an IMU and a GPS
receiver. An approximation of the camera intrinsics and the various extrinsics
between sensors is assumed to be known as well. The 3D laser can be replaced
with a 2D laser, as long as that the field of view of the laser intersects with
that of at least 1 camera. Unfortunately, laser-based SLAM is unsuitable for
vertically installed 2D lasers such as in Figure 2a, given the lack of overlap
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in between measurements. In this paper, the use of ‘global frame’ refers to
the Universal Transverse Mercator (UTM) frame and in particular the North-
East-Down (NED) convention, representing x, y and z respectively.

(a) The backpack used for
data acquisition, an execution
of the design seen in Figure 3a.

(b) The backpack with a
3D laser shown in Fig-
ure 3b, and the theodolite
prism.

(c) Data acquisition in a
snowy forest in Quebec,
Canada.

Fig. 2: Implementation of the design shown in Figure 3.

3.1 Data synchronisation

Different sensors exhibit different latencies that cannot be precisely measured
or compensated. Further, cameras suffer additional delays such as image inte-
gration time (shutter length), and are susceptible to delays during data trans-
mission, due to high bandwidth requirements in high frequency transmission.
Consequently, asynchronous data collection does not guarantee data associa-
tion and temporal synchronization, as highlighted in [12] and [14]. To solve
the latter problem, the suggested framework takes advantage of a synchronized
physical trigger.

3.2 Factor graph

We define a factor graph node distancing parameter d, that constrains the
number of nodes in a factor graph. For instance, between two consecutive
nodes, the robotic platform would have traveled at least d meters along the
trajectory. The distancing parameter cannot be inferred from visual odometry
due to lack of scale. Instead, other solutions such as IMU-aided GPS, laser-
based ICP (for 3D lasers) or laser-aided visual odometry (for 2D lasers) can be
used to determine the node distancing parameter. In this paper, we construct
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(a) The backpack CAD model, showing
a 2D Hokuyo laser (center), an Inertial
Navigation System (INS) here in red,
and three cameras: two on the sides
and a center camera.

(b) Backpack CAD model, showing the Ouster-
16 lidar model (bottom) on a custom-made
mount to avoid interference with the field of
view of the camera (top).

Fig. 3: All fixtures were 3D printed or laser-cut according to a pre-designed
CAD model, so that to minimize geometric projection error in between compo-
nents. The instruments are mounted on a rigid acrylic plate, the latter affixed
onto the metal frame of a backpack.

our nodes by downsampling the input GPS-IMU data, using a distance-based
downsampling scheme, i.e., discarding all but the first measurement, each
time the system moves by d meters. The latter scheme therefore accounts
for occasional movement pauses while traversing rough terrain despite non-
interrupted data recording, such as in human-carried sensor suites.

Let dgps represent the sparsity of GPS prior constraints, according to which
the GPS measurements are distributed over the factor graph nodes. In other
words, we constrain our pose with GPS measurements every dgps nodes i.e.,
dgps ∗ d meters. We now construct a factor graph with:

– A GPS prior every dgps nodes.
– An attitude prior inferred from the INS, which describes the attitude of

the IMU with respect to the global frame (UTM-NED) with bias compen-
sation using the GPS direction of motion propagation. In the experimental
section, bias compensation is computed internally inside the INS sensor.

– Multiple odometry readings, either from laser-based ICP and/or laser-
supported visual odometry. A robotic platform with wheel odometry can
also be used as an alternative. In this paper, we constrain our system using
ICP odometry and scaled visual odometry.

3.3 Scale recovery and interpolation

The lack of scale in visual odometry measurements prevents the insertion of
scaleless constraints into the factor graph. Instead, we need to scale these
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Fig. 4: Factor graph flow chart.

measurements either using GPS or a less noisy estimate from a preliminary
factor graph optimization, given the availability of ICP odometry. Using the
factor graph defined above, a preliminary factor graph optimization using GPS
and attitude priors, as well as ICP odometry is performed and the resulting
pose is used to scale visual maps, as shown in Figure 4.

The scale for a visual odometry constraint at a given factor graph node n
is estimated by simply accumulating the traveled distance along the trajectory
from visual odometry, over the traveled distance inferred from the optimized
pose i.e., sn = Dvo/Dopt, where sn is the scale for a visual SLAM constraint,
with Dvo and Dopt representing the cumulative traveled distance over the last
100 meters before reaching the current position at node n. Dvo and Dopt are
inferred from visual odometry and the preliminary factor graph optimization,
respectively.

For each camera, we then interconnect nodes with scaled odometry con-
straints, followed by another optimization run to refine the pose and conse-
quently the estimated scale. Additionally, three-dimensional reconstruction of
the maps requires the recovery of the 6 DoF pose at the original rate. This is
also important for cameras due to the keyframe-based nature of many visual
algorithms, and therefore there is a need to interpolate the optimized 6-DoF
pose. Using timestamp queries with the optimized pose from factor graph, we
linearly interpolate the translation component of the pose. As for the rotation
part, we use quaternions Spherical Linear Interpolation (SLERP) [22].
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3.4 Point cloud registration

Point cloud registration is dependent on the context in which the data was
captured and the sensor used. For instance, vertically installed 2D lasers can-
not be registered using ICP, due to lack of overlap in between scans. In this
subsection, we exploit the various solutions to point cloud registration, for
both 3D lasers and cameras.

3.4.1 Merging of visual maps

Maps captured by most Visual SLAM algorithms work on the basis of keyframes,
which do not necessarily overlap, hence ruling out ICP as a solution to keyframe
registration. Unlike lasers, cameras can see far away objects that might show
up in a keyframe even after the sensor suite has long left the vicinity of the
object. Without breaking keyframe integrity, this results in a noisy, coarse re-
construction when attempting to reconstruct the map by simply transforming
the keyframes using the optimized pose from factor graph, or any other pose
but the original pose from visual odometry. We therefore suggest a hybrid
approach for point cloud registration consisting of local reconstruction of the
map using visual odometry, with ICP smoothing for the piecewise alignment
of map fragments.

For a set of visual SLAM keyframes Si captured along a portion of the
trajectory, we transform any point Pij in the sensor frame to the global frame
using Pzj = TijTextPij , where:
Tij represents the forward transformation from the base frame to the global
frame, Text is the extrinsic transformation, also known as the sensor to base
transformation, Pzj is the projected point in the global frame, and j represents
the keyframe number, with j = 1 referring to the first keyframe.

LetMc andMl be 2 preliminary point clouds used to construct a refined
point cloudMf . All three point clouds, shown in Figure 5, represent the same
scene but are differently constructed.

Mc is a coarse point cloud constructed by simply projecting visual SLAM
keyframes using the corresponding optimized pose from factor graph. In other
words, Mc is constructed by inferring Tij from the factor graph optimized
pose.

Ml is a hybrid map constructed using pose increments from sensor original
data i.e., visual SLAM. The latter pose increments build on sparse factor
graph poses, serving as anchors distributed along the optimized trajectory.
What follows is the derivation needed to reconstruct a point cloud Ml.

At the beginning of every set of keyframes, we set Ti,j=1 =Tok , where Tok

represents the optimized pose from factor graph at the corresponding node k.
This has an anchoring effect and prevents the map from significantly drifting
away from the associated pose. We now derive the forward transformation
that locally projects the points to the global frame, i.e., Tij , dropping the
subscript i for brevity with j 6= 1 :
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Fig. 5: Schematic showing the 2 intermediate mapsMc,Ml and the final map
Mf . Snapshots of Mc and Mf are shown in Figure 11.

Tj = Tj−1T
−1
voj−1

Tvoj (1)

where Tvo represents the sensor to world transformation, from visual odometry.
Setting Ti1 =Tok on the first keyframe of every set implies a misalignment

of map fragments, due to the resetting effect upon which Equation 1 builds
up subsequent pose increments. To solve this, we correct the point cloud Ml

to obtain a point cloud Mf by aligning, using ICP, the points in a given set
Si with the corresponding points in the coarse point cloud Mc.

3.4.2 Merging of range maps

Range scans obtained from 3D lasers overlap and therefore are suitable for
ICP-based solutions. In this paper, a hybrid approach for map registration
identical to the method presented in Section 3.4.1 is used by replacing visual
odometry by an ICP mapper that takes advantage of an interpolated pose
prior from factor graph. In other words, we registerMl using ICP in-between
factor graph nodes, and Mc using the interpolated pose from factor graph.

3.5 Exhaustive parameter search

An exhaustive search for parameters is a brute force technique consisting of
trying all possible values of a parameter, while looking for desired changes in
a system dependent on the said parameter. Feedback on the search process
is dependent on the application and the system at hand. Exhaustive search
techniques are especially useful when a priori knowledge on the value of a
parameter is poor or unavailable.

The proposed parameter search scheme is an exhaustive search of factor
graph uncertainties as well as other parameters that might affect the outcome.
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For instance, we noticed that varying dgps has a considerable effect on the
outcome, and therefore dgps was included in the parameter search scheme
along with the uncertainties. The proposed exhaustive search implies trying
all parameter combinations in a constrained range of values, followed by a
factor graph optimization step. We then compute the error feedback and log
all the parameters with the associated error value.

Setting the covariance matrices for a factor graph can be challenging: unlike
sensors that come with a datasheet, laser-based ICP or visual odometry do not
have a defined uncertainty. Although the parameters can be manually fixed,
a better estimation can be achieved through an exhaustive parameter search
scheme, which runs through a constrained range of values to determine the
covariances associated with visual odometry, ICP-generated pose, GPS and
IMU measurements as well as the factor graph parameter dgps.

Subsequently, parameter search is performed by logging different parameter
combinations against alignment error with the reference (i.e., ground truth)
trajectory. Unfortunately, an exhaustive parameter search is a computationally
expensive task, and in this context assumes the availability of ground truth
data. Further, uncertainties for different measurements are dependent on the
sensor as well as the environment around it. For instance, laser measurements
depends on the surface material upon which laser beams reflect, as well as
climatic conditions. For the purpose of the exhaustive parameter search, the
bulk of the uncertainty is assumed to be interoceptive to the sensor or method
used to generate the measurements. The latter assumption hypothetically al-
lows the generalization of the parameters for a sensory platform, disregarding
exteroceptive stimuli. Further discussions in Section 4 show that the parame-
ters we find for a given survey remain valid for other surveys that might not
include the ground truth required to run the exhaustive parameter search.

3.6 Loop closure

Position and attitude drift is expected with most incremental sensor systems.
For an outdoor system such as the one presented in this paper, both visual and
laser-based measurements accumulate errors, the latter constrained by IMU-
aided GPS priors, in the context of a factor graph. In this section, we suggest
a two-step loop closing scheme; the first step consisting of a correspondence
match generation function followed by a laser-based, ICP-inferred geometric
constraint.

3.6.1 Correspondence generation

The underlying assumption for correspondence generation is that translational
drift, constrained by GPS priors, is well below the laser range threshold, cur-
rently between 30 and 50 meters for commercially available 3D lasers. Given
a factor graph with n nodes, with the first node being N1 and the last node
being Nn. We generate the n×n correspondence map C, such that C(i,j) = 1 if
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the laser-generated maps associated with neighbor nodes Ni and Nj overlap,
and C(i,j) = 0 everywhere else. To check for corresponding nodes, the fifty
nearest neighbors for a node N are tested against two distance constraints.
The first constraint is a proximity parameter, typically between five and fif-
teen meters that guarantees map overlap. The second constraint is an elapsed
distance over the trajectory constraint typically between fifteen and thirty
meters. Every node Ni is associated with a distance Di, which measures the
elapsed distance over the trajectory from N1, N2.... to Ni. The second con-
straint guarantees that the nearest neighbor lies in a revisited space, after the
sensor suite has initially left the area.

3.6.2 Geometric constraint

We propose an ICP-based geometric constraint, using the correspondence map
found in Section 3.6.1. Owing to the constrained nature of the field of view
and namely the opening angle of 3D lasers, the point clouds associated with
two corresponding nodes i.e., just two laser scans, are not guaranteed to sig-
nificantly overlap. As a solution to that, using the optimized pose from the
factor graph, we locally reconstruct the laser map observed from consecutive
factor graph nodes N1...Nk, using interpolated factor graph poses P1...Pk to
create sub-maps. A matching sub-map is subsequently found using the corre-
spondence map C. A series of nodes and their associated maps form a sub-map
if and only if every node in the series associate with at least a single correspon-
dence in C, and that no significant gaps exist in between consecutive scans to
guarantee map continuity. Further, we define the map size limit such using the
length of the trajectory (Pk − P1) < Thlc, where Thlc is the map length limit
over the trajectory typically between ten and forty meters, over which a new
match pair is initialized. Finally, for every match pair, we infer the geometric
transformation using ICP and add the inferred constraint to the factor graph.

4 Experiments

The dataset used in this paper is composed of a forest environment, in the
area surrounding Montmorency Forest in Quebec, Canada, shown in Figure 6.
A secondary survey was also captured in an open field next to Université
Laval. Data were captured using the sensor suite fitted on the backpack shown
in Figure 2a. As shown in Figure 3, the data acquisition system has been
designed to include three 2.0 megapixels RGB cameras from FLIR, a 16-beam
Ouster-16 lidar from Ouster, and the VN-200 INS from Vectornav, the latter
consisting of an IMU and a GPS. The system is physically synchronized using a
laser-generated trigger, that can be downsampled using an on-board frequency
divider circuit. Finally, the data is recorded on the on-board computer. For the
remainder of this paper, the term ‘forest survey’ refers to the dataset captured
in the snowy forest shown in Figure 6b.
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(a) Ground truth recording using the theodo-
lite total station.

(b) Snapshot from the center, backward-
facing camera on the backpack sensor suite.

Fig. 6: Data acquisition in forestry environment

The versatility of a backpack allows survey recording in narrow or difficult
to navigate regions, as shown in Figure 2c. Further, designing sensor fixtures
and having them rigidly affixed to the backpack frame, means that sensor
extrinsics can be calculated by using measurements inferred from the design
model. For cameras, this includes taking into account the location of the image
plane inside the camera hull, the latter provided by the camera manufacturer
datasheet. Further, we used a Trimble S7 theodolite to obtain a translational
ground truth. By affixing a theodolite prism onto the backpack as shown in
Figure 2b and Figure 6a, we were able to have an accuracy to the millimetre
of its trajectory.

The exhaustive parameter search was performed by defining four lists L1,
L2, L3, L4 that contain, respectively, a range of uncertainties for GPS, visual
odometry, and ICP measurements as well as the sparsity parameter for GPS
constraints dgps. The lists of uncertainties are designed to be inclusive of all
logical potential values:

– The list of GPS uncertainties L1 ranges between 1 and 19, discretized with
steps of 1.5 meters, for a total of 13 possible parameters.

– The list of visual odometry uncertainties L2 ranges between 1 and 16,
discretized with steps of 1.5 meters, for a total of 11 possible parameters.

– The list of sparsity constraints L3 ranges between 1 and 30, discretized
with steps of 1 node, for a total of 30 possible parameters.

– The list of ICP uncertainties L4 ranges between 1 and 25, discretized with
steps of 1.5 meters, for a total of 17 possible parameters.

In practice, with 4 parameters we have a O(
∏4

i=1 ni) complexity, where ni is
the number of elements in a list Li. The exhaustive search for the four parame-
ters took around 60 hours, using an off-the-shelve Intel Core i7 computer with
16 GB of RAM. What follows is an exhaustive parameter search as presented
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Fig. 7: Cumulative trajectory alignment error, in function of an expanded set
of parameter combinations, with and without visual odometry.

in Algorithm 1.

Algorithm 1: Exhaustive parameter search snippet

logger=[]; // empty list

for every GPS uncertainity parameter p1 in list L1 do
for every visual odometry uncertainty parameter p2 in list L2 do

for every GPS sparsity constraint parameter p3 in list L3 do
for every ICP uncertainty parameter p4 in list L4 do

Get optimized pose from factor graph
Calculate trajectory alignment error
state = [error, p1, p2, p3, p4]
append(logger, state)

5 Results

5.1 Quantitative analysis

Figure 7 shows the error variations in a partial parameter search. Still in the
same figure, it is shown that the inclusion of visual odometry improves the
overall pose estimates, in almost all possible parameter combinations. More-
over, the periodicity in error oscillations suggests that certain parameters tend
to be more dominant than others with respect to their contribution to the er-
ror term, therefore imposing their own periodicity on that of the error. Based
on that and given the mixture of parameters at hand, we generate graphs to
highlight the effect of individual parameter variability, as shown in Figure 8.
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The sensitivity of factor graphs to the estimated uncertainties, here ex-
pressed in variances, is highlighted in Figure 8, proving the existence of a
narrow range of variances, at which the factor graph optimization performs at
its best. Further, certain variances such as those associated with GPS mea-
surements show a more forgiving range compared to the parameter associated
with visual odometry or the parameter dgps, the latter two parameters seem-
ingly having a considerable effect on the optimization process. Still in the same
figure, the standard deviation of the error can influence parameter selection.
For example, Figure 8b shows a considerable fluctuation of the error for laser-
based ICP odometry, in the range between 1 and 5 meters. Therefore, it is
convenient to choose the values between 5 and 10 meters, as they suggest an
improved stability and therefore a higher repeatability. In contrast to the lat-
ter, Figure 8c suggests that uncertainties attached to GPS measurements do
influence the system performance yet less significantly than the other three
parameters in the same figure. This is due to the small range in which the
error varies for variance values ranging between 1 and 20 meters, reinforced
by a largely consistent standard deviation all throughout the range of values.

Comparing the optimized pose from factor graph with the ground truth, we
generate the Root Mean Square (RMS) error for the translational component.
The alignment RMS error, inferred from the residual RMS error associated
with the ground truth trajectory alignment, was added to the evaluation since
it penalizes for trajectory deviations and rotation inaccuracies. Given that
even small deviations from ground truth, as shown in Figure 9a are carried
through the trajectory and globally affect the alignment quality, the associated
error is expected to be significantly higher than its translational counterpart.
Nevertheless, a perfect alignment is desirable and therefore it is a suitable
metric in comparing different methodologies.

Table 1: Accuracy metrics for the forest dataset and a secondary survey.

Survey Translational RMS Alignment RMS

Main (Forest) 0.36 m 2.4 m
Secondary (Open field) 0.45 m 8.29 m

Table 1 shows the RMS performance for the forest survey, and an addi-
tional survey that has been added for the purpose of evaluating the suitability
of previously found parameters in other surveys. Still in the same table, a
secondary survey run showed the usability of the previously found parameters
on another survey, yet with a slight increase in the translational RMS and a
4-fold increase in the alignment RMS. Note that, to the best of the authors’
knowledge, no other parameter combination has achieved better results. This
is most likely due to the nature of the dataset and the constrained field of view
of the laser, as it happens for the secondary survey, the laser mostly sees the
ground therefore the degradation of ICP-based estimators. In a future work,



16 Georges Chahine et al.

2 4 6 8 10 12 14
0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Trajectory error, in function of the vari-
ance for scaled visual odometry.
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(b) Trajectory error, in function of the vari-
ance for laser-based ICP.
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(c) Trajectory error, in function of the vari-
ance for GPS measurements.
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(d) Trajectory error, in function of the peri-
odicity for the parameter dgps.

Fig. 8: Exhaustive parameter search, to evaluate the effect of certain parame-
ters against performance metrics obtained from ground truth. The error values
shown above, are the lowest error values (lowest 1%), obtained by fixing a given
parameter and looking at error values against all other parameter combina-
tions. The shaded area represents the standard deviation of the error.

the cylindrical 3D laser will be replaced by a hemispherical laser with a more
suitable field of view.

5.2 Qualitative analysis

The increasing availability and affordability of 3D lasers reverberate in the
demand for map registration techniques. In that context and given the de-
pendability of the suggested system on laser-inferred odometry, we study the
performance of ICP in natural environment, one of the most used registration
algorithms for laser scan registration. The initial approach was to evaluate the
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(a) Trajectory alignment of the factor
graph optimized pose with the ground truth
from the theodolite total station.

(b) Trajectory drift compensation, before
and after loop closure.

Fig. 9: Comparison of trajectories with the ground truth.

usability, in natural environment, of the state-of-the-art in ICP registration
techniques such as TEASER++ [28]. The latter was evaluated by randomly
sampling nearest neighbors for correspondence matching, but was found to be
largely unreliable. The experiment was subsequently modified to take advan-
tage of 3DSmoothNet [11] for correspondence matching, yet with no discernible
performance improvement.

The performance of classical ICP i.e., with nearest neighbor correspon-
dences was found to be easily affected by the rate at which laser scans are
matched. To further elaborate on the latter hypothesis, we set the lidar op-
erating at its maximum frequency (20 Hz) and then down sample the data,
resulting in the plot shown in Figure 10 and the metrics shown in Table 2.
Still in the same table, it is shown that increasing the data rate increases
the performance of ICP in comparison with the ground truth, yet to a cer-
tain limit after which the performance is severely degraded. Presumably, the
performance degradation at the maximum frequency of 20 Hz is due to the
relatively low speed (< 1 m/s) of the person carrying the sensor suite, making
small pose differentials estimated by ICP in between consecutive scans to be
overshadowed by the noise surrounding the estimation.

Table 2: Accuracy metrics for ICP at different data rates.

Frequency Alignment RMS Frequency Alignment RMS

0.5 Hz 33.57 m 5 Hz 4.43 m
1 Hz 21.60 m 10 Hz 3.88 m
2 Hz 11.37 m 20 Hz 32.91 m
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Fig. 10: Comparison between laser-based ICP and ground truth trajectories,
at different data rates.

The integration of GPS measurements into factor graph architectures is not
a trivial task, due to non-Gaussian noise contamination of position estimates
[18]. GPS priors, however, do have the ability to globally constrain factor
graphs and therefore eliminate accumulating drift from odometry. A GPS prior
could have been implemented either:

– by imposing a loose, frequent constraint i.e., a prior on every node with a
relatively high variance (> 15 meters)

– by imposing a tight, sparse constraint i.e., a prior every dgps nodes with a
small variance (< 7 meters)

Figure 9 shows the trajectory alignment, before and after loop closure.
Notice in Figure 9b how loop closure eliminates accumulating drift in the
overlapping part, although it has little effect on the overall outcome in none-
overlapping parts.

Since point cloud perception is not trivial, and since surface reconstruction
improves human perception such as when displaying the maps in virtual reality,
we used the Las Vegas reconstruction toolkit [24] in order to mesh the point
cloud shown in Figure 12b. Since all maps are represented in the same global
frame, the colors in the latter figure have been inferred by averaging the red,
green and blue channels of the 10 nearest neighbor points in the corresponding
visual map, the latter generated by the center camera on the sensor suite
(Figure 6b). The lighting discrepancy is caused by varying lighting conditions,
and the available shade at the moment when the data was recorded.

Although human perception of sparse point clouds can be difficult and es-
pecially in unstructured scenes, the effect of the visual reconstruction scheme
suggested in Section 3.4.1) is nevertheless discernible in Figure 11. Comparing
Figure 11a and Figure 11b, notice how noisy global reconstruction is (Fig-
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(a) 3D reconstruction using the optimized
pose with local reconstruction and map
alignment, i.e., Mf

(b) Coarse map using the optimized pose
without local reconstruction and map
alignment, i.e., Mc .

Fig. 11: Comparison of the effect of local reconstruction with map alignment
as discussed in Section 3.4.1.. The above figure shows an isometric view of a
scene consisting of trees and a house on the top right corner.

ure 11b), compared to the left-side image that uses local piece wise recon-
struction with global alignment.

Unlike monocular cameras, laser-generated point clouds are dense and
therefore more desirable and aesthetic. Figure 12a shows the top view of a
laser-generated dense map with loop closure correspondences generated as
previously discussed in Section 3.6.1. Still in the same figure, notice how cor-
responding point couples fit well within the lidar range i.e., the ensuing point
cloud from local map reconstruction is guaranteed to overlap in the vicinity
of the correspondences, as previously discussed in Section 3.6.1.

A video showing the colored point cloud being manipulated is available
here.

6 Conclusion

We have presented a mapping framework in an extremely challenging un-
structured environment, capable of integrating monocular cameras, lidars and

https://youtu.be/FNgcQedeAvY
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(a) Laser point cloud reconstructed us-
ing the interpolated pose from fac-
tor graph, showing a trail between 2
columns of fir trees. The blue lines are
drawn using the correspondence map (
Section 3.6.1).

(b) Laser-generated point cloud, colored by aver-
aging the color information of nearest neighbors
in the sparse point clouds, produced from visual
odometry, such as the ones shown if Figure 11.
The point cloud was also meshed using the Las
Vegas reconstruction toolkit.(video)

Fig. 12: Laser-generated point cloud, showing the same scene as a colorless
point cloud and a colored mesh representation.

inertial measurements with loop closure. It has been demonstrated that the
presented map integration scheme is robust and results in human-readable
virtual depictions of natural environment elements, using a wearable sensor
suite. The importance of this achievement is of great value for scientists look-
ing to detect changes in natural environment. The advantages of the proposed
method lies in its robustness, since the state-of-the-art in visual mapping such
as DSO, and the state-of-the-art in laser mapping such as ICP, cannot survive
the full length of the survey without catastrophic failure. Another advantage
is the flexibility of adding as many exterioceptive sensors as needed, creating a
multi-layered map. For example, a near-infrared mapping layer can be added
using a suitable camera, a technique that is often used by environmentalists to
characterize plant type and growth. In dense forests, by filtering laser points
to include only the points in a cone above the sensor suite, our method can

https://youtu.be/FNgcQedeAvY
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be used to generate special types of maps, that reflect the canopy density and
sky openness. The latter can be used to estimate light availability for certain
plant species. Using a factor graph architecture, it is also possible to add a
temporal layer, to compare maps taken at two different points in time. This
approach will be addressed in a future work.

In this work, It has been shown that techniques such as ICP are of con-
siderable utility, and can be adapted to challenging natural environment ap-
plications, for the purpose of local map alignment as well as loop closure. It
has been also shown that factor graphs, when correctly manipulated, are suit-
able for refining pose estimates from different observations as well as to scale
unitless estimates, generated using monocular techniques.

The proposed method is however limited to the availability of extrinsic
parameters, which in this paper, is extracted from the CAD model of the
sensor suite. Other limitations include the ability to systematically detect the
failure of visual SLAM algorithms, to prevent local discontinuities in the factor
graph setup. Other practical limitations for data acquisition include battery
life, which is severely reduced in cold weather.

This work however exposed a considerable lack of mapping techniques suit-
able for natural environment applications, as well as the need to develop de-
scriptors for 3D point clouds, and highlights the dependence of factor graphs to
the non-trivial choice of uncertainty. Future work will include semantic map-
ping as well as temporal alignment of maps, a great interest for biologists and
environmentalists who seek to detect changes in the natural environment over
a long period of time. Finally, we aim to improve topological understanding of
natural environment point clouds by further exploration of meshing techniques
and therefore improve human perception of natural environment elements such
as trees.

Declarations

Funding

This work was funded in part by the Grand-Est Region, the Zone Ateliers
Moselle, as well as the Rhine-Meuse Water Agency in France.

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

Availability of data and material

The dataset will be made public upon the maturity of a cross-seasonal dataset.



22 Georges Chahine et al.

Code availability

Not publicly available.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

References

1. Babin, P., Dandurand, P., Kubelka, V., Giguère, P., Pomerleau, F.: Large-scale 3D
mapping of subarctic forests. In: Proceedings of the Conference on Field and Service
Robotics (FSR). Springer Tracts in Advanced Robotics (2019)

2. Besl, P.J., Mckay, N.D.: A method for registration of 3-D shapes (1992)
3. Biber, P., Straßer, W.: The normal distributions transform: A new approach to laser

scan matching. pp. 2743 – 2748 vol.3 (2003)
4. Bosse, M., Zlot, R., Flick, P.: Zebedee: Design of a spring-mounted 3-D range sensor

with application to mobile mapping. IEEE Transactions on Robotics 28(5), 1104–1119
(2012)

5. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,
Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: To-
ward the robust-perception age. IEEE Transactions on Robotics 32(6), 1309–1332
(2016)

6. Chahine, G., Pradalier, C.: Survey of monocular slam algorithms in natural environ-
ments. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 345–352
(2018)

7. Chahine, G., Pradalier, C.: Laser-supported monocular visual tracking for natural en-
vironments. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp.
801–806 (2019)

8. Chang, C.C., Chiang, H.: Three-dimensional image reconstructions of complex objects
by an abrasive computed tomography apparatus. The International Journal of Advanced
Manufacturing Technology 22, 708–712 (2003)

9. Dellaert, F., Kaess, M.: Square root sam: Simultaneous localization and mapping via
square root information smoothing. The International Journal of Robotics Research
25(12), 1181–1203 (2006)

10. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2017)

11. Gojcic, Z., Zhou, C., Wegner, J.D., Andreas, W.: The perfect match: 3D point cloud
matching with smoothed densities. In: International conference on computer vision and
pattern recognition (CVPR) (2019)



Mapping in unstructured natural environment 23

12. Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G.: Multi-sensor fusion in body
sensor networks: State-of-the-art and research challenges. Information Fusion 35, 68 –
80 (2017)

13. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. Proceedings of the
IEEE 85(1), 6–23 (1997)

14. Huck, T., Westenberger, A., Fritzsche, M., Schwarz, T., Dietmayer, K.: Precise times-
tamping and temporal synchronization in multi-sensor fusion. In: 2011 IEEE Intelligent
Vehicles Symposium (IV), pp. 242–247 (2011)

15. Kato, A., Moskal, L.M., Schiess, P., Swanson, M.E., Calhoun, D., Stuetzle, W.: Captur-
ing tree crown formation through implicit surface reconstruction using airborne lidar
data (2009)

16. Koide, K., Miura, J., Menegatti, E.: A portable three-dimensional lidar-based system
for long-term and wide-area people behavior measurement. International Journal of
Advanced Robotic Systems 16 (2019)
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