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We study the dynamics of one-dimensional bosons trapped in a box potential, in the presence of
a barrier creating a tunable weak-link, thus realizing a one dimensional Bose Josephson junction.
By varying the initial population imbalance and the barrier height we evidence different dynamical
regimes. In particular we show that at large barriers a two mode model captures accurately the
dynamics, while for low barriers the dynamics involves dispersive shock waves and solitons. We study
a quench protocol that can be readily implemented in experiments and show that self-trapping
resonances can occur. This phenomenon can be understood qualitatively within the two-mode
model.

I. INTRODUCTION

The difference between classical and quantum dynam-
ics becomes strikingly evident when two macroscopic
quantum objects are coupled by a weak link. For exam-
ple, the system consisting of two superconductors sepa-
rated by a thin insulating layer has attracted much at-
tention due to the discovery of the Josephson effect [1]:
a direct current can flow in this setup, even without ap-
plying any external voltage. Later the first experimental
observation of the Josephson effect [2], has opened the
way to many applications, including its generalization to
other setups [3, 4].

Although the theory of the Josephson junction was
originally developed in the context of superconductiv-
ity, it can be applied as well to describe two weakly
coupled Bose-Einstein condensates (BEC) [5–8], by us-
ing for example a double-well potential, thus realising an
atomic Bose-Josephson junction (BJJ). Due to two-body
interaction between atoms the BJJ exhibits new dynam-
ical regimes such as macroscopic quantum self-trapping
(ST) [8, 9], not present in the superconductor Joseph-
son junction. This new effect, as well as the observa-
tion [10] of Josephson oscillations (JO), have been ob-
served in a single BJJ [11, 12]. This has raised a lot
of interest in the study of BJJ and ongoing theoretical
and experimental studies deal with dissipative [5, 13–16]
and non-dissipative oscillations [17–19], supercurrent dy-
namics in ring shaped condensates [20–22], current phase
relation of atomic BJJ [23, 24], quantum transport [25],
as well as their counterparts with fermionic superfluid
atomic samples [26–31].

When studying the atomic Josephson junction sev-
eral factors must be taken into account among which
the geometry and the effective dimension are of partic-
ular importance. Previous works have dealt with the
double-well geometry, in which two elongated gases are
side by side [32–34], or the ring geometry in which the
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gases are coupled head to toe [35]. The former geometry
is adapted for matter wave interferometry [32, 33, 36],
while the latter enables the realization of atomic cir-
cuits [21, 23, 37–39]. The effective dimension is cru-
cial to determine the excitations involved in the dynam-
ics [40, 41]: in three dimensions vortex lines decaying
into vortex rings [42], in two dimensions point-like vor-
tices carrying phase-slips [43, 44] and in one dimension
(1D), for which no vortex can exist, solitons and dis-
persive shock waves (DSW) [22, 45, 46]. Furthermore,
in all dimensions the excess energy can be dissipated
into a phonon bath, allowing for a relaxation of the JO.
In ultracold atoms experiments the effective dimension
is controlled by the transverse confinement and can be
tuned [47–49].

In this work we consider a zero temperature 1D Bose
gas confined in a box potential with a tunable central
barrier, thus defining two (left and right) reservoirs con-
nected through a tunable weak link. In this geometry
each reservoir contains many excitation modes that con-
tribute to the dynamics, in contrast to the simple two-
mode model picture [8]. As we will show below this ge-
ometry is interesting because it evidences the interplay
between shock wave dynamics and Josephson physics. In
particular we find a clear unified framework to describe
the whole dynamical phase diagram, from the weak cou-
pling regime, where the two-mode model is valid [14],
to the large coupling regime, where shock wave emerge.
Furthermore we observe that soliton nucleation at the
weak-link can induce a fast damping of the density oscil-
lations. We consider quench protocols that can be readily
implemented in experiments and show how the quench
speed affects the dynamics by inducing self-trapping res-
onances.

This paper is organised as follows: in Sec. II we de-
scribe the model we study and the tools we use, in Sec. III
we report on a thorough study of the dynamical phase di-
agram of the 1D BJJ. We then discuss in Sec. IV how the
quench protocol modifies the dynamical phase diagram
and finally discuss how our results open new perspectives.
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II. MODEL AND QUENCH PROTOCOL

We consider N weakly interacting bosons of mass m
with repulsive contact interaction on a 1D ring of circum-
ference L, described at zero temperature by the mean-
field Gross-Pitaevskii equation (GPE):

i~
∂ψ

∂t
=

(
− ~2

2m

∂2

∂x2
+ Vext(x, t) + g1DN |ψ|2

)
ψ (1)

where ψ(x, t) is the condensate wave function, normal-

ized to unity
∫ L

0
dx |ψ|2 = 1, g1D = 2~ω⊥as is the 1D

interaction strength [50], where ω⊥ is the radial confine-
ment frequency and as is the three-dimensional s-wave
scattering length, and Vext(x, t) is the external trapping
potential.

We consider an external trap potential made by a com-
bination of two Gaussian barriers:

Vtrap(x, t) = V0 exp
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+ V (t) exp

[
− (x− L

2 )2
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]
located at x = 0 and x = L/2. Because of the ring
geometry and periodic boundary conditions this results
in a effective box-like potential for large V0 with a tunable
barrier V (t) separating two reservoirs see Fig. 1. We
create the initial population imbalance between the two
reservoirs by using an auxiliary potential:

Vimb(x) =
Voffset
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FIG. 1. (color online) Setup and quench considered in the
present work. Initially a 1D Bose gas is prepared in two
reservoirs with a population imbalance, using an energy off-
set (double arrow) as shown with the solid black potential
curve. At t = 0 the energy offset is removed resulting in a
new potential landscape show as the solid blue curve. The
initial atomic density distribution is sketched by the dashed
red curve. The inset shows the initial population imbalance z0

as a function of Voffset obtained with this method (solid blue
line), compared to the naive expectation z0 = Voffset/(2gN)
(dashed red line).

where Voffset controls the initial population imbalance, as
shown in the inset of Fig. 1.

In this setup we expect that the relevant energy scale is
fixed by the bare chemical potential µ0 = g1Dn0, where
n0 = N/L is the typical density, with a healing length
ξ = ~/

√
2mg1Dn0. We consider a large V0 = 5µ0 barrier

to create the box with relatively narrow σ = 4ξ width.
To solve Eq. (1) we use its dimensionless form, in which

lengths are scaled by L, time by mL2/~ and interaction
strength by ~2/(mL). Using these units Eq. (1) becomes

i
∂ψ

∂t
=

(
−1

2

∂2

∂x2
+ Vext(x, t) + gN |ψ|2

)
ψ (2)

We use a discrete representation using a regular grid of
256 points and a large dimensionless non linear parame-
ter gN = 20000, well within the mean-field regime. To
initialize the system we use imaginary time propagation
in Eq. (2), in the presence of both the static initial trap
and imbalance potentials: Vext(x) = Vtrap(x, 0)+Vimb(x).
Once the evolution has converged to the groundstate we
abruptly remove the imbalance potential to initiate the
dynamics. We then explore two situations: V (t) is either
kept constant, see section III, or quenched in a time τ to
a lower value, see section IV. For each case we study how
the central barrier strength V1 affects the dynamics.

III. DYNAMICAL REGIMES FOR A ONE
DIMENSIONAL BOSE JOSEPHSON JUNCTION

In this section we consider a static barrier V (t) = V1

and study the effect of Voffset, that is the initial popula-
tion imbalance between the reservoirs. After the prepa-
ration, we quench the system by removing abruptly the
imbalance potential at t = 0 and study the dynamics.

To analyze the dynamics we measure the time depen-
dent density n(x, t) = |ψ(x, t)|2, the total current J(t) =
~

imL

∫ L
0
dxψ∗ ∂ψ∂x , and the population imbalance between

the two reservoir: z(t) =
∫ L
L/2

dx |ψ|2 −
∫ L/2

0
dx |ψ|2. As

expected from previous studies of the BJJ, we find mainly
three different regimes for the population imbalance dy-
namics [51]: oscillations, damped oscillations and self-
trapping. However we also uncover particular regimes
that are unique to the 1D geometry.

In order to classify simply the different regimes, we
will use three quantitative figure of merit, as shown in
Fig. 2. The first two are based on the power spectrum
density of z(t), defined as: C(ω) = |ẑ(ω)|2, where ẑ(ω)
is the Fourier transform of z(t). As is well known in sig-
nal analysis, C(ω) is a measure of the power distribution
among frequencies in a signal. To determine if the sys-
tem is time dependent we compute the relative weight
of the zero frequency term in to the total power of the
signal: C0 = C(0)/

∫
dω C(ω) ∈ [0, 1]. By computing C0

for various V1 and Voffset we observe that it defines well
separated regions of high (close to 1) and low (close to
0) values, with sharp boundaries. We choose arbitrarily
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FIG. 2. (color online) Dynamical phase diagram of the one
dimensional Bose-Josephson junction, in the central barrier
strength (V1) versus initial imbalance (controlled by Voffset),
based on the three criteria described in the text, defining
four main regimes: self trapping (ST), Josephson oscillations
(JO), damped Josephson oscillations (dJO) and over damped
Josephson oscillations (ODJO). Within the JO regime we evi-
dence both regular Josephson dynamics (rJO) and shock wave
dynamics (sJO), see text for details, separated by a smooth
crossover (grey shaded area). The dashed lines indicate an-
alytical results. Note the logarithmic scale on the horizontal
axis. The labels (a-f) refer to the examples shown in Fig. 3
and Table I.

the value C0 = 0.95 to distinguish the different regimes
(black line in Fig. 2): for C0 > 0.95 the dynamics is
“frozen” while for C0 < 0.95 the time evolution is domi-
nant. Then, to distinguish between the different dynami-
cal regimes, we compute the frequency ωmax at which the
maximum of C(ω) occurs. In order to define a criteria,
we compare it to a typical frequency, related to sound
propagation in the system: ωs = π × c/L, where c is the
initial speed of sound in the left reservoir. We consider
that the system is mainly oscillating when ωmax > ωs/10
(blue line in Fig. 2). Finally to decide if the dynamics
is relaxing towards a steady state we evaluate the damp-
ing time by computing the half amplitude decay time:
thalf = max {t, such that |z(t)| > |z0|/2}, where z0 is
the initial imbalance, and consider that the dissipation is
small when thalf > 0.35×mL2/~ (red line in Fig. 2).

Figure 2 shows the different dynamical regimes of the
1D BJJ when the central barrier height V1 and the ini-
tial population imbalance z0 are varied. We identify
four regimes: frozen dynamics, corresponding to the self-
trapping (ST) regime, for C0 > 0.95, or equivalently
ωmax < ωs/10 and thalf > 0.35 × mL2/~; regular pe-
riodic dynamics, corresponding to JO, for C0 < 0.95,
ωmax > ωs/10 and thalf > 0.35 × mL2/~; damped pe-
riodic dynamics, corresponding to damped Josephson
oscillations (dJO), for C0 < 0.95, ωmax > ωs/10 and
thalf < 0.35 × mL2/~; damped dynamics, correspond-
ing to over damped Josephson oscillations (ODJO), for
C0 < 0.95, ωmax < ωs/10 and thalf < 0.35 ×mL2/~. As
discussed below, the JO regime changes with the barrier
strength: at large barriers we find results very close to
the regular two-mode model of the BJJ [14], while at low

barriers we find that the JO are mediated by propagat-
ing shock waves. Therefore we distinguish the regular
(rJO) and shock (sJO) regimes: the light grey area in-
dicates approximately the transition region from rJO to
sJO. The sJO regime is uniquely identified by the fact
that the density imbalance oscillations occurs exactly at
the sound frequency.

We note that the three criterion are in a reasonable
agreement to define the ST regime, which indicates that
the arbitrary thresholds we choose are self consistent.
In order to confirm this interpretation of the dynamical
phase diagram we show example trajectories in Fig. 3,
see below.

In order to gain more insight into this dynamical
phase diagram we show in Fig. 3 a few example cases
corresponding to the labels (a-f) in Fig. 2 and simu-
lation parameters detailed in Table I. We have found
that the best way of studying the various dynamical
regimes is to plot the density fluctuations: δn(x, t) =

n(x, t) − 1
T

∫ T
0
dt n(x, t) and the current J(t) versus im-

balance z(t) trajectory. For the sake of clarity we display
only the early time dynamics for density fluctuations (up
to t = 0.1 ×mL2/~). Studying the density fluctuations
allows to remove the background density variations im-
posed by the barriers and thus focus on the excitations
propagating through the system. Plotting the J(t) ver-
sus z(t) trajectory allows a direct comparison with other
realizations of Josephson junctions and in particular em-
phasizes the specificity of the 1D case. In order to com-
pare different regimes we use a normalized plot, where
the current is normalized to its maximum value and the
imbalance is normalized to its initial value.

Fig. 3(a) shows a regime very similar to the usual two-
mode model of the BJJ, demonstrating that for small
initial imbalance and large barrier height the dynamics
involves few modes, exhibiting a quasi circular J(t) vs
z(t) trajectory.

Fig. 3(b) shows the intermediate regime between JO
and ST, also reminiscent of the simple two-mode model.

Fig. 3(c) shows the ST regime, where the dynamics is
quasi frozen and the imbalance remains very close to its
initial value. The small propagating density oscillations
are induced by the initial quench, however the excitations
in the two reservoirs remain decoupled.

Fig. 3(d) shows the JO appearing at low barrier and
low initial imbalance, for which regular oscillations oc-

TABLE I. Parameters used in Fig. 3 to illustrate the different
dynamical regimes.

Label V1/gN Voffset/gN z0 Regime
(a) 1.9 0.015 0.007 regular JO (rJO)
(b) 1.9 0.0215 0.010 rJO to ST transition point
(c) 1.9 0.25 0.114 self-trapping (ST)
(d) 0.5 0.008 0.004 shock-wave JO (sJO)
(e) 0.5 0.25 0.115 damped JO (dJO)
(f) 0.5 1 0.460 over-damped JO (ODJO)
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FIG. 3. (color online) Detail of the density fluctuations dynamics in different regimes (colormap), corresponding to the
parameters of Table I and the phase portrait showing the normalized current (J/Jmax) versus normalized population imbalance
(z/z0). (a) rJO, (b) transition to ST, (c) ST regime, (d) sJO, (e) dJO and (f) ODJO. (i), (ii) and (iii) phase portrait of the
two mode model for the same parameters as in (a), (b) and (c) respectively. In all phase portrait the blue disk indicate the
initial condition (z = z0 and J = 0). See text for details.

cur with extremely small damping. The density oscilla-
tions show almost piece-wise constant profiles with sharp
fronts propagating at a well defined velocity. This is
reminiscent of the recent prediction of universal shock
wave dynamics in quenched 1D Bose gases trapped in a
box [46].

Fig. 3(e) shows damped Josephson oscillations in a
regime dominated by dispersive shock wave propaga-
tion [46]: as the fronts propagate the rarefaction front
broadens while the shock front dissolves into a soliton
train, as described by Whitham’s modulation theory [52].
In this regime the effect of the barrier is small.

For both Fig. 3(d) and (e) the oscillation is sustained
by a fully nonlinear propagating density shock wave, re-
sulting in the peculiar diamond shape of the J(t) versus
z(t) trajectory, as opposed to the usual two mode BJJ
dynamics of (a) and (b).

Fig. 3(f) shows the over damped regime, for which the
J(t) versus z(t) trajectory quickly relaxes to the origin.
A close inspection of the density fluctuations shows that
this quick damping is associated to the nucleation of in-
dividual solitons at the central barrier, on the density de-
pleted side, that remain confined in their reservoir. This
soliton nucleation process occurs when the local density
at the barrier vanishes [53], enabled by the large density
fluctuations at increasing z0.

This study evidences the peculiarity of the 1D BJJ dy-
namics in contrast with the recent work of [51] that inves-
tigated the 3D BJJ. As is well known in 1D physics, there
are fewer available decay channels resulting in long lived
excitations as dispersive shock waves for example [45, 46],

that sustain regular oscillations. This can be seen as a
consequence of the underlying integrability of the Lieb-
Liniger model. As was shown in [46] the DSW results in a
dephasing of the total current and hence, in the context of
BJJ, gives a damped Josephson oscillation. This damp-
ing is therefore not directly related to the effect of the
central barrier. However the barrier is crucial to explain
the appearance of the over damped regime, associated
to spontaneous soliton nucleation at the barrier, a phe-
nomenon similar to the phase slip mechanism observed
in ref. [22].

As shown in Fig. 2 the transition from shock JO to
damped JO is almost a vertical line, meaning that it de-
pends mainly on the initial imbalance. This can be un-
derstood be considering the dephasing time of the under-
lying shock wave [46]. Indeed the shock fronts broaden
due to the difference between the highest cmax and the
lowest cmin velocities. We may expect that the JO
reaches its half amplitude at a time τ = L/(cmax− cmin).
Using then very simple estimates, see appendix A, we
find: cmax − cmin '

√
gN/Lz0, and therefore z0 =

L/(τ
√
gN/L). The brown vertical line in Fig. 3 corre-

sponds to a time τ = 0.35, and therefore a initial imbal-
ance of: z0 ' 0.02. This very simple estimate is already
in good agreement with the simulations, small corrections
are expected due to the effect of the box boundaries.

We note that for large barriers V1 > 1.5× gN , the dy-
namics is very similar to the canonical two-mode model
predictions for the BJJ. To compute the relevant pa-
rameters for the two-mode model we follow the method
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of [8, 51]. Briefly we derive the usual BJJ equations:

ż = −2|K|
√

1− z2 sin θ, (3a)

θ̇ =

[
U + 2|K| cos θ√

1− z2

]
z, (3b)

where the tunneling rate |K| and the interaction energy
U can be related to the microscopic parameters of the
GPE, see appendix B for details. Equation (3) allows
for example to predict the critical imbalance at which
the self-trapping transition occurs [8], for a given barrier
strength V1. The agreement with the full GPE simulation
is remarkable, as shown by the dashed magenta line in
Fig. 2. Using Eq. (3) one can also predict the current ver-
sus imbalance phase portrait of the two-mode model. To
define the quantity corresponding to the current J(t), we
follow the standard definition in superconductor Joseph-
son junction [4, 54], for which the current is given by the
rate of change of the population imbalance: I(t) = ż(t).

Figure 3(i-iii) show a direct comparison of the current
versus imbalance computed within the two-mode model,
with the full GPE result, for the same parameters as in
Fig. 3(a-c). We observe that the shape of the trajectories
are correctly captured within the two-mode approxima-
tion. We conclude that our protocol is able to simulate
the two-mode Josephson physics at large barriers and al-
low to study the interplay with shock-wave physics at
smaller barriers.
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FIG. 4. (color online) Modification of the quench protocol:
the system is initialized with a large central barrier, quenched
to its final value in a time τ , as sketched by the dashed arrow.
As in Fig. 1 the solid black line is the initial potential, the
blue line is the post quench potential and the dashed red line
is the initial density profile. The inset shows z0 as a function
of Voffset obtained with this method.

IV. DYNAMICS AFTER A BARRIER QUENCH

In this section, we consider an additional quench of the
barrier strength:

V (t) =

{
V0 + (V1 − V0) tτ t < τ,

V1 t ≥ τ.

The imbalance is initially prepared in two decoupled
reservoirs at large barrier, at t = 0 the imbalance po-
tential is removed and the central barrier is linearly de-
creased to its final value in a time τ . This process is
relevant to experiments as it ensures a clean preparation
of two independent reservoirs by initially suppressing the
coupling through the central barrier and restoring it in
a controlled way, as shown in Fig. 4. As in section III
we investigate the tunneling dynamics between the two
reservoirs as a function of the initial imbalance and the
final barrier strength V1. The main, surprising, differ-
ence we find is an inhibition of the Josephson oscillations
thus expanding the self-trapping regime: we call this a
self-trapping resonance (depending on z0) and show here-
after that it can be predicted from the two-mode model
equations (3). We evidence this behavior by focusing on
the C0 value, as shown in Fig. 5.

We find that at low initial imbalance the self-trapping
region extends to unusual low barrier values, well below
the two mode model prediction. To confirm this unex-
pected behavior we study a few trajectories, shown in
Fig. 7 and corresponding to increasing values of initial
imbalance at fixed final barrier V1 = 1.6× gN . This con-
firms that the system undergoes a first transition from a

FIG. 5. (color online) Normalized power spectrum density at
zero frequency as a function of central barrier height V1 and
initial imbalance z0 for a quench of τ = 0.01. The magenta
dashed line indicates the prediction of the two-mode model
for the self-trapping transition. The red vertical dashed line
corresponds to a self-trapping resonance, as discussed in the
text. The green line and markers correspond to the example
trajectories shown in appendix C, see Fig. 7.
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Josephson oscillation regime to self trapping, then reverts
to an oscillating behavior before reaching the usual self-
trapping regime. Due to the extra energy provided by
the quench the maximum imbalance can be larger than
z0 and therefore we normalize the phase portrait by zmax.
However we observe that the shape of the trajectories re-
mains comparable to the two mode model predictions.
We have tested several values of the quench time and
found qualitatively the same behavior for a wide range
of quenching times from τ = 0.005 to τ = 0.1.

This self-trapping resonance can be explained qualita-
tively within the two mode model (3). The crucial point
here is that the initial barrier is high so that the system
is always in the self trapping at t = 0. Then for t < τ
the barrier is lowered and the self-trapping persists up
to a given barrier height. During this time the imbal-
ance remains approximately constant z(t) ' z0 but the
phase evolves and using the fact that U � |K| we find:
θ(t) = Uz0t. When the dynamics is still frozen at t = τ ,
this accumulated phase difference modifies the critical
point of the self-trapping regime. The critical barrier is
then minimal (see Eq. (B2)) at the resonance condition
θ(τ) = nπ, with n ∈ N∗, that is for z0 = nπ/(Uτ). For
our parameters this gives z0,res = 0.007 in good agree-
ment with the observed resonance.

To test this explanation we repeat the same procedure
for various values of τ . We find that the number of reso-
nances increase with τ and that their position is in good
agreement with our simple prediction, see appendix C for
details.

V. CONCLUSION

In this work we show that several quantitative criteria
can be combined to uniquely determine the dynamical
diagram of the one dimensional Bose Josephson junction
and identify the different regimes. We uncover the inter-
play between Josephson oscillations and dispersive shock
wave propagation and show that the same experimental
protocol can be used to produce both. Importantly our
analysis rely only on a measure of the time dependent
density oscillations, which is routinely achieved in ultra-
cold atom experiments. Furthermore the realization of
a one dimensional Bose gas confined in a box potential,
including a tunable weak-link is within reach [55].

We also demonstrate that the phase portrait (current
versus imbalance) is an appropriate tool to compare the
numerical simulations to simple analytical models and
that it is sufficient to identify the different regimes. In
particular, despite the intrinsic multi-mode dynamics, we
evidence that the main dynamical features are well cap-
tured by the two-mode model, for sufficiently large bar-
riers.

It is worth emphasizing that the dispersive shock wave
dynamics observed in this work is expected to be uni-
versal with respect to the interaction strength, upon a
proper rescaling of the dynamical quantities [46]. It

would be interesting to investigate this assumption using
exact methods at large interactions strength or a hydro-
dynamic description at arbitrary interactions.
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Appendix A: Speed of sound calculation

We provide here simple estimates to compute the rele-
vant speed of sound in the system. We will assume that
finite size effects are small and in particular neglect the
bend of the wavefunction near the box boundaries, that
occurs on a scale of the healing length ξ ∼ 1/

√
2gn0,

where n0 ≡ N/L is the average density. We recall
that the speed of sound is given by: c =

√
gn where

n is the local density. Now, in the presence of the
imbalance potential, the right and left atom numbers
are: N1,2 = N(1 ± z0)/2, where the initial imbalance
z0 = (N1 −N2)/N is normalized to the total atom num-
ber N , as in the main text. The associated speed of
sounds are: c1,2 =

√
gn0(1± z0) and assuming z0 � 1

we obtain: cmax − cmin = c1 − c2 '
√
gN/Lz0, corre-

sponding to the main text formula.

Appendix B: Two mode model

We summarize here the derivation of a two mode
model capturing the BJJ dynamics, following the ap-
proach of [8]. The idea is to look for a solution of Eq. (2)
of the form:

ψ(x, t) = ψ1(t)φ1(x) + ψ2(t)φ2(x),

where the two modes φ1,2(x) are build by combining the
lowest symmetric φs(x) and anti-symmetric φa(x) energy
states of Eq. (1):

φ1(x) =
φs(x) + φa(x)√

2
and φ2(x) =

φs(x)− φa(x)√
2

.

This definition ensures that φ1,2(x) are normalized to
unity and orthogonal. Without loss of generality we may
assume that φ1,2(x) are real valued functions. Inserting
this ansatz into Eq. (2) and projecting onto the modes
result in the following equations for the mode amplitudes
ψ1,2(t):

iψ̇1 = I11ψ1 + I12ψ2 + gN

∫
dxφ1|ψ|2ψ,

iψ̇2 = I21ψ1 + I22ψ2 + gN

∫
dxφ2|ψ|2ψ,
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where we defined the overlap integrals Ii,j =∫
dxφi

(
− 1

2
∂2

∂x2 + V (x)
)
φj . Here V (x) is the final po-

tential, with a central barrier of strength V1. To proceed
we need to evaluate the non-linear term: we keep only
the dominant term and the first correction [56], resulting
in:

iψ̇1 = I11ψ1 +Kψ2 + U1|ψ1|2ψ1,

iψ̇2 = Kψ1 + I22ψ2 + U2|ψ2|2ψ2,

where we defined U1,2 = gN
∫
dx |φ1,2|4 and introduced

the coupling:

K = I12 +
gN

4

∫
dx (φ4

s − φ4
a).

It is then straightforward to show that:

K =
E[φs]− E[φa]

2
,

where

E[φ] =

∫
dxφ

[
−1

2

∂2

∂x2
+ V (x) +

gN

2
|φ|2

]
φ, (B1)

is the mean field energy of the state with N particles in
mode φ.

We then change variables for ψ1,2 =
√
N1,2e

−iθ1,2 and
obtain:

Ṅ1 = 2K
√
N1N2 sin (θ1 − θ2),

θ̇1 = I11 +K

√
N2

N1
cos (θ1 − θ2) + U1N1,

Ṅ2 = 2K
√
N1N2 sin (θ2 − θ1),

θ̇2 = K

√
N1

N2
cos (θ2 − θ1) + I22 + U2N2.

We then introduce the population imbalance: z = N1 −
N2 (with the constrain N1 + N2 = 1, due to the choice
of mode function normalization) and the phase difference
θ = θ1 − θ2, resulting in:

ż = 2K
√

1− z2 sin θ,

θ̇ =

[
U − 2K

cos θ√
1− z2

]
z + I11 − I22 +

U1 − U2

2
,

where U = (U1 +U2)/2. The constant term in the second
equation is very small such that we recover the usual
Bose-Josephson equations (with our definitions K < 0),
as shown in Eq. 3.

To connect the GPE simulations and the two mode
model, we minimize the energy (B1) for a given central
barrier V1 with a parity constrain [57] to find the two

states φs and φa and their energy, thus obtaining the
value of K. We then combine them to build states φ1 and
φ2 and compute the interaction energy U . Combining K
and U we obtain the parameter Λ = U/(2|K|) control-
ling the dynamics as a function of V1. Finally, using the

FIG. 6. Normalized power spectrum density at zero fre-
quency as a function of central barrier height V1 and initial
imbalance z0 for a quench of τ = {0.02, 0.03, 0.04} (top, mid-
dle, bottom). The magenta dashed line indicates the predic-
tion of the two-mode model for the self-trapping transition.
The dashed vertical green lines correspond to the predicted
resonances.

fact that the transition from oscillations to self-trapping
occurs at a critical Λ [8]:

Λc =
1 +

√
1− z2

0 cos θ0

z2
0/2

, (B2)

where z0 and θ0 are the initial imbalance and phase dif-
ference between the reservoirs. As each value of Λ cor-
respond to a unique value of V1, Eq. (B2) allows to plot
the two-mode prediction for the JO to ST boundary in
Fig. 2.

Appendix C: Additional data for the barrier quench

Figure 6 shows how the quench time τ affects the self
trapping resonance described in the main text. In par-
ticular it confirms the interpretation based on the two-
mode model equations and show the predictive powers
of this simple model. We note that the number of reso-
nances increases with τ but are also less pronounced. For
τ > 0.05 they are indistinguishable from the two-mode
model boundary, shown by the dashed magenta curve in
Fig. 6.
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