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Numerical design of Luenberger observers for nonlinear systems

Louise da C. Ramos, Florent Di Meglio, Valéry Morgenthaler, Luı́s F. Figueira da Silva and Pauline Bernard

Abstract— In this paper, we propose a method to numerically
design observers for nonlinear systems. The method relies on
the theory of nonlinear Luenberger observers, which consist in
mapping the nonlinear dynamics to a linear system, for which
observer design is easy. Relying on results guaranteeing the
existence of such mappings, we propose to approximate them
by performing nonlinear regression on data simply generated by
solving the system and observer dynamics. We detail different
approaches for autonomous and excited systems and the choices
made for data generation, pre-processing, and regression.

I. INTRODUCTION

A. Context

In this paper, we propose a method to numerically design
observers for nonlinear systems.

Observers are dynamical systems used to estimate the
unmeasured states of a process, combining real-time data
from sensors with a dynamical model of the process. There
are few general design approaches for nonlinear systems.
The popular Extended Filter [1] relies on linearization around
the current estimate, yielding only local guarantees of con-
vergence. High-gain observers [2], in turn, rely on strong
assumptions on the observability of the system to map it to
a triangular form in which the design is eased. A review
of generic observer design methods for nonlinear systems is
given in [3].

In a seminal paper [4], the original Luenberger observer
design for linear systems is presented: it is shown that
observable linear dynamics can be mapped, using an invert-
ible variable change, to a linear, stable dynamical system
having the measurement as input, in other words, to a stable
linear filter of the output. Implementing this filter from any
initial condition, then enables to recover a state estimate
by inversion of this mapping. In [5], [6], the same idea of
mapping the plant dynamics to a linear filter of its output is
progressively extended to more and more general classes of
nonlinear systems. In [7], it is shown that a general notion
of observability, backward distinguishability, is enough to
guarantee the existence of such an injective mapping. In [8],
a similar result is obtained for non-autonomous nonlinear
systems. Even if these results guarantee the existence of the
mapping and its (pseudo-)inverse, they are not constructive,
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and the mapping has, often, no tractable analytical expres-
sion.

The main contribution of the paper is a numerical observer
design for nonlinear systems that consists in approximating
the mappings involved in the Luenberger methodology. The
design solely relies on numerical simulations of the dynamics
and the use of nonlinear regression. Our approach is as
follows. For any chosen (stable) linear observer dynamics,
we compute numerical solutions to both the system to
be observed and the observer, fed by the corresponding
output. We then perform a nonlinear regression on the
data to compute an approximation of the mapping and its
inverse. In the case of autonomous systems, the method
straightforwardly uses the existence result from [7]. For a
system with input, the approach consists in computing the
mappings corresponding to a specific, well-chosen excitation,
and guaranteed to exist by [8]. Indeed, we show that these
mappings can then be used with other inputs, provided
stronger observability assumptions are made and the observer
dynamics are appropriately modified.

To perform the nonlinear regression, we rely here on
Neural Networks. This machine learning approach allows the
representation of a problem in multiple levels, obtained by
composing and connecting simple but non-linear modules,
also called neurons. These modules allow to transform the
representation at one level into a representation at a higher
and more abstract level [9]. Networks architectures com-
posed by a sufficient number of these transformation modules
have shown a high learning capability for diverse non-linear
problems. For example, different neural network method-
ologies have been extensively used for image recognition
[9]–[12], for language processing [13], self-learning control
systems [14], for the prediction of chaotic series [15], or
for the predictive modelling of nonlinear dynamical systems
[16].

The paper is organized as follows. In Section I-B, we
formulate the observer design problem. In Section II, we
describe our approach for both autonomous and excited sys-
tems. In Section III, the architecture and learning approach of
the neural network are presented. In Section IV, we illustrate
our approach through numerical simulations on toy examples
of autonomous and non-autonomous systems.

B. Problem Statement

Consider a system of general form{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))
, (1)



where x ∈ Rdx is the state, the measured output is y(t) in
Rdy , f is a continuously differentiable function (C1), h is a
continuous function, and u an input in Rdu . For any input u
of interest, we are interested in estimating online x(t) from
the knowledge of the past values of the output y and input
u, under the following two assumptions.

Assumption 1: There exists a compact set X such that for
any solutions x to (1) of interest, x(t) ∈ X for all t ≥ 0.

Assumption 2: For any input u of interest, there exists an
open bounded set O containing X such that (1) is backward
O-distinguishable on X , namely there exists t̄ > 0 such that
for any trajectories xa and xb of (1) with input u and any
t ≥ t̄ such that (xa(t), xb(t)) ∈ X × X and xa(t) 6= xb(t),
there exists s ∈ [t− t̄, t] such that

h(xa(s)) 6= h(xb(s))

and (xa(τ), xb(τ)) ∈ O×O for all τ ∈ [s, t]. In other words,
their respective outputs become different in backward finite
time and before leaving O.

Remark 1: For non-autonomous systems, we require the
time t̄ within which the outputs are distinguishable to be
uniform with respect to the initial conditions in X . This can
be relaxed for autonomous systems, see [7, Definition 2].
Under these mild assumptions, it was shown in [8] that, for
any input u of interest, and for almost any controllable pair
(D,F ) of dimension dz := dy(dx + 1) with D Hurwitz,
there exists a map T ∗u such that the following system is an
observer for (1)

ż(t) = Dz(t) + Fy(t) (2a)
x̂(t) = T ∗u (t, z(t)). (2b)

In other words, any trajectory of (2) verifies

lim
t→+∞

|x̂(t)− x(t)| = 0,

and implementing (2) with any initial condition provides an
estimate of the plant’s state after a certain time.

The existence of T ∗u relies on the existence and injectivity
of a direct transformation Tu : R × Rdx → Rdz such that
for any solution x to (1), the image z(t) = Tu(t, x(t))
evolves according to the dynamics (2a). Straightforward
computations show that Tu must satisfy

∂Tu
∂x

(t, x)f(x, u(t))+
∂Tu
∂t

(t, x) = DTu(t, x)+Fh(x, u(t)),

(3)
for all (t, x) ∈ [0,+∞) × X . According to [8], a solution
to (3) always exists, and the main difficulty is then to show
that Tu(t, ·) becomes injective after t̄ defined in Assumption
2. For t ≥ t̄, T ∗u (t, ·) can then be designed as a left-inverse
of Tu(t, ·). Note that, in the particular case where the system
(1) is autonomous, the transformation can also be taken
autonomous, namely T : Rdx → Rdz and T ∗ : Rdz → Rdx .

Now, although the observer has been proven to exist for
a wide category of systems, its implementation requires
the knowledge of the map T ∗u . Unfortunately, an explicit
expression is rarely available unless one knows how to find
a solution Tu to (3) and build a left-inverse. The goal of this

paper is therefore to develop a methodology to numerically
compute this map T ∗u and, when needed, Tu and its Jacobian,
for both autonomous and excited cases. This work relies on
precise theoretical results of existence that are recalled in the
next section.

II. METHODOLOGY

A. Learning Procedure: Autonomous Systems

Consider an autonomous system{
ẋ(t) = f(x(t))

y(t) = h(x(t))
. (4)

The following Theorem derived from [7] shows the existence
of an autonomous transformation T ∗.

Theorem 1 ( [7]): Suppose Assumptions 1 and 2 hold.
Define dz = dy(dx+1). Then, there exists ` > 0 and a set S
of zero measure in Cdz such that for any matrix D ∈ Rdz×dz
with eigenvalues (λ1, . . . , λdz ) in Cdz \ S with <λi < −`,
and any F ∈ Rdz×dx such that (D,F ) is controllable, there
exists an injective mapping T : Rdx → Rdz and a pseudo-
inverse T ∗ : Rdz → Rdx such that the trajectories of (4)
remaining in X and any trajectory of

ż = Dz + Fy, (5)

satisfy

|z(t)− T (x(t))| ≤M |z(0)− T (x(0))| e−λmint (6)

for some M > 0 and with

λmin = min {|<λ1|, . . . , |<λdz |} (7)

and

lim
t→+∞

|x(t)− T ∗(z(t))| = 0. (8)

Remark 2: Notice that if the observer is perfectly initial-
ized, i.e. z(0) = T (x(0)), then one has z(t) = T (x(t)) and,
consequently, x(t) = T ∗(z(t)), ∀t.
The existence of the mappings being guaranteed by this
theorem, we propose to compute a numerical estimate of T
and T ∗ by generating a large set of (x, z) values and
using a nonlinear universal approximator. More precisely, we
proceed according to the following steps

1) choose of D and F for the observer system;
2) choose a set of initial conditions (x0, z0) ;
3) simulate (2a),(4) in forward time, generating a set

of (x, z) pairs ;
4) perform nonlinear regression to find the mapping x =

T ∗(z).

We now detail specific methods for each step and the
rationale behind them.



a) Initial conditions: The choice of the initial condi-
tions affects the distribution in the (x, z)-space of the data
used for performing the regression. Ideally, the sampling
should be refined where the functions T and T ∗ are not
smooth. In the absence of a priori knowledge on their
regularity, however, standard statistical sampling methods are
used, such as latin hypercube sampling. One should notice
that the initial distribution will be strongly modified by the
dynamics of the system, in ways that cannot be predicted in
advance. Therefore, the distribution of the actual (x(t), z(t))
data may be very different from that of the initial condition.

b) Selection of data points: At the second step, simu-
lation data is generated with a numerical ODE solver over a
finite time interval [0, tf ], from all of the initial conditions
chosen at the previous step. This data must be pre-processed
before it can be used for regression. Indeed, since T is
unknown, it is impossible to initialize the observer exactly
as suggested in Remark 2. Rather, we rely on the stability of
the observer and the fact that z “forgets” its initial condition.
Inequality (6) suggests that it is reasonable to eliminate from
the dataset the pairs (x(t), z(t)) for t < k

λmin
with k = 3 or

5.
c) Nonlinear regression: To learn the mappings T and

T ∗, one could a priori choose any nonlinear regression
methodology. A neural network is proposed and further
discussed in section III for its simplicity of implementation
and its ability to represent complex nonlinearities with a low
number of parameters [9].

B. Learning Procedure: system with an excitation

Now in [8], Theorem 1 was extended to general non-
autonomous systems (1).

Theorem 2 ( [8]): Suppose Assumptions 1 and 2 hold
with t̄ ≥ 0. Define dz = dy(dx + 1). Then, for any
input u of interest, there exists a set S of zero measure in
Cdz such that for any Hurwitz matrix D ∈ Rdz×dz with
eigenvalues (λ1, . . . , λdz ) in Cdz \ S with <λi < 0, and
any F ∈ Rdz×dx such that (D,F ) is controllable, there exist
mappings Tu : R × Rdx → Rdz and T ∗u : R × Rdz → Rdx
such that

1) Tu(t, ·) and T ∗u (t, ·) depend only on the past values of
u on [0, t],

2) Tu(t, ·) is injective for all t ≥ t̄ with T ∗u (t, ·) a left-
inverse on X ,

and any trajectory of (4)-(5) with x(t) remaining in X
satisfies

|z(t)− Tu(t, x(t))| ≤M |z(0)− Tu(0, x(0))| e−λmint (9)

for some M > 0 and λmin defined as in (7) and

lim
t→+∞

|x(t)− T ∗u (t, z(t))| = 0. (10)
Theorem 2 differs from Theorem 1 only through the fact

that Tu is time-varying and the eigenvalues no longer have
to be sufficiently large. Quite expectedly, the time t̄ after
which T (t, ·) becomes injective is the same as the backward-
distinguishability time of Assumption 2.

The main difficulty in numerically estimating the map
T ∗u is that it now depends on the input u. In the favorable
case where u is known in advance (time-varying systems),
it is enough to learn the map T ∗u associated to this input.
Otherwise, let us consider the particular case of an input-
affine system {

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(11)

and a nominal input u0 so that Assumptions 1 and 2 hold.
Then, according to Theorem 2, there exist a map Tu0 solution
to the PDE (3) with u = u0 and T ∗u0 its left-inverse
after a certain time. Straightforward computations then show
that along solutions to (11), z(t) = Tu0(t, x(t)) evolves
according to

ż(t) = Dz(t) + Fy(t) + ϕ(t, z(t))(u(t)− u0(t)), (12)

where

ϕ(t, z) =
∂Tu0

∂x
(t, T ∗u0(t, z)) g (T ∗u0(t, z)) . (13)

Similarly to the previous design, if we manage to estimate
z(t) = Tu0(t, x(t)) an estimate of x(t) is then obtained
thanks to T ∗u0(t, z(t)). When the term ϕ(t, z) was absent,
the dynamics of z were contracting and it was enough to
simulate z with any initial condition to obtain asymptotically
an estimate. Unfortunately, this is no longer true, but we have
the following result.

Corollary 1: Suppose Assumptions 1 and 2 hold and pick
u0 among the inputs of interest. Assume D, Tu0 and T ∗u0

given by Theorem 2 are such that for all t, for all za, zb,

|ϕ(t, za)− ϕ(t, zb)| ≤ L|za − zb| .

If λmin > L|u−u0|∞, then any solution to (1)–(12) with x
remaining in X verifies

lim
t→+∞

|x(t)− T ∗u0(t, z(t))| = 0 . (14)

Proof: Denoting e(t) = Tu0(t, x(t)) − z(t), compute
the derivative of e>e along trajectories. Then, apply the left-
inverse T ∗u0 .

The problem of this contraction condition is that Tu0 , and
thus λmin depend on D. Therefore, it may not be enough to
take D with λmin sufficiently large. Actually, if satisfying
this condition is possible for a given u, it means that we
can observe the plant for any other input u′ such that |u′ −
u0|∞ ≤ |u−u0|∞. Therefore, the plant should be observable
or at least detectable for any such input. It is shown for
instance in [8, Theorem 4] that when the plant is observable
for any input and the drift system ẋ = f(x) is differentially
observable of order dx, L can be bounded independently
from λmin and therefore, this observer works with u0 = 0
if λmin is sufficiently large.

Our proposed methodology is as follows;
1) choose D and F for the observer system;
2) choose one initial condition (x0, z0);
3) choose an excitation u = u0 to excite (11)



4) simulate (2a),(11) with input u0 in forward time,
generating a set of (z, x, t) data points;

5) use nonlinear regression to find the mapping z =
Tu0(x, t), and the associated left-inverse x = T ∗u0(z, t);

6) compute ∂Tu0/∂x;
7) then, for validation, simulate (12), (11) in forward time

with a different input u(t) 6= u0(t).
We now detail specific methods for each step and the

rationale behind them.
a) Initial conditions and input signal: Here, the choice

of the initial condition is not dominant in the distribution in
the (x, z)-space of the data used to perform the regression.
The perturbation has a much more significant impact. The
question of finding an open-loop control u generating ‘rich’
data is a classical question in system identification, and
highly depends on the considered system. The objective, as
in the autonomous case, are a priori to have many samples
where the functions T and T ∗ are likely to be non-smooth.
In the absence of intuition or a priori knowledge on these,
the excitation should make the system explore as uniformly
as possible the compact of interest.

b) Selection of data points and nonlinear regression:
The generation and pre-processing of data and the nonlinear
regression methodology are the same as specified in section
II-A. In the next section, we present the regression method
we use.

III. NEURAL NETWORKS

One should notice that any nonlinear regression can poten-
tially be applied to approximate the mappings. We chose here
Neural Networks (NN). The basic architecture of the NN is
composed of one input layer with li + bias neurons, multi-
hidden layers with lh + bias neurons each, and one output
layer with lo neurons, as shown in Figure 1. The output value
computed by the network is denoted hΘ(x), which depends
on the input training values (x) and of the network weights
(Θ). As base methodology to implementing a neural network

Input
layer

Multi
hidden
layers

Output
layer hΘ(x)

Fig. 1. Neural network simplified flow chart.

model, this work refers to [9], [17], [18].
Given a training dataset with input and output values, the

“learning” of the neural network weights can be performed.
A cost function (J in R) is used, providing a quantitative
measurement of the efficiency of the neural network with
respect to a given training dataset [17]. This function can
have different forms, and depends on the neural network
weights (Θ), the training data set output (Y ), and the
predicted values with the network (hΘ(X)). The objective is
to find a set of weights that minimizes the cost function and
better fits the training data. For that, the back-propagation
algorithm is used. For the back-propagation methodology and
algorithm one may refer to [17], [18].

It is important to note that, for the back-propagation to
work, some assumptions on the cost function [17] are needed
; (1) it can be written as an average J = 1/m

∑m
i=1 Ji over

cost functions (Ji) for individual training examples, which
enables the computation of partial derivatives for each single
training example, and (2) it can be written as a function of
the outputs from the neural network, and thus is a function
of the output activation.

A. Proposed Neural Network Methodology
In this work, the neural network architecture is composed

of four layers (L = 4): one input (layer (1)), two hidden
layers (layers (2, 3)), and one output (layer (4)). The number
of nodes of the input and output layers depends on the
transformation, and are, respectively, dx and dy when the
network is used to approximate T (and the opposite for T ∗).
The two hidden layers have 25 units each, which was chosen
by trial-and-error, trading-off computational effort against
accuracy. We use the following quadratic cost function

Jθ =
1

2m

m∑
i=1

l4∑
k=1

(hθ(x
i
k)− yik)2, (15)

where m is the number of training data, l4 is the number of
nodes on the output layer (L = 4), and hθ is the predicted
value from the neural network. Again, this particular choice
has been made on a trial-and-error analysis, and is by no
means optimal in any sense.

The activation function depends on each layer k. For the
first layer, the activation is the proper input values (x) plus
a bias (a0 = 1); a(1) = [a0, x1, · · · , xn]

T . At the hidden
layers, the hyperbolic tangent (tanh) is used as activation
function g(φ), where φ is the layer weighted input, as shown
in (16). However, a linear function is used at the output, i.e.,
each of the fourth layer neurons has its value multiplied by
its respective weight.

g(φ) = 2

(
1

1 + e−2φ

)
− 1, g′(φ) = 1− g(φ)2. (16)

In this work, the training methodology is:
1) randomly initialize the weights of each layer, where

Θk ∈ Rlk+1×(lk+1), ∀k ≤ (L− 1), and define three Θ
matrices, Θ(1) ∈ Rl1×26, Θ(2) ∈ R25×26 and Θ(3) ∈
Rl4×26.

2) effect the forward propagation to find a first prediction
hΘ(x).

3) compute the cost function with respect to hΘ(x) and
the training output values Y .

4) use the back-propagation to compute the partial deriva-
tives of the cost function; ∂

∂Θ
(k)
i

J(Θ, hΘ(X), Y ).

5) apply fmincg, as optimization method, with the back-
propagation to minimize the cost function and find Θ.

a) Optimization method: The fmincg function ©1 is
an optimization routine used to minimize a continuous differ-
entiable multivariate function. The initial condition is given

1Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-
02-13



by the all of weight values of the neural network, arranged at
a (nw × 1) vector, where nw is the number of weights. The
optimization is performed over these weights, by minimizing
the cost function (eq. (15)). The Polack-Ribiere method of
conjugate gradients is applied to define search directions. A
quadratic and cubic polynomial approximations is used for
line search and the Wolfe-Powell stopping criteria coupled
with the slope ratio method is used to guess the initial step
sizes.

In the next section, we apply this methodology to compute
the transformation Tu and T ∗u of the previously presented
Luenberger observer. Two neural networks need to be learned
for solving this system; (a) one to solve z = Tu(x), with
the nonlinear system X as input and the observer system z
as output, and (b) the other with the observer as input and
the nonlinear system as output, solving x = T ∗u (z).

IV. NUMERICAL SIMULATION

In this section, we illustrate our approach through nu-
merical simulations on toy problems. Our main goal is to
qualitatively highlight how the data selection and processing
impacts the observer performance.

A. Autonomous System

Consider the following system

f(x) =

{
ẋ1 = x3

2

ẋ2 = −x1

y = x1 (17)

which admits bounded trajectories (where x2
1 + x4

2 is con-
stant). This system is weakly differentially observable of
order 2 in R2 since the mapping x → H2(x) = (x1, x

3
2)

is injective on R2, and so, it is considered a fortiori instan-
taneously backward-distinguishable [7], [8]. Applying then
the Luenberger’s methodology presented on section II-A,
for an observer (2) in R3 with D = diag([λ1, λ2, λ3]) and
F =

(
1
1
1

)
, T ∗ is computed with a neural network.

The training data is generated for different sets of initial
conditions, chosen with different sampling methods. The
dynamics are solved over the time interval [0, tf ] with tf =
50 s and a time step dt = 10−2. In order to improve
the neural network behavior, the data is centered around
zero and normalized. We compute the approximation of
the transformation x = T ∗(z) with the neural network
methodology presented in Section III-A, where the input is
z = (z1, z2, z3), and the output is x = (x1, x2). A maximum
of 1000 iterations is used.

We now highlight various design choices.
1) Impact of the size of the set O: A critical design choice

lies in the size of the subset of the state-space over which the
mappings are to be approximated. There is an inherent trade-
off: one would ideally want a set as large as possible, but this
requires more training data and, most importantly, a more
accurate nonlinear approximator. This choice is therefore
intimately linked to the complexity of the neural network
and to the number of points in the training dataset. For a

fixed architecture, trying to cover a larger set has a negative
impact on accuracy. This trade-off is illustrated on Figure 2,
where the same number of points in the dataset are used for
two different sets O. For each figure, we plot the training
dataset and the asymptotic logarithmic relative error

lim
t→∞

log
(x1(t)− x̂1(t))2 + (x2(t)− x̂2(t))2

x2
1 + x2

2

. (18)

(a) Trajectory for training IC ∈
(−1, 1).

(b) Logarithmic relative error mapping
for training IC ∈ (−1, 1).

(c) Trajectory for training IC ∈
(−10, 10).

(d) Logarithmic relative error mapping
for training IC ∈ (−10, 10).

Fig. 2. Impact of the size of the compact: Comparison of the autonomous
system (eq. (17)) solutions for an observer defined in R3, with a different
range for the Gaussian distributed initial conditions. The prediction test is
over 100 equally distributed initial condition (xt

1,0, x
t
2,0) ∈ [−10, 10].

Unsurprisingly, both regressions qualitatively perform bet-
ter in regions where more data points are present. The
extrapolation capabilities are extremely limited, as illustrated
on Figure 2b, which also illustrates the difficulty of estimat-
ing T ∗ around two symmetrical points close to the origin.
This, in theory, should be linked to a small modulus of
injectivity for T , which we depict on Figure 3.

In addition, in an attempt to increase the efficiency of the
prediction over a large set one can increase the number of
neurons and hidden layers. Accordingly, a network with a
larger number of neurons has been tested, but no remarkable
difference has been found, and for the sake of brevity, the
results are not shown here.

2) Impact of the initial condition sampling: We now
discuss the impact of the distribution of the initial conditions
and the amount of data in the training set.

a) Distribution: Different standard methods for sam-
pling can be used to choose the initial conditions for the



Fig. 3. Transformation T .

training set of data. Here, in a range of [−10, 10], the impact
of using a Gaussian distributed and a regular spaced distribu-
tion are shown. Figures 2c, 2d and 4a, 4b, respectively depict
the results of each of this methods, for a training sample of
20 initial conditions.

(a) Trajectory for IC ∈ (−10, 10). (b) Logarithmic relative error mapping
for IC ∈ (−10, 10).

Fig. 4. Solution for the autonomous system (eq. (17)) with an observer
z defined in R3, with regular partition used for choosing the 20 initial
conditions (x1,0, x2,0) ∈ (−10, 10).

Regarding the different distribution methods used to fill
the parametric space of initial conditions, small differences
are encountered when comparing the Gaussian distribution
(Figure 2c and 2d) with the regular partitioning (Figure 4). In
general, the same behaviour from Figure 2b is seen in Figure
4b, i.e., both present high error when predicting trajectories
closer to (x1, x2) = (0, 0).

b) Number of points: The impact of the initial condi-
tions sampling is here tested with a training set computed
over 100 different initial condition, with x0,1 ∈ [−10, 10],
chosen with a Gaussian distribution, and x2 = 0. The
corresponding result is depicted in Figure 5.

The use of a larger number of initial conditions better
fills the training domain, as seen in Figure 5a. However,
this does not result in a significant quantitative accuracy
improvement. This point illustrates the need for either a
smarter way to choosing the trajectories of interest, e.g. by
using mesh refining methods, or for larger scale brute force
methods.

3) Impact of the observer eigenvalues: Another critical
design choice lies in the eigenvalues of the matrix D in
Equation (2). These are linked to the convergence speed of

(a) Trajectory for 100 IC ∈
(−10, 10).

(b) Logarithmic relative error mapping
for 100 IC ∈ (−10, 10).

Fig. 5. Solution for the autonomous system (eq. (17)) with an observer
z defined in R3, with regular partition used for choosing the 100 initial
conditions (x1,0, x2,0) ∈ (−10, 10).

the observer, although they do not determine it entirely, as
the mappings highly depend on their values. An interesting
study of the effect of D on, e.g., the noise filtering properties
of the observer is given in [19].

Here, we study the impact of the eigenvalues on the
learning process. We compare the results obtained with, on
one hand, ‘arbitrarily’ picked eigenvalues (−5,−6,−7) and,
on the other hand, eigenvalues corresponding to a third-order
Bessel filter with a cut-off frequency of 2π rad/s. The results
are depicted at Figure 6. Although these early results are
very partial, they seem to indicate that a physically sound
choice of eigenvalues makes the learning process easier, for
a similar convergence speed.

Future works should include a much deeper study of the
impact of the eigenvalues on the transformation and the
learning process, in particular, the effect on the convergence
speed. Another potential direction would be to perform
nonlinear regression, not only in the state and observer
variables, but also on the eigenvalues. One could envision
finding an approximation of T ∗(z, ωc), where ωc is the cut-
off frequency of the Bessel filter.

B. Non-autonomous System: Van der Pol

As a first example of a non-autonomous system, we
consider now the following Van der Pol oscillator, which
is a non-conservative oscillator with nonlinear damping [20]

f(x) =

{
ẋ1 = x2

ẋ2 = ε(1− x2
1)x2 − x1 + u(t)

, y = x1, (19)

where ε = 1. Unforced, its trajectories quickly converge to a
single asymptotically stable limit cycle, but exhibit chaotic
behavior under sinusoidal forcing. These properties perfectly
illustrate how the approach described in Section II-B sig-
nificantly improve on the result of [8, Section IV]. There,
it is suggested, for systems of the form (11) to use the au-
tonomous transform corresponding to f only, for an observer
with sufficiently fast convergence2. This strategy would be
extremely difficult to apply to the Van der Pol oscillator, as

2This corresponds to taking u0 = 0 in our approach.
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(a) Evolution of the true and estimated
states over time, for (λ1, λ2, λ3) =
(5, 6, 7).
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(b) Evolution of the estimation er-
ror over time, for (λ1, λ2, λ3) =
(5, 6, 7).
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(c) Evolution of the true and estimated
states over time, for (λ1, λ2, λ3) the
eigenvalues of a Bessel filter with cut-
off frequency 2π rad/s.
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(d) Evolution of the estimation er-
ror over time, for (λ1, λ2, λ3) the
eigenvalues of a Bessel filter with cut-
off frequency 2π rad/s.

Fig. 6. Comparison of the autonomous system (eq. (17)) solutions for an
observer defined in R3, with different eigenvalues.

the generated data without forcing would be clustered around
the attractive limit cycle. Rather, we apply here, to generate
the training set, a linear chirp u0(t) = 10−3 + 9.99× 10−5t
that makes the system extensively explore the (x1, x2)-plane.
We then use the corresponding transformation T ∗u0

in an
observer of the form (12) to estimate the states under a
different forcing u(t) = 0.44 cos (0.5t). We show the results
corresponding to an observer z evolving in R3 and R5,
respectively. The results are depicted in Figure 7.

C. Non-autonomous System: Adding an input to (17)

The same approach can be used to generate training data
for system (17), by adding an excitation as follows

f(x) =

{
ẋ1 = x3

2

ẋ2 = −x1 + u(t)
, y = x1. (20)

Then, the methodology presented in section II-B can be
applied. First, the training data is generated for one initial
condition and a forcing being, again, the linear chirp used
in Section IV-B. In this case, the observer is in R3, we
pick a matrix D corresponding to a third-order Bessel filter,
with cut-off frequency ω = 2π rad/s, and F =

(
1
1
1

)
.

The dynamics (17) are then solved using a built-in Matlab
variable-step solver over 104 seconds. Nonlinear regression is
used to find the transformations (Tu0 , T ∗u0), which are then

5000 5010 5020 5030 5040 5050
time [s]

-4

-2

0

2

4

X
1

X
1 Xpred

1

5000 5010 5020 5030 5040 5050
time [s]

-4

-2

0

2

4

X
2

X
2 Xpred

2

(a) Evolution of the true and predicted
state, with an observer z ∈ R3.
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(b) Evolution of the true and predicted
state, with an observer z ∈ R5.

Fig. 7. Impact of the number of states of the observer on the performance
of the design for the Van der Pol oscillator. The plots show the asymptotic
convergence performance.

used with an observer of the form (12) with u = 0. The
results are depicted in Figures 8 and 9.

(a) Training trajectories. (b) Logarithmic relative error map-
ping for system with no excitation and
IC ∈ (−10, 10).

Fig. 8. Training trajectories and estimation error for the artificially excited
nonlinear oscillator.

V. CONCLUSION AND PERSPECTIVES

This paper is a step towards the combined use of Luen-
berger observer theory and simulation data-based Machine
Learning to systematically design observers for nonlinear
systems.

Concerning the application to autonomous systems, the
method relies on the very mild assumption of backward
distinguishability, which makes it quite general. The main
remaining questions are two-fold. First, the generation of
relevant data, which is briefly discussed in this paper, should
deserve more attention. For instance, one could envision
resampling the state-space after a first estimation of the
mappings, similarly to mesh refining techniques in numerical
simulation. However, such techniques should raise a number
of issues regarding the refinement criteria. Second, the appro-
priate method for nonlinear regression remains a fully open
question, and the Neural Network proposed here is by no
means a definitive one.

When non-autonomous systems are of interest, the method
relies on stronger observability assumptions, somewhat
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(a) Trajectories of system (20).
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(b) Error of prediction.

Fig. 9. Comparison and error of the prediction for trajectory with initial
condition (x1, x2) = (1, 0) and input u(t) = 0.

equivalent to differential observability of the order of the
state. This is perhaps unsatisfying but, as is, seems necessary
to ensure that the learning can be made for a single excita-
tion, and used with other inputs. Relaxing these assumptions
will be the topic of future research. Another interesting
aspect is the selection of the appropriate excitation. Indeed,
analogously to the autonomous case, the selection criterion
used is paramount, with the added possibility here of steering
the system towards regions of uncertainty. This problem is
linked to active learning [21] and, more generally, input
selection for identification [22], [23].
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