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The Effects of Bounding Syntactic Resources on PresburgerTL
(Extended Abstract)

Stephane Demri & Rgis Gascon
LSV, ENS Cachan, CNRS, INRIA
{denri, gascon}@sv. ens-cachan. fr

Abstract
stricting the use of the temporal operators). In this pa-
We Study dec|dab|||ty and Comp|exity issues for frag_ per, we are interested in the dECldablllty and CompleXity

ments of LTL with Presburger constraints by restricting Status of fragments of Presburger LTL restricting the fol-
the syntactic resources of the formulae (the class of con-lowing syntactic resources of the formulae: the class of
straints, the number of variables and the distance betweenconstraints, the number of counters and the maximal dis-
two states for which counters can be compared) while pre- tance between two states for which these counters can be
serving the strength of the logical operators. We provide a compared. However, we preserve the full strength of the
complete picture refining known results from the literajure 10gical operators. Our investigation is based on the stan-
in some cases pushing forward the known decidability lim- dard assumption that restricting the number of variables is
its. By way of example, we show that model-checking for-means to define decidable fragments of undecidable logics
mulae from LTL with quantifier-free Presburger arithmetic ©OF to design counter/clock automata with decidable reach-
over one-counter automata is orfgPACEcomplete. Inor-  ability problems, see e.g. [19, 17, 27, 23]. Furthermore
der to establish thesPacEupper bound, we show that the this helps to understand the complexity gaps of decidable
nonemptiness problem fokiBhi one-counter automata tak-  Problems [15, 22]. Our goal is therefore to identify decid-
ing values inZ and a”owing zero tests and Sign testS, is able and undecidable fragments of Presburger LTL (bOth for
onIyNLOGSPACEcompIete. mOdel'CheCking and SaﬂSflablllty prOblemS) refining exist

ing results from [8, 10, 12, 13].

Our contribution. We defineCLTL(DL) as a fragment
of Presburger LTL where atomic formulae are difference

. ) . constraints. The underlying fragment of Presburger arith-
LTL with Presburger constraints. Ubiquity of counter metic in CLTL(DL) is identical to the one in the logic,,

automata in computer sciencg stems from their use as OPerfom [10]. However, it is possible ICLTL(DL) to state
ational models of numerous infinite-state systems, includ- .,nq4raints between counters at two non-consecutivesstate
ing for instance broadcast protocols [16] and programs with g instance, XXz — 3" means that the value of at the
pointer variables [3, 6]. Even the restriction to one counte current state is equal to the value oftwo states further.
has found applications in the_z verification of cryptographic e call X-length the maximal number of operators pre-
protocols [21] and the validation of XML streams [9]. HOW- fiying 4 counter. As far as undecidability is concerned, we
ever, numerous model-checking problems for counter au-gpy that satisfiability and model-checking over counter
tomata, like reachability questions, are known to be un- 5 yomata forCLTL(DL) either restricted to formulae of
decidable. This does not end the story since many sub-y jengih two with at most one counter or to formulae of

classes admit a decidable rea_chability problem such a%(-length one with at most two counters até-complete,
reversal-bounded counter machines [19] or flat Coumersys'improving results from [10, 12]. On the positive side, we
tems [5, 24]. , , _ _ prove that model-checking and satisfiability fSETL(DL)
Extending the linear-time temporal logic LTL with Pres- a0 5pacecomplete when restricted %length one and to
burger constraints allows to specify quantitative prapert  ,ne counter. Hence, we offer a complete and precise taxon-

about counter systems even though undecidability cannOtomy of CLTL(DL) fragments with respect to decidability
be avoided (see in [7, 10] decidable fragments by re- oo o

*Partially supported by project AVERISS (ANR) and bilateral Ve .fOIIOW a Standa_rd_ aummata‘pased appranh [31, 20] but
CNRS/NRF project No19812. we introduce an original symbolic representation of models

1 Introduction




that can be recognized by a fine-tuned class of one-counte2 Temporal logics, automata and Presburger
automata (instead of standardidghi automata). A nice constraints

property of this method is that it can be generalized to vari-

ous LTL extensions that defingregular classes of models. 5 1 From constraint languages to linear-time tem-
Among the most technical parts of this work, we show that poral logics

the nonemptiness problem for this class of counter automata

where Constraint languaged.et VAR = {xg, x1, ...} be acount-

« the counter is interpreted I, ably infinite set of variak_JIes. We consiFjer several frag_ment
. of Presburger arithmetic (PA). The difference lo@it. is

e there are zero tests and sign tests, defined by constraints of the form

e the accepted language is madeuwsbequences with

Biichi acceptance condition, Ei=z~ytdfz~dEAE|-E
e the updates of the counter correspond to add one of thewherexz,y € VAR, d € Z and~¢c {<,>,<,>,=}. We
values—1,0,1 denote byDL™ the extension oDL with periodicity con-

straints of the form eithet =, corx =5 y + ¢ (k,c € N).
Finally, QFP is the quantifier-free fragment of PA, defined

by:

is NLOGSPACEcomplete. This extends what is known
about Bichi automata and variants of one-counter au-
tomata [21, 31]. As far as we know, this is a new result
obtained by analyzing runs. The details of the full proof are
in [14, Sect. 6]. In addition, we show that model-checking
LTL with quantifier-free Presburger constraints over one-
counter automata is alstsPACECcOmMplete. wherea; € Z andI is a finite set of indices. Obviously,
DL C DL* C QFP. Given a valuationy : VAR — Z,

Related work. Decidability and complexity issues for the satischtion relatiom = _E is deﬁned in the obvious
LTL variants with Presburger constraints can be found W&y For instancep = »’ iff there is z € Z such that
in [7, 10, 12, 13] (see also description logics with concrete ? = 7' + k2. Allintegers are encoded in binary.
domains in [25] and logics of space and time in [2]). Unlike _ o _
these works, we are studying systematically the effects of Linear-time temporal logicsGiven a constraint languagde
bounding the number of variables and tkdength of for-  (typically DL, DL+ or QFP), we define the logi€LTL(L)
mulae while preserving the logical operators. This cotgras S the extension of LTL where the propositional variables
with fragments shown to be decidable in [7’ 10] (not closed are reflneq to gtomlc constraints frofn'over expressions
under negation). representing dlffere_nt states of the variables. The foamul

Model-checking one-counter automata against mpdal ~ ©f CLTL(L) are defined by the grammar:
calculus is inPsPACE [28] and more generally model- L I N L,
checking pushdown systems against modafalculus is ¢ 1= Elpr = X0z, 20 = Xz, [ 91 6]
EXPTIME-complete [33] as well as linearcalculus [8, 18].

) - . =9 [ X¢ | oUg

Herein we show that model-checking lingacalculus with
quantifier-free Presburger constraints over one-counter a WhereE[z1 « X'z ... 2, « X'z, ] is a constraint
tomata ispsPACEcomplete, refining the above-mentioned ©f L with free variablesry, ..., z, replaced by terms. A
works. Satisfiability for this fragment is undecidable as a termis a variablex; prefixed by a certain number of
consequence of [26, Sect. 14.2]. Furthermore, itis worth re X Symbols and is denoted b¥'z; (its encoding requires
calling that even though LTL can be expressed in the modalO(l + log i) bits). The symbolsX and U are respec-
p-calculus, these two formalisms have not the same con-tively the classical operators “next” and “until” of LTL. We
ciseness on common fragment and therefore complexity re-Use the notations¢ andG¢ as the abbreviations forU¢

E:::Zaixi~d| Za,-xi = c|EAE|-E
il iel

sults cannot always be transferred immediately. and—-F-¢. A one-st;ap constrairis an altomic formula of
Because of lack of space, the omitted proofs can be foundthe formEfzy — Xbzj,, ...z, « X'x; | such that

X-length|¢|x as the maximal numbérsuch that a term of
the form X!z occurs ing. Intuitively, the X-length defines

the size of a frame of consecutive states that can be com-
pared. The models dfLTL(L) arew-sequences of valua-
tionso : N — (VAR — Z) and the satisfaction relation is
defined as for LTL except at the atomic level:



o 0,i | Elzy XUz ...z, Xng; | iff
(0(i+l)(xj,),no(i+1p)(x;,)) EEInPA,

e oi =N Iff 0,i E¢ando,i =,
e 0,0 ¢iff 0,i £ o,
e 0,i =Xoiff 0,i+ 1 ¢,

e 0,1 = ¢U¢' iff there isj > i such thatr, j E ¢’ and
for everyi < k < j, we haver, k = ¢.

The symbol=, used at the level of the constraint language,
is overloaded but this will not lead to any confusion. As
usual, a formulap € CLTL(L) is satisfiable whenever
there exists a modef such thato,0 = ¢. We write
CLTL! (L) to denote the restriction ¢?LTL(L) to formu-

lae with at mosk variables an-length less or equal tb
The satisfiability problem foCLTL(QFP) can be placed
easily in the clas&i from the analytical hierarchy.

Constraint automata.A k-variable L-automatonA is a
structure(Q, 6, I, F') such thatQ is a finite set of states,

I C Q@ is the set of initial statest” C ( is the set of fi-
nal states and C @ x A x Q whereA is a finite subset of
15Cy(L), the set of Boolean combinations of one-step con-
straints fromZL built over the variable§x, ..., zx}. We

use the notation E ¢’ as an abbreviation fqy, E, ¢') € 4.
A configurationof A is a tuple(q,c) € Q x Z* and we
denote byz(i) the i value ofc. The one-step transition
relation— is defined as follows{q, ) — (¢/,¢/) & there
exists(q, E, ¢’) € § such that if each;; takes the value(7)
and eachXz; takes the value’(i), thenE holds true. We

write (g, ¢) E (¢’, ') whenever we need to consider the
constraintkl on the transition. A finite (resp. infinitgyath

w is a sequence of the forgd, ..., n} — (Q x Z*) (resp.
N — (Q x ZF)) such that for every € {0,...,n — 1}
(resp. for everyi € N) we havew(i) — w(i + 1). We
note(q,c) —* (¢, ') if there is a finite path fronig, ) to
{¢’, ). An accepting run ford is an infinite pathw such
thatw(0) € I x ZF and the sefi € N : w(i) € F x Z*}

is infinite (standard Bchi acceptance condition). We write
Lsymb(A) to denote the set of-words accepted by
viewed as an automaton over the alphaketh CLTL(L)
modelo realizesanw-word EgE; - - - over A iff for every

i >0, we haver,i = E;.

Model-checking. = The model-checking problemfor
CLTL(L) takes as inputs &LTL(L) formula ¢ and an
L-automatonA and checks whether there isCLTL(L)
model o that realizes some word df*¥™P(4) and such
thato,0 | ¢ (we write A = ¢). For the restriction to
CLTL.(L), ¢ is in CLTL, (L) and A is a k-variable L-

automaton. We present the existential version of the prob-

lem to simplify forthcoming developments since we also

deal with satisfiability but results about the universal-ver
sion can be withdrawn from those presented herein.

In the rest of the paper, we mainly considBi"-
automata or subclasses that can simulate non-deterrinisti
Minsky machines. We introduce below subclasses of
DL-automata on which we will restrict in some places the
model-checking problem.

Counter automataA k-Z-counter automaton is a restriEcted
DL-automaton such that each transition is of the fgri
¢’ whereE is a conjunction

/\ Eiesti N /\ Eupdates

ie{l...k} ie{l...k}
with

L4 Etest"' S {T} U {xl ~ 0 | ~E {<’ >a:77é}}’
b Eupdatei € {xxz =x;+u | u e Z}

for everyi. Moreover, we require that the initial values of
the counters are equal to zero (with a zero test on every
transition from an initial state). For ease of presentation
the elements of T} U {z; ~ 0| ~e {<,>,=,#}}

are encoded by T, <, >,=,#}, the elements ofXz; =
x;+u | u € Z} by Z and we order the constraints according
to an arbitrary ordering of the variables. For instance, the
transition

TAxe=0AXz1=x1 AXTo=22—1 q/

is encoded by
T,=0,-1 ,

q ———4q.
A k-N-counter automaton is defined similarly except that
we only consider non negative values for the counters. Ob-
viously, oneZ-counter automata with updates #hform
a proper subclass of one-varialild.-automata that admit
also constraints of the fortdx > z or Xz < x + d.

In Sect. 3, we define an automata-based approach which
differs from [31] by the use of on&-counter automata
where the updates are restricted{to1,0, 1}, instead of
classical Bichi automata. Such automata are cak&d-
ple. Hence, counter automata are used as operational mod-
els (inputs of the model-checking problem) and also as lan-
guage acceptors for adapting the automata-based approach
from [31]. Proving the existence of accepting runs for sim-
ple oneZ-counter automata is not immediate since we are
dealing with Bichi acceptance condition, the counter is in-
terpreted irZ and zero/sign tests are allowed.

2.2 Improving undecidability boundaries

Satisfiability forCLTL(DL) is undecidable since we can
easily encode the executions of a Minsky machine with



a CLTL(DL) formula. The proof of [10] provides that
CLTL}(DL) satisfiability is already:}-hard. We consid-
erably refine this result by showing that one variable and
X-length two or two variables and-length one is enough
for high undecidability.

Theorem 1 Satisfiability for  CLTL?(DL) and

CLTL}(DL) are Zt-complete.

We refer to [14, Section 3.2] for the full proof that con-
tains a reduction from the recurrence problem for nonde-
terministic Minsky machines, known to B& -complete [1,
Lemma 8]. Theorem 1 also refines the undecidability of
CLTL% (DL) shown in [12].

We present below the proof for thEl-hardness of
CLTL3(DL) satisfiability. The proof forCLTL3(DL) is
obtained by a reduction fro)€ LTL}(DL) satisfiability
(see [14)).

Proof. (satisfiability for CLTL?(DL) is ¥1-hard)
We show that the existence of an accepting run for Nvo-

e Initial configuration:
(bim't = X1 0 A 9 1 A
vlSiSm(/\OSKarl X% (z = X2z A X(z = X2z))A
v<qai,¢,qﬂ)eé XQ(%_I)((ZV A Before;/)).
¢’ is defined below.

e Recurring elements af":
def

(brec = Vlgigm' GFBeforeﬁi.

e Simulation of the run:
def

Orun = G/\lgign(Beforei = \/<%¢7qj,>65 X% (¢" A
Before;)) where¢' is obtained fromp by replacing

—x1=0 byl‘ =0,

— 2o =0by Xz =2+1,

— Xz = 21 +d; by X2z
dy € {-1,0,1} and,

— Xzg = x9 + do by /\dle{—1,o,1}(x2x =+
d1) = X(X?z = z + (d1 + d3)) for everyd, €
{-1,0,1}.

x + dy for every

counter automata can be reduced to a satisfiability question

in CLTL? (DL).

First we show that for every twbcounter automaton
A, there is an equivalent twi-counter automatos’ com-
putable in logarithmic space ip4| such that each tran-
sition of A’ changes at least the value of one counter.
Given a twoN-counter automatol = (Q, 4,1, F), A’
(Q',d,1', F') is defined by:

1 2 __ __
.Q’d:efQU{qt:teéandt:qMLq’},

I'ZTandF’ £ F,
e ¢’ is defined fromd by replacing each transition =

test! test?,=,=
—_—

q € by
1 2 — —1.=
test” ,test”,+1,= g andqt T,T,—1, q,.
One can verify thatd has an accepting run iffl’ has an
accepting run.
Now letA = (@, 4, I, F') be a twoN-counter automaton

such that at each transition at least one counter changes it

value. We pos&® = {q1,..., ¢}, I = {qays---,4a,, } and
F ={qg,,-.-,qs,,} A configuration of(¢;, c1, cz) is en-
coded by a sequence®fstates:y, c; +co+1,...,¢1,¢c1+

c2 + 1 by repeating times the pairy, ¢; + co + 1. We re-
call that aCLTL?(DL) model is simply ans-sequence of

integers. A new configuration is detected when four consec-

utive values, d, ¢/, d’ are such that either# ¢’ ord # d'.

e Let ¢, be the formula stating a change of configura-
tion: o, = < Xz A (x # X322 V X(x £ X%1)).

e Before; states that we are just before the configuration
with control statey;:
Before; = ¢op A X2 (No<jci1 X (= X2z A
X(z = X2z)) A X20Dg,.

The automatond has an accepting run iff;,,;t Adrun Adrec

is satisfiable. |
Moreover, the satisfiability problem can be reduced to

the model-checking problem singec CLTL(DL) is sat-

isfiable iff A+ = ¢ where A+ is the DL-automaton that

accepts all the execution®L.-automata are more liberal

than counter automata).

Corollary 1 The model-checking problems for

CLTL}(DL) and CLTL?(DL) are X} -complete.

The X1 upper bound is obtained by reducing model-
checking to satisfiability fotCLTL(DL) along the lines
of [29]. In order to simulate a propositign we use a con-
straint of the forme = 0 assuming that is not used al-
ready for other purposes. By close inspection of the proof of
Theorem 1, one can also show that satisfiability and model-
checking forCLTL}(DL) and CLTL?(DL) but restricted

%o the sometime operaté (instead of until) are als&}-
ard.

3 PSPACE-completeness of
with propositional variables

CLTE(DL™)

To complete the results of Section 2, we show that satis-
fiability for CLTL; (DL) and model-checkingLTL (DL)
formulae over 1-variableDL-automata arePSPACE
complete. To do so, we establishpaPACEupper bound
for satisfiability of the richer logicCLTL}(DL", PROP),
including periodicity constraints of the form =, y + c,

x = ¢ (k,c € N) and propositional variables that can
be viewed as specific variables with a strict discipline on
their constraints. As a matter of fact, the above-mentioned



results not only complete our classification but also many

finite set of one-step constraints frabL ™ built over the

problems on one-counter automata/nets can be encoded imariablexz. We consider the following syntactic resources

CLTL(DL*,PROP). These problems come from several
applications: verification of cryptographic protocols J21
validation of XML streams (string representations of XML
documents) [9], or resolution of the identification prob-
lem [32]. By way of example, the class of one-variable-

automata properly contains the one-counter automata that

are used to validate XML streams against a recursive DTD
in [9, Sect.5]. Below is the one-counter automaton recog-
nizing the languagé (ac)"a(e|ce)a(ca)™b™b™ : n,m >

1} (we omit the tests related to zero):

wherez is a counter and the alphabet is partitioned into a
set of opening tagéa, b, ¢} and a set of corresponding clos-
ing tags{a, b, ¢}. The problem of checking whether a given
word belongs to this language, a key problem in [9, Sect.5],
can be expressed in our formalist@LTL; (DL) can also
express concisely richer standard properties, for ingtanc
non-trivial safety properties of the for@(z < 2™) or live-
ness properties such th@afx =on» 0 = F(z =3m 1)).

We dedicate the remaining of this section to
prove decidability of the satisfiability problem for
CLTL;(DL*,PROP), which is partially based on the
abstraction of models. Without any loss of generality, we
can assume that all the atomic formulae involving beth
and Xz are of the formXx ~ z +d andXz =, = + ¢
(d € Z andk, c € N).

3.1 Symbolic models

Let PROP {p1,p2,...} be a countably infi-
nite set of propositional variables. We define the logic
CLTL(DL™, PROP) as the extension cfLTL(DL™) by
adding propositional variables at the atomic level. Themai
reason for introducing propositional variables stems from
the fact that then satisfiability subsumes model-checking.
Models of CLTL(DL*, PROP) are pairgo;, o2) such that
o1 : N — 2PROP i5 3 standard LTL model ang, : N —
(VAR — Z) is aCLTL(DL") model. The satisfaction
relation is defined as fof LTL(DL) except at the atomic
level: (o1,00),i =p & p € o1(i) and given an atomic
formulaE based oDL ™, (01,03),i EE & 09,0 = E
in CLTL(DL™). There is no restriction on propositional
variables in each fragmeftLTL. (DL, PROP).

In order to build an automaton that recognizes the sym-
bolic models of &CLTL; (DL™) formula, we introduce be-
low a symbolic representation of valuations. L¥tbe a

of X.

e CONS, = {dmina RN d_l, dQ, dl, ce 7dmax} is the
set of constants occurring iX in constraints of the
form eitherz ~ d or Xo ~ d. We suppose that
Apin < - <d_1 <dyg<dy < - < dmax-
CONSStep = {emin/, .. oy 6max’} is
the set of constants occurring i in constraints of
the formXz ~ x + e. We suppose that,;,y < --- <
e_1<ey<er <---<E€max!-

[ .,€_-.1,€p,€1,..

K is the least common multiple of the integérsuch
that=;, occurs inX.

Wilog, we can assume thés = ey = 0, dpax > 0, €maxs >
0, dpin <0 andemin/ <0.

We define an abstraction of valuations like regions for
timed automata and we shall prove that this abstraction
fits exactly our goal. A mafdx, Xz} — Z (also viewed
as a pair(z1, 22) € Z2?) is represented by a tuple) =
(Ep, Ep, EL E! JEg) € Cp x Mod, X Cx, X Modx, X
Cstep (depending onX) such that for each termt <
{z, Xz},

e C, is composed of constraints of the form below

— (d; <t) A (t < dizq) forie{min, .., max —1},
— t=d; fori € {min,..., max},
— t < dmin @NAdmax < t,

e Mod; is composed of the constraints=x ¢ for ¢ €
{0,..., K — 1},

e Cgep is composed of constraints of the form

—x+e <Xz AXe <x+ei41

fori € {min’, ..., max’ —1},
— Xz =z +e¢; fori € {min’,... max'},
— X < T+ epip aANdx + epax < X

We call such a tuple aymbolic valuationand we write
SV(X) to denote the set of symbolic valuations w.tX..
Given aCLTL} (DL*, PROP) formulas, SV () is the set

of symbolic valuations w.r.t. the set of atomic constraints
occurring in¢. The size ofSV(¢) is exponential in the
size of ¢ and each element of SV(¢) can be encoded in
polynomial space in the size @f By definition, we write

v |= sv if the valuationv satisfies all the constraints in the
symbolic valuatiorsv.

Lemma 1 Let X be afinite set of one-step constraints from
CLTL;(DL") built over the variabler.

(I) For every mapv : {z,Xz} — Z there is a unique
symbolic valuation inSV(X') denoted bysv(v) such that



v | sv(v).
() For all the mapsv,v’ : {z,Xz} — Z such that
sv(v) = sv(v') and forevenkE € X, v E Eiff v’ E E.

Proof. (I) Givensv € SV(X), let Vg, be the set of pairs
(z1,22) € Z? such that(z1, 22) = sv. Itis easy to show
that{V,, : sv € SV(X), V,, # 0} is a partition ofZ?.

() Let v and v’ be two valuations such thaw(v) =
sv(v') = (E.,EL En, El Eg) and suppose that = E.
We proceed by induction on the structurekof

e If E is of the formxz = d thenE, must be equal to
E becausel € CONS,, (andv = E,). Sincev’ also
satisfiesE,,, we havev’ = E.

e If E is of the formz < d then, (sincev = E,), E,
must be equal either to = d’ with d’ < dortod” <
x Az < d withd < d. Sincev’ E E., we have
v =E.

e WhenkE is of the formXx ~ d (resp.Xx ~ z + d), the
proof is similar, using the constraiftt, (resp.E;).

e Let E be of the formz =, ¢. We consider the con-
straintE,,, of the formxz = ¢’. By definition, k di-
vides K and soE,, impliesz = ¢, wherec, is the
remainder of the division of by k. As c and¢,. be-
long to{0,. ..,k — 1} andv satisfies bottE andE,,,
¢ must be equal ta... Sincev’ = E,,, andE,,, implies
E, we have’ = E.

e WhenE is of the formXz = ¢ (resp. Xz =5 = + ¢)
the proof is similar by using the constraiFf,, (resp.
E, AEL).

e Now suppose thaE andE’ are satisfied by iff they
are satisfied by’.

—If v E EAE thenv E Eandv = E'. By
the induction hypothesis’ = E andv’ = E
whencey’ E EAE.

— If v = —E thenv [~ E. Using the induction
hypothesis, we have [~ E’ and we conclude
thatv’ = —E.

a

Given an atomic formul& from CLTL; (DL™), we note
sv =symp E iff for every valuationv such thatsv(v) = sv
we havev |= E. A sequence of symbolic valuations w.g.
isawordp : N — SV(¢) andp is satisfiable iff there is a
modelo : N — Z for CLTL; (DL™) such that for ali € N,
we haveo,: = p(i) (we writeo = p). A symbolic model
w.r.t. ¢ is a pair(oy, p) such thavr; : N — 2PROP andp :
N — SV(¢). The symbolic satisfaction relatidgsym, is

extended to symbolic models. The definition is identical to mic space in the size ol

the satisfaction relation afLTL(DL", PROP) except for

def

atomic constraints{o, p), i FFsymb E & p(2) Fsymp E.

3.2 Automata-based approach

We show in the following that given a formula in
CLTL{(DL", PROP) we can build an automataA,, rec-
ognizing symbolic representations of the models satisfy-
ing ¢. In order to defined,, we slightly extend the
transitions of simple on&-counter automata (with up-
dates in{—1, 0, 1}) by decorating them with elements from
¥ U {e} whereX is a finite alphabet and with the iden-
tical conditions about the constraints authorized in one-
Z-counter automata. Since adding an alphabet is moti-
vated by the need to consider the automata as language
acceptors we defing’(4) = {¢ : N — (XU {e}) |

i),E
there is an accepting run w such that Vi w(i) AOLR

w(i+ 1)} andL(A) = {0** | ¢ € L/(A), elements of
%> occur infinitely often inr} whereo'® is obtained froms

by erasing alk. L(A) is the language accepted by The
construction ot4, relies on the following observation.

Lemma 2 A CLTL;(DL*, PROP) formula ¢ is satisfi-
able iff there exist a symbolic modéb,, p) such that
(01,p) FEsymb ¢ and aCLTL{(DL") modelo, such that

(o) ):,0

Thus, A, is defined as the intersection of two automata
Agsymb and Agae such thafl(Agymb) is the set of symbolic
models that symbolically satisfigsandL (A, ) is the set
of symbolic modelscy, p) such that is satisfiable. Both
automata are simple origcounter automata over the al-
phabety = (2PROP x SV(4)) and Asymp is essentially
a finite-state automaton without counters. The automaton
Asymp 1S built as in [31] for LTL except at the atomic level.
We definecl(¢) the closure ofp with a slight modification
to consider both atomic constraints and propositional vari
ables and an atom @f is a maximally consistent subset of
cl(¢). Let AL, be the generalized®hi automaton de-
fined by the structuréQ, 6, I, F') such that:

e () is the set of atoms af,

e I={XeQ:peX}

o« X (P,sv), T,0 vy iff

(atomic) P = X N PROP and
for every atomidE in X, sv |=gymb E,
(1-step)for everyXy € cl(¢), Xy e X iff ¢ € Y,

o Let{w1Ug1,...,¥,Ud,} be the set of until formulae
in cl(¢). We poseF = {Fy,...,F,} whereF; =
{X € Q : Y;Up; & X org, € X} for everyi €
{1,...,n}.

The automatonA,;, is the (non generalized)Bhi au-
tomaton equivalent tel] , , which can be built in logarith-

symb*

The automatom, is obtained by synchronizinggymb
and Ag...  Let us poseAsgymb = (Qsy, sy, Lsy, Fsy)



and Asat = <Q8a7 580.7 Isa, Fsa>- The automatonA¢
(Q,6,1, F) is defined by

b Q:st XQsaaI:Isy XIsayF:Fsy XQsa(We
will have Q,, = Fla),

e,t,u def
e (q1,q2) — (q1,q5) €9 & q1 = ¢; and
gtu
q2 > gy € 65111

(P,sv),t,u
* (q1,q2) —
P,sv),T,0

q1 % (]/1 € 5sy and(J2

def

(d1,43) €6 <
(P,sv),t,u qéE 5sa.

Lemma 3 Given a formulap, one can build a simple one-
Z-counter automatomd,; with alphabety = 2PROP x
SV(¢) such thatl.(A,,;) is the set of satisfiable symbolic
models w.r.t.

Moreover, A4, can be effectively built fror in polynomial
space thanks to the waj,, is defined.

Proof. We describe the construction of the automatog;
recognizing exactly the set of symbolic modéls, p) such
that p is satisfiable. We recall that the 8ONS,, is such
thatdy = 0, dnax > 0 anddin < 0.

The alphabet ofd,,; is 2PROF x SV(¢) but since the
set of propositional variables is not constrainedip;, we
omit them in the technical developments below. The con-
struction of A, is done in a modular fashiotd,, is made
of a network of components/gadgets and it is of exponential
size in the size of). A component is defined as a simple
oneZ-counter automato(X:, @, 4, I, F') such that

e [ andF are singletons,
e jisasubsetofQ\ F) x {e} x {T,=,#,>,<} x
{=1,0,1} x (Q\ ).

The unique state id (resp. F) is called the input (resp.

output) state of the component. Components are connected

in the network by defining transitions between input states
and output states. Each componentliny; has the function
either to check a property of the counter from constraints
in C, or to update the counter according to constraints in
Mod, or Modx, x Cgep. We define below the compo-
nentsAg g, for someE € C, UMod, U (Modxz X Cstep)
andsv € SV(¢). We write g,.* (resp. ¢-.5") to de-
note the input (resp. output) state.df; s, (when the con-
text is clear we shortly write;,, and g,.:, respectively).
Each componentlg, ,, enforces that the next symbolic val-
uation that is guessed is precisely. For everysv =
(Ez,En,ELLE Es) € SV(¢), we define the following
components:

E,,sv

o Ag, s is such that for every € Z, (¢;7°",¢c) —
(=50 ) iff ¢ = ¢ and[z — ¢] = E,. This com-
ponent checks thatsatisfiedw, . Fig. 1 contains some

graphical representation of componests_g4;, s, and

*

(a) g,=,0
e, T,+1 / e, T,+1
0 dip1—1
) e =0

¢

Flgure 1 (a) AJ?:di,SU and (b) Adi<:v<di+1,sv

Ad, <w<d; 1,50 Whend; > 0. Components withl; < 0
can be defined analogously.

e Ag: E,)s IS such that for every € Z, [z «

) E' Es),sv * E!, .Es),sv
¢ £ B, and (gm0 oy —r (gl By

iff [t — ¢,Xa « ] E E,, AN E;. This compo-
nent updates the counter accordingi®, , E). Fig. 2
contains a graphical representation of the component
AE: B.,s0 With E;,, = 2 = 1 (from sv), E7,
Xr = 0andE;, = z < Xa < x + 7. To build
A E.),s0, W determine on the fly (using,,, 7,
andE;) thatXz = = + i for somei € {1, 3, 5}.

Figure 2. Aigr B,),s0

*

Ag, s is such that for every € Z, (¢=*",0
(qEmsv ¢) iff [+ — ¢ E Ep. This component
updates the counter fromto a value satisfyind,,
(only used at the beginning of the run). Fig. 3 con-

tains a graphical representation of some component

. ) —

AzEKc,sv-

Figure 3. Ay=,c.sv

The automatord,,; = (X,Q, 6,1, F) is defined as the
“disjoint union” of the above-mentioned components with



an additional initial statey, F' = @ and with the following
additional transitions.

e For everysv = (E,,E,,,E, El E) € SV(¢),
E.,sv

so 2158 w°" € 4. This corresponds to decide which
constraintE,,, the first value of the counter satisfies.
The only way for the run to continue is to enter further
in AEm,sv-

For everysv = (E;,E,,,E,,E E;) € SV(¢),

,T,0 .
goms 2 ¢Best ¢ 5. When the control state is
¢om? the counter satisfieE,,. Now we want to

checkE,. So, the only way to continue the run is to
enter inAg, .

For everysv = (E;,E,,,E,,E/ E;) € SV(¢),
Eg,sv €10 q<E’"’ES>’s” € 4. When the control state

Qout mn

is ¢2=*” this means that the counter satisfigsand

it is now time to update it according {&/ ,, E;). The
only way for the run to continue is to enter further in

AE, L), s0-

For all sv1 = ((Ex)1, (Em)1, (BEL)1, (Ery)1, (Es)1)
S SV(¢) and svy, = <(E;c)Qa (Em)Qa (E;)Qv(Efm)Q’
(Es)2) € SV(¢) s.t. (EL)1[Xz «— z] = (E;)2 and

(B )1 (X ] = (B ), gl 500 208

(Be)2sv2 ¢ 5 The lettersv; can be read since all the
verifications have been successful. The only way for
the run to continue is to enter further g, ), sv,- A
new symbolic valuationv, is guessed butv, has to

agree withsv; on some constraints.

For all symbolic valuationssv, (Ex)1, (Em)1,
(E,)1, (EL)1, (E)1) € SV(9) and sy = ((Eq),
(Em)2, (EL)2, (EL,)2, (Es)2) € SV(g), forall ¢, € Z,
the propositions below are equivalent (by construction of
the components):

[z = d E (B and (g, ) =
<q§7(LEin)lv(Es)1)78'Ul7C> *i* <qggf;‘;n)lv(Es)l>7s'Ul’Cl>
svL < ESE)27S’112’C/> N <qggf)2,svz’c/>,

) [z ¢, Xz« ] | svy.

* E )1,(E)1),p(1 *
i <q<( m)1(Es)1),p( ),O'/(l)>
)

wm i
<q(<)$:n)1,(Es)1>,ﬂ(1),0/(2)> p(1) <q£5z)27ﬁ(2)’ o'(2). ..
Now suppose thafo, p) € L(Asa). By construction of
the network of components id,,;, there is an accepting
run necessarily of the form

ro S (gm0 o) ST gm0 o) S
<q§T(LEm)o,(Es)o),svo7CO> i* <Q(<)(u}1;l"L)O7(ES)O>’S’U07Cl> P_0)>
(Bz)1,5v1 ((El)1,(Es)1),sv1 >i)*

*
in 7Cl> i) <q7,n » C1

f)(uEt;n)la(Es)l)vs'Ul ’ 02>

By construction of each component and by equivalence
between (I) and (Il) abovér «— ¢o] = (E,,)o and for every
i €N, [.’13 — ¢, Xx — Ci+1] ': (Eg;)z A\ (Em)z A\ (E;)l A\
(El)i A (Es)i. Sothe modeb’ : N — Z s.t. o/(i) = ¢;
satisfies, i.e. o’ = p. This means precisely thét, p) is a
satisfiable symbolic model. |

In order to evaluate the complexity of the nonemptiness
test for.A,, we also need the following result.

p(1) <

AN q(Ew)275'U1 02> o

n ’

Theorem 2 The nonemptiness problem for simple dhe-
counter automata with alphabetia. 0GSPACEcomplete.

The tedious proof of Theorem 2 (see [14, Sect. 6]) is
based on the two following results. First, checking whether
L(.A) is non-empty for simple on&-counter automatai
with alphabet can be reduced in logarithmic space to the
existence of an accepting run in simple dieounter au-
tomata with no test: # 0 and no alphabet (easy). Sec-
ond, checking the nonemptiness of automata from the latter
class amounts to check the existence of paths of polynomial
lengths satisfying specific properties. This second part re
quires careful and lengthy developments. We are now ready
to state the main complexity result and its main corollary.

Theorem 3 Satisfiability for CLTL](DL",PROP) is
PSPACEcomplete.

The presence of propositional variables in
CLTL(DL™, PROP) allows to reduce the model-checking
problem forCLTL(DL™) to the satisfiability problem for
CLTL(DL™,PROP) (following [29]). By inspection of

We can now state the main property: the set of satisfiabley,o proof (see [14, Sect. 4.2]) we obtain a logspace reduc-

symbolic models (with respect to a formuiis recognized
by the simple one%-counter automatos.,; .

Let (o, p) be a satisfiable symbolic model and fora#
N, p(i) = (Ex)i, (Bm)i, (E7)i, (Er,)i, (Es)i). So there s
aCLTL}(DL) modelo’ : N — Z such thats’ = p. We
can show thato, p) € L(Asat) Since there is an accepting
run of the form

To =, <q§71:3m)0~ﬁ(0)70/(0)> i* <q-5m)0’p(0),0/(0)>
g

e <q§(E/m)o,(Es)0)7/)(0) '(0)) N
<q(<7(u]?lm)o7(Es)o>7P(0)7 o'(1)) p(_o)) <q§5m)1,l’(1)7 o'(1))

tion from the model-checking problem f@LTL(DL")
to the satisfiability problem fo€ LTL] (DL", PROP).

Corollary 2 Satisfiability for CLTL](DL") and model-
checkingCLTL] (DL™") formulae over 1-variableDL"-
automata areeSPACEcomplete.

pspPAacEhardness follows frompspAcEhardness of
satisfiability and model-checking for LTL restricted to
one variable [15]. As additional corollaries, we de-
duce that the one-variable fragment of the counter logic



L, [10] has apspACEcomplete satisfiability problem and Let A = (Qu,d4, 4, F4) be a oneZ-counter automa-
model-checking one-clock discrete timed automata with ton (not necessarily simple) whose set of updates is of the
CLTL%(DLJr) can be done iRsPACEwWhich contrasts with ~ form Xz = x + u with v € {umin, Umin + 1, - - -, Umax }-

the undecidability results from [11, Section 6]. Corol- Without any loss of generality, we can assume that, =

lary 2 can be extended by allowing propositional variables —u,,.,. Given aCLTL{ (QFP) formula¢ such thaté|x =

in the automata and formulae. More importantly, a quite /, we consider the following syntactic resources:
remarkable separation feature of our technique is that we

can adapt it to any extension LTLof LTL for which for- e K is the lcm of the integer such that=, occurs in

mulae can be translated intalghi automata in polynomial ¢,
space. This includes extensions with past-time operators, e CONS is the set of constantssuch thad” a; X!z ~ d
with automata-based operators [34], or with fixpoint opera- occurs ing,
tor, see e.g. [30]. o COEF is the set of constants such thafy_ a; Xz ~
. L d occurs ing.
Theorem 4 (LTL")1(DL™) model-checking and satisfia-
bility are also inPSPACE Without any loss of generality, we can assume that
Gmin = —Gmax Where ap;, and ay., are respectively

It suffices to adapt the definition oy, from plain the minimal and the maximal element 6fOEF. For
LTL to LTL *, the automatods,; from Lemma 3 beingun-  technical reasons (see details in [14, Sect. 5]), we pose
changed. As a corollary, model-checking lingacalculus CONS(A,¢) = {dmin,---,dmax} such thatdp., =

with difference IogicD.L_overone—variabIéDL—automata IS —dy = l(l;—l)amaxumax- We define a symbolic valu-
PSPACEcomplete, refining a result from [8]. ation wrt A and ¢ as an element of the st/ (A, ¢) =
We conclude this section by a more prospective remark.C, x Mod, x c;tep N Cétep such that

Bounded model-checking [4] consists in searching for a
counterexample in executions whose length is bounded by ® Cz is the set composed of the constraimts< dmin,
some integer (encoded in binary). By adding to a finite- dmax < x, andz = d for d € CONS(A4, ¢).
state system a counter that increments after each tramsitio ¢ Mod,, is the set composed of the constraintssx ¢
one can concisely encode in our formalism the problem of force {0,..., K — 1}.
finding a W|tn§§s execution of Iengtrh: Of course, one « Ci_is composed of constraints
needs to relativize the formulae: for instanddq would X; r i1 ¢ '
become(z < m = p)U(z < m A q). v =Xl uforu € {umin, .., Umax}-

A result similar to Lemma 1 can be established.
4 Model-checking oneZ-counter automata We define a symbolic satisfaction relation as in Sect. 3:

v FEsymp E iff for every valuationv : {z, Xz, ..., X!z} —

A natural question is whether Corollary 2 is optimal w.r.t. Z such th.am(w). = suwe hav_ev = E'. We can naturally
extend this relation to symbolic valuation sequences.

the Presburger fragment we have considered. Lemma 4 be-
low states that we do not preserve decidability when extend-| amyma 5 Let ¢ be aCLTL¥ (QFP) formula andA be a
ing the constraint language @QFP. oneZ-counter automaton. A = ¢ iff there are a sym-
bolic modelp € SV(A,¢) such thatp =qym, ¢ and an
accepting run(qo, co), (q1, 1), {g2, c3), . . . of A such that
Co,C1,C2 ... = p.

Lemma 4 Satisfiability for CLTL;(QFP) and model-
checkingCLTL! (QFP) formulae over 1-variableQFP-
automata arex1-complete.

We build the automatonly as the intersectiomsymi, N
Constraints of the formz + by = O wherea,b € Zallow 4, such thatd,,..;, recognizes the set of symbolic models
to encode a configuratiofy;, c1, c2) of a Minsky machine  satisfying¢ and.A... recognizes the set of symbolic mod-
(¢ is theith control state) by the valug 35" and zero  e|s generated from accepting runs. The definitiodgf,.i,
tests can be done USing modulo relations. This follows di- and the Synchronization betwegtgymb andAsat are sim-
rectly from [26, Sect. 14.2] about one counter machinesijar to Sect. 3 considering the alphabgt = SV(A, ¢)
with muItipIication and division by constants. In this sec- (Wlth g_transitions) and the Corresponding re|atl@;@ymb.
tion, the strategy to regain decidability consists in iestr | emma 6 below is a pivot result for proving Theorem 5 and
ing the class of models to orfe-counter automata. Model-  jts proof is a variant of the proof of Lemma 3.
checking becomes decidable (evemrspPAcH for LTL with
full quantifier-free Presburger constraintsstricted toone Lemma 6 Given aformulap and a oneZ-counter automa-
variable but with no restriction on theX-length ton A, one can build a simple oné-counter automaton



Asar With alphabety = 2FPROP » QV(A, ¢) such that <qi+l,qgf‘f)"“’s““,cw)~- in As, we have

L(Asat) is the set of satisfiable symbolic models wirand Ciy vy Cinl = SU;. O
A. Now we can conclude about the complexity of the
Moreover, A, can be effectively built from and.A in poly- model-checking problem.

nomial space thanks to the walg,; is defined.

Theorem 5 Model-checkind®LTL{ (QFP) formulae over
Proof. Let A = (Qua,14;Fa,04) be a oneZ-counter  gnez_counter automata iesPACEcomplete.
automaton and) be a CLTL{ (QFP) formula such that

|#lx = I. The automatomAs,; is defined over the alpha-  pgpacehardness is a consequence of [15], see also a direct
bety: = SV(A, ¢). As in the proof of Lemma 3, the con-  yro0f in [14, Sect. 5]. As for Theorem 4, model-checking
struction is modular. We deno@.4 x @ the set of states  |ingar -calculus with QFP constraints over ofiecounter

of Asa; whereQ is a set of auxiliary states used in the con- 5 ;omata is irPSPACE refining [8]. By contrast, satisfiabil-
struction of components similar to components in the proof ity for CLTL! (QFP) is undecidable.

of Lemma 3. For everyv = (E,,E,,,EL ... E.) and

qa € Q 4, We define components: ]
. 5 Conclusion
o Al ., such thatfor every € Z, (g4, q;,"*",0) ="

n

(Gas qoiy™, 0) iff [z — ] = Enn. Figure 4 summarizes the complexity of satisfiability,
o AqEZ,sy such that for every € Z, <qa7q%,sv76> L model-checking oveDL-automata and model-checking

E,.sv . over k-Z-counter automata for most LTL-like specification

{das Gou™ €'} ff ¢ = ¢’ and[z — ] |= E,. languages considered herein.

e We also need to define another kind of components  Apart from the completion of our classification, the
that update the counter. For evetyc CQNS(A, ?), more positive results concern one-counter automata/nets,
A%“l_sv is such that for every € Z, (qa,qi}ﬁ;’”,@ N see applications in [9, 32, 21]. ThesPACE upper

CElew , L bound for model-checking orB-counter automata over
{ar Goui > ) Iff [2 ¢, Xa ] [F Es. CLTLY (QFP) or even over its lineau-calculus extension
The different components are connected as follows: refines results from [18, 8, 33, 28] that concern more gen-
eral systems and languages.
e The set of initial states is composed of the
states of the form({qo, E’”’”) for every sv =

wm

(Ee, B, EL ... EL) € SV(¢, A) andq € 1 4.
e For everysv = (E,,E,,,El .. E.) € SV(¢, A) and
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