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Abstract. We define a class of modal logics LF by uniformly extend-
ing a class of modal logics L. Each logic L is characterised by a class
of first-order definable frames, but the corresponding logic LF is some-
times characterised by classes of modal frames that are not first-order
definable. The class LF includes provability logics with deep arithmeti-
cal interpretations. Using Belnap’s proof-theoretical framework Display
Logic we characterise the “pseudo-displayable” subclass of LF and show
how to define polynomial-time transformations from each such LF into
the corresponding L, and hence into first-order classical logic. Theorem
provers for classical first-order logic can then be used to mechanise de-
duction in these “psuedo-displayable second order” modal logics.

1 Introduction

Background. There are two main approaches to modal theorem proving in the
literature. The direct approach consists in defining calculi dedicated to modal
logics at the cost of modifying existing theorem provers (see e.g. [Fit83, AEH90,
Mas94]). The translational approach consists in translating modal logics into
logics for which theorem provers already exist, typically classical first-order logic
(FOL). The relational translation into FOL (see e.g. [Mor76, Sch99, GHM98]) is
the most common such translation although not the only one (see e.g. [Mor76,
Ohl88, Her89, dMP95, Ohl98]). These two approaches cannot always be applied
with equal success (see e.g. [HS97]). For instance, for the provability logic G
which is characterized by a second-order class of modal frames (see e.g. [Boo93]),
the relational translation is not possible unless FOL is augmented with fixed-
point operators (see e.g. [NS98]). However, dedicated sequent-style calculi do
exist for provability logics such as G or Grz (for Grzegorczyk); see e.g. [SV80,
Lei81, Fit83, Val83, Avr84, Boo93, Gor99].

Display Logic. Display Logic (DL) [Bel82] is a proof-theoretical framework
that generalises the structural language of Gentzen’s sequents by using multiple
complex structural connectives instead of Gentzen’s comma. The term “display”
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comes from the nice property that any occurrence of a structure in a sequent can
be displayed either as the entire antecedent or as the entire succedent of some se-
quent which is structurally equivalent to the initial sequent (see e.g. [Bel82]). Any
display calculus satisfying the conditions (C1)-(C8) [Bel82] (see the appendix)
enjoys cut-elimination. Kracht’s characterisation of properly displayable modal
logics [Kra96] means that any extension of the (poly)modal logic K obtained
by the addition of the so-called primitive axioms admits a display calculus that
obeys conditions (C1)-(C8) [Kra96], and therefore enjoys cut-elimination. Since
every primitive axiom is a Sahlqvist formula, any such extension is first-order
definable [Sah75].

Our contribution. Let φ be a modal formula and F(φ) be a formula built
from {φ} using ¬, ∧, ∨, ⇒, 2 and 3 such that any subformula of the form 2ψ
in F(φ) occurs positively (when every φ1 ⇒ φ2 is written as ¬φ1 ∨ φ2). Let L

be a properly displayable modal logic and LF be the logic obtained from L by
adding the axiom scheme 2(F(φ) ⇒ φ) ⇒ 2φ. Here a logic is understood as a
set of formulae and therefore is exactly a (decision) problem in the usual sense
in complexity theory. That is, as a language viewed as a set of strings built upon
a given alphabet.

By generalising results from [DG99a], we establish conditions permitting an
O(n3.log n)-time transformation (also called a “many-one reduction” [Pap94])
g from LF into L. If K4 ⊆ L, then g can be in O(n.log n)-time. Now, every
primitive modal logic can be translated into FOL in linear-time (using a smart
recycling of the variables). So in the general case, we define an O(n3.log n)-time
transformation from LF into (possibly known) fragments of FOL even though
a formula of second-order logic may be essential to describe the class of modal
frames characterising LF. This provides an alternative for mechanizing modal
provability logics.

Our uniform definition of such mappings shows that DL is ideal for proof-
theoretical analyses of calculi for LF and L. In fact, the theoremhood preserving
nature of our transformations are a characterisation of (weak) cut-elimination
for many of these logics.
Plan of the paper. In Section 2, we define the class of modal logics LF studied
in the paper. In Section 3, we define display calculi δLF for these logics and
show these calculi to be sound and complete. In Section 4, we give necessary
and sufficient conditions to establish that the display calculi δLF admit a (weak)
cut-elimination theorem, and provide the promised transformations. Section 5
contains a similar analysis for traditional sequent-style calculi. Proofs are omitted
because of lack of space and they can be found in [DG99b].

2 Provability Logics

Given a set PRP = {p1, p2, . . .} of atomic formulae, the formulae φ ∈ FML are
inductively defined as follows for pi ∈ PRP:

φ ::= ⊥ | > | pi | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | φ1 ⇒ φ2 | 2φ



Standard abbreviations include⇔, 3: for instance, 3φ
def
= ¬2¬φ. An occurrence

of the subformula ψ in φ is positive [resp. negative] iff it is in the scope of an even
[resp. odd] number of negations, where as usual, every occurrence of φ1 ⇒ φ2 is
treated as an occurence of ¬φ1 ∨ φ2. The standard axiomatic Hilbert system K
consists of the axiom schemes

1. the tautologies of the Propositional Calculus (PC)
2. 2(p⇒ q)⇒ (2p⇒ 2q)

and the inference rules: modus ponens (from φ and φ⇒ ψ infer ψ) and necessi-
tation (from φ infer 2φ). When L is an extension of K (including K), we write
φ ∈ L to denote that φ is a theorem of L. In the paper, we refer to the following
well-known extensions L of K:

T
def
= K + 2p⇒ p K4

def
= K + 2p⇒ 22p

S4
def
= K4 + 2p⇒ p G

def
= K4 + 2(2p⇒ p)⇒ 2p

Grz
def
= S4 + 2(2(p⇒ 2p)⇒ p)⇒ 2p

Following [Kra96], a formula is primitive iff it is of the form φ ⇒ ψ where
both φ and ψ are built from PRP ∪ {>} with the help of ∧, ∨, 3, and where φ
contains each atomic proposition at most once.

Example 1. Neither of the formulae 2p ⇒ p and 2p ⇒ 22p are primitive,
but their logically equivalent (in K) forms p ⇒ 3p and 33p ⇒ 3p are both
primitive.

Definition 1. [Kra96] A logic (defined via Hilbert system) L is properly dis-
playable iff L is obtained from K by adding primitive formulae as axioms.

By Example 1, the logics T, K4 and S4 are properly displayable. In general,
many of the traditional axioms for the most well-known modal logics are not
primitive, but most of them have a primitive equivalent [Kra96]. In [Kra96], it is
shown that every properly displayable logic admits a display calculus satisfying
the conditions (C1)-(C8) [Bel82] and therefore enjoys cut-elimination. In what
follows, we write δL to denote the display calculus for L defined in [Kra96].

A formula generation map F : FML → FML is an application such that there
is a formula ψF containing only one atomic proposition, say p, and no logical
constants, such that for φ ∈ FML, F(φ) is obtained from ψF by replacing every
occurrence of p by φ. Moreover, we assume that no subformula of the form 2ϕ
occurs negatively in ψF. F is also written λp.ψF. For any properly displayable logic
L and any formula generation map F, we write LF to denote the logic obtained
from L by addition of the scheme

2(F(p)⇒ p)⇒ 2p (1)

Observe that 2(F(q) ⇒ q) ⇒ 2q is not a Sahlqvist formula. This does not
exclude the possibility to find a Sahlqvist formula logically equivalent (in the
basic modal logic K) to it. For instance, this is the case when F(q) = ¬q since



then, 2(F(q)⇒ q))⇒ 2q is just 2q⇒ 2q, and this has an equivalent primitive
form > ⇒ >. Moreover, in numerous cases LF is not properly displayable. For
instance, let FG and FGrz be λp.2p and λp.2(p ⇒ 2p) respectively. Then, by
definition G = K4FG and Grz = S4FGrz. Since FG and FGrz are modal axioms
that correspond to essentially second-order conditions on frames, the logics G
and Grz are not properly displayable in the sense of Definition 1.

3 Display calculi

In this section, L is a properly displayable logic, F is a formula generation map
and LF is the corresponding extension of L by the axiom scheme (1).

We briefly recall the main features of the calculus δL from [Wan94, Kra96].
On the structural side, we have structural connectives ∗ (unary), ◦ (binary),
I (nullary) and • (unary). A structure X ∈ struc(δL) is inductively defined as
follows for φ ∈ FML:

X ::= φ | ∗X | X1 ◦ X2 | I | •X

We assume that the unary connectives bind tighter than the binary ones. We use
formula variables like φ, ψ, ϕ to stand for formulae, and use structure variables
like X, Y and Z to stand for arbitrary structures from struc(δL).

A sequent is a pair of structures of the form X ` Y with X the antecedent and Y

the succedent. The rules of δL are presented in Figures 1-4. Additional structural
rules satisfying conditions (C1)-(C8) are also needed but are omitted here since
they depend on the primitive axioms defining L (see [Kra96] for details).

(Id) p ` p (cut)
X ` φ φ ` Y

X ` Y

Fig. 1. Fundamental logical axioms and cut rule

The display postulates (reversible rules) in Figure 2 deal with the manipula-
tion of structural connectives.

In any structure Z, the structure X occurs negatively [resp. positively] iff X

occurs in the scope of an odd number [resp. an even number] of occurrences of
∗ [Bel82]. In a sequent Z ` Z′, an occurrence of X is an antecedent part [resp.
succedent part] iff it occurs positively in Z [resp. negatively in Z′] or it occurs
negatively in Z′ [resp. positively in Z] [Bel82]. Two sequents X ` Y and X′ ` Y′

are structurally equivalent iff there is a derivation of the first sequent from the
second (and vice-versa) only using display postulates from Figure 2.

Theorem 2. ([Bel82]) For every sequent X ` Y and every antecedent [resp.
succedent] part Z of X ` Y, there is a structurally equivalent sequent Z ` Y′

[resp. X′ ` Z] that has Z (alone) as its antecedent [resp. succedent]. Z is said to
be displayed in Z ` Y′ [resp. X′ ` Z].



X ◦ Y ` Z

X ` Z ◦ ∗Y

X ◦ Y ` Z

Y ` ∗X ◦ Z

X ` Y ◦ Z

X ◦ ∗Z ` Y

X ` Y ◦ Z

∗Y ◦ X ` Z

∗X ` Y

∗Y ` X

X ` ∗Y

Y ` ∗X

∗ ∗ X ` Y

X ` Y

X ` ∗ ∗ Y

X ` Y

X ` •Y

•X ` Y

Fig. 2. Display postulates

I ` > (` >)
I ` X

> ` X
(> `)

X ` I
X `⊥ (`⊥)⊥` I (⊥`)

X ◦ φ ` ψ
X ` φ⇒ ψ

(`⇒)
X ` φ ψ ` Y

φ⇒ ψ ` ∗X ◦ Y (⇒`)

X ` ∗φ
X ` ¬φ (` ¬)

∗φ ` X

¬φ ` X
(¬ `)

X ` φ Y ` ψ
X ◦ Y ` φ ∧ ψ (` ∧)

φ ◦ ψ ` X

φ ∧ ψ ` X
(∧ `)

X ` φ ◦ ψ
X ` φ ∨ ψ (` ∨)

φ ` X ψ ` Y

φ ∨ ψ ` X ◦ Y (∨ `)
φ ` X

2φ ` •X (2 `)
X ` •φ
X ` 2φ

(` 2L)

Fig. 3. Operational rules

Theorem 3. [Kra96] For all φ ∈ FML, I ` φ has a cut-free proof in δL iff φ ∈ L.

To define the calculus δLF we need one additional notion. Let m be a map
m : FML × {0, 1} → struc(δL) that transforms certain logical connectives into
structural connectives, inductively defined as follows (i ∈ {0, 1}):

m(p, i)
def
= p for any p ∈ PRP

m(>, i) def
= > m(⊥, i) def

= ⊥
m(φ1 ∨ φ2, 0)

def
= φ1 ∨ φ2 m(φ1 ∨ φ2, 1)

def
= m(φ1, 1) ◦m(φ2, 1)

m(φ1 ∧ φ2, 0)
def
= m(φ1, 0) ◦m(φ2, 0) m(φ1 ∧ φ2, 1)

def
= φ1 ∧ φ2

m(φ1 ⇒ φ2, 0)
def
= φ1 ⇒ φ2 m(φ1 ⇒ φ2, 1)

def
= ∗m(φ1, 0) ◦m(φ2, 1)

m(2φ, i)
def
= 2φ m(¬φ, i) def

= ∗m(φ, 1− i).

The second argument of m indicates when the first argument is read as an
antecedent part (i = 0) or as a succedent part (i = 1). The calculus δLF has the
same structures as δL, and is obtained from δL by replacing the (` 2L)-rule from
Figure 3 by the (` 2LF) rule:

X ` •(∗m(F(φ), 0) ◦ φ)

X ` 2φ
(` 2LF)



X ` Z

I ◦ X ` Z
(Il)

X ` Z

X ` I ◦ Z
(Ir)

I ` Y

∗I ` Y
(Ql)

X ` I

X ` ∗I
(Qr)

X ` Z

Y ◦ X ` Z
(weakl)

X ` Z

X ◦ Y ` Z
(weakr)

I ` X

•I ` X
(necl)

X ` I
X ` •I (necr)

X1 ◦ (X2 ◦ X3) ` Z

(X1 ◦ X2) ◦ X3 ` Z
(assocl)

Z ` X1 ◦ (X2 ◦ X3)

Z ` (X1 ◦ X2) ◦ X3
(assocr)

Y ◦ X ` Z

X ◦ Y ` Z
(coml)

Z ` Y ◦ X
Z ` X ◦ Y (comr)

X ◦ X ` Y

X ` Y
(contrl)

Y ` X ◦ X
Y ` X

(contrr)

Fig. 4. Other basic structural rules

The (` 2LF)-rules for δGrz and δG are respectively:

X ` •(∗2(φ⇒ 2φ) ◦ φ)

X ` 2φ
(` 2Grz)

X ` •(∗2φ ◦ φ)

X ` 2φ
(` 2G)

The calculus δLF satisfies conditions (C2)-(C7). In particular, δG satisfies
the conditions (C1)-(C7). The (` 2G)-rule in δG is similar to the GLR rule
in [SV82] (see also [Avr84]). Analogously, the (` 2Grz)-rule in δGrz is similar
to the (GRZc) rule in [BG86] or to the (⇒ 2) rule in [Avr84]. An intuitively
obvious way to understand the (` 2LF)-rule is to recall the double nature of the
2-formulae in LF as illustrated by the LF-theorem 2φ⇔ 2(F(φ)⇒ φ).

We use the label (dp) as shown below left to denote that the sequent s′ is
obtained from the sequent s by an unspecified finite number (possibly zero) of
display postulate applications from Figure 2. The (` 2L)-rule from δL is derivable
in δLF as shown below right:

s
s′

(dp)

X ` •φ
•X ` φ (dp)

m(F(φ), 0) ◦ •X ` φ
(weakl)

X ` •(∗m(F(φ), 0) ◦ φ)
(dp)

X ` 2φ
(` 2LF)

To prove soundness of δLF with respect to LF-theoremhood, we use the map-
pings a : struc(δL)→ FML and s : struc(δL)→ FML recalled below:

a(φ)
def
= s(φ)

def
= φ for any φ ∈ FML

a(I)
def
= > s(I)

def
= ⊥

a(∗X)
def
= ¬s(X) s(∗X)

def
= ¬a(X)

a(X ◦ Y)
def
= a(X) ∧ a(Y) s(X ◦ Y)

def
= s(X) ∨ s(Y)

a(•X)
def
= 3−a(X) s(•X)

def
= 2s(X)



The modality 3− is the backward existential modality associated with 2.
That is, as is usual with DL, we extend the language by adding the unary
modal operator 2−. We write L+ [resp. L+F] to denote the extension of L [resp.
LF] obtained by adding the axiom schemes 2−p ⇒ (2−(p ⇒ q) ⇒ 2−q), q ⇒
23−q, q ⇒ 2−3q and the necessitation rule: from φ infer 2−φ. The language
is extended appropriately by adding 2−, and 3−φ is defined as ¬2−¬φ.

Theorem 4. If X ` Y is derivable in δLF, then a(X)⇒ s(Y) ∈ L+F.

The maps a and s can be found for instance in [Kra96] where they are called
τ1 and τ2 respectively. The maps a and s give an intuitive way to interpret
the meaning of the structural connectives depending on the polarity of their
occurrence (either as antecedent part or as succedent part).

Lemma 5. The following rules are admissible in δLF:

X ` φ1 ∨ φ2
X ` φ1 ◦ φ2

(` ◦)
X ` φ1 ⇒ φ2
X ` ∗φ1 ◦ φ2

(adm1)
φ1 ∧ φ2 ` X
φ1 ◦ φ2 ` X

(◦ `)

X ` ¬φ
X ` ∗φ (` ∗)

F(φ) ` X
m(F(φ), 0) ` X

(adm2)
¬φ ` X
∗φ ` X (∗ `)

Moreover, for each of these rules, if the premiss has a cut-free proof in δLF, then
the conclusion also has a cut-free proof in δLF.

The proof of admissibility of the rules (` ◦), (adm1), (◦ `), (∗ `) and (` ∗)
is similar to [Kra96, Lemma 9]. Admissibility of (adm2) is a mere consequence
of the admissibility of the above rules.

Lemma 6. φ ` φ is cut-free derivable in δLF for any formula φ.

Lemma 6 requires induction on the formation of φ. Theorem 7 is the DL
version of Theorem 1 in [Avr84] for Gentzen-style calculi.

Theorem 7. A formula φ ∈ LF iff I ` φ is derivable in δLF.

Proof. The right to left direction is just an instance of Theorem 4. The left to
right direction requires uses of the cut rule (to simulate the application of the
modus ponens rule) and proceeds by induction on the length of the derivation
in LF (viewed as an Hilbert-style system). Most of the cases can be found in
[Wan94, Kra96, Wan98]. It remains to show that I ` 2(F(φ)⇒ φ)⇒ 2φ has a
proof in δLF which is done below using the fact that F(φ) ` F(φ) and φ ` φ are
derivable in δLF by Lemma 6:

φ ` φ
F(φ) ` F(φ)

m(F(φ), 0) ` F(φ)
(adm2)

F(φ)⇒ φ ` ∗m(F(φ), 0) ◦ φ
(⇒`)

2(F(φ)⇒ φ) ` •(∗m(F(φ), 0) ◦ φ)
(2 `)

2(F(φ)⇒ φ) ` 2φ
(` 2LF)

I ◦2(F(φ)⇒ φ) ` 2φ
(Il)

I ` 2(F(φ)⇒ φ)⇒ 2φ
(`⇒)



As stated previously, any display calculus satisfying the conditions (C2)-(C8)
from [Bel82] admits cut-elimination. Unfortunately δLF does not satisfy (C8) (see
the appendix).

Specifically, the cut instance below breaks (C8):

X ` •(∗m(F(φ), 0) ◦ φ)

X ` 2φ
(` 2LF)

φ ` Y
2φ ` •Y (2 `)

X ` •Y (cut)

where there is a formula ψ in m(F(φ), 0) that is not a subformula of φ. For
instance, such cases are easy to find with the display calculi δG and δGrz.
Furthermore, in order to infer X ` •Y from X ` •(∗m(F(φ), 0) ◦ φ) and φ ` Y, no
cut can be used on ψ if (C8) has to be satisfied. In the display calculus δLF, for
all the derivations of the sequent X′′ ` Y′′ from X ` •(∗m(F(φ), 0) ◦ φ), if a cut
with a cut-formula that is not a subformula of φ is forbidden, then either X′′ ` Y′′
contains ψ as the subformula of some formula/structure (see the introduction
rules different from (` 2LF)), or X′′ ` Y′′ contains 2φ as the subformula of some
formula/structure (see the (` 2LF)-rule). So, in the general case, there is no way
to derive X ` •Y since neither ψ nor 2φ are guaranteed to occur in it.

We say that LF is pseudo displayable iff for any φ ∈ FML, I ` φ has a proof in
δLF iff I ` φ has a cut-free proof in δLF. “Pseudo” because strong cut-elimination
is couched in terms of arbitrary sequents X ` Y rather than sequents of the form
I ` φ. For mechanisation “pseudo” is sufficient for our needs since we want to
check whether φ ∈ LF. We now provide a characterisation of the class of pseudo
displayable logics and show that both G and Grz are pseudo displayable.

4 Transformations from LF into L

In this section, L is a properly displayable logic and F is a formula generation
map. Let f : FML× {0, 1} → FML be the following map for i ∈ {0, 1}:

for any p ∈ PRP, f(p, 0)
def
= f(p, 1)

def
= p f(>, i) def

= > f(⊥, i) def
=⊥

f(φ1 ⊕ φ2, i)
def
= f(φ1, i)⊕ f(φ2, i) for ⊕ ∈ {∧,∨}

f(¬φ, 0)
def
= ¬f(φ, 1) f(¬φ, 1)

def
= ¬f(φ, 0)

f(φ1 ⇒ φ2, 1)
def
= f(φ1, 0)⇒ f(φ2, 1) f(φ1 ⇒ φ2, 0)

def
= f(φ1, 1)⇒ f(φ2, 0)

f(2φ, 1)
def
= 2(f(F(φ), 0)⇒ f(φ, 1)) f(2φ, 0)

def
= 2f(φ, 0)

In f(φ, i), the index i carries information about the polarity of φ in the
translation process as in [BH94]. The map f also generalises one of the maps
from G into K4 defined in [BH94]. By simultaneous induction one can show that
for any φ ∈ FML and for any i ∈ {0, 1}, φ ⇔ f(φ, i) ∈ LF. Moreover, for any
φ ∈ FML: f(φ, 0)⇒ φ ∈ L, φ⇒ f(φ, 1) ∈ L and therefore f(φ, 0)⇒ f(φ, 1) ∈ L.

Lemma 8. Every positive [resp. negative] occurrence of

1. 2ψ in f(φ, 1) is of the form 2(f(F(ϕ), 0)⇒ f(ϕ, 1)) [resp.
2f(ϕ, 0)] for some subformula ϕ of φ;



2. ¬ψ in f(φ, 1) is of the form ¬f(ϕ, 0) [resp. ¬f(ϕ, 1)] for some subformula
ϕ of φ;

3. ψ1 ⇒ ψ2 in f(φ, 1) is of the form f(ϕ1, 0) ⇒ f(ϕ2, 1) [resp. f(ϕ1, 1) ⇒
f(ϕ2, 0)] for some subformulae ϕ1, ϕ2 of φ;

4. ψ1 ⊕ ψ2 (⊕ ∈ {∧,∨}) in f(φ, 1) is of the form f(ϕ1, 1) ⊕ f(ϕ2, 1) [resp.
f(ϕ1, 0)⊕ f(ϕ2, 0)] for some subformulae ϕ1, ϕ2 of φ;

The proof of Lemma 8 is by an easy verification. Lemma 8 is used in the
proof of Theorem 9 below. We extend the map f to structures in the following
way (i ∈ {0, 1}):

f(I, i)
def
= I f(∗X, i) def

= ∗f(X, 1− i)
f(X ◦ Y, i) def

= f(X, i) ◦ f(Y, i) f(•X, i) def
= •f(X, i)

By induction on the structure of φ, the rule below is admissible in δL:

f(m(φ, 0), 0) ` X
f(φ, 0) ` X

(adm3)

Theorem 9 below is the main result of the paper.

Theorem 9. The statements below are equivalent:

1. For all formulae φ, φ ∈ LF iff f(φ, 1) ∈ L. 2. LF is pseudo displayable.

That is, (weak) cut-elimination of δLF is equivalent to the theoremhood pre-
serving nature of f from LF into L. Its proof is purely syntactic and therefore
it does not depend on the class of modal frames that possibly characterises LF.
Moreover, Theorem 9 goes beyond the mechanisation aspect since it provides a
characterisation of the class of pseudo displayable logics which is not directly
based on a cut-elimination procedure.

The proof of Theorem 9 is long and tedious. For instance, when (2) holds
and φ ∈ LF, to show that f(φ, 1) ∈ L, we show that in any cut-free proof Π of
I ` φ in δLF, for any sequent X ` Y in Π, f(X, 0) ` f(Y, 1) has a cut-free proof in
δL. By way of example, the proof step (in δLF) shown below left is transformed
into the proof steps (in δL) shown below right:

X ` •(∗m(F(ψ), 0) ◦ ψ)

X ` 2ψ
(` 2LF)

f(X, 0) ` •(∗f(m(F(ψ), 0), 0) ◦ f(ψ, 1))

•f(X, 0) ` ∗f(m(F(ψ), 0), 0) ◦ f(ψ, 1)
(dp)

•f(X, 0) ` f(ψ, 1) ◦ ∗f(m(F(ψ), 0), 0)
(comr)

f(m(F(ψ), 0), 0) ` ∗ • f(X, 0) ◦ f(ψ, 1)
(dp)

f(F(ψ), 0) ` ∗ • f(X, 0) ◦ f(ψ, 1)
(adm3)

•f(X, 0) ◦ f(F(ψ), 0) ` f(ψ, 1)
(dp)

•f(X, 0) ` f(F(ψ), 0)⇒ f(ψ, 1)
(`⇒)

f(X, 0) ` •(f(F(ψ), 0)⇒ f(ψ, 1))
(dp)

f(X, 0) ` 2(f(F(ψ), 0)⇒ f(ψ, 1))
(` 2L)



f−1(I, i)
def
= I f−1(>, i) def

= > f−1(⊥, i) def
=⊥

f−1(X ◦ Y, i) def
= f−1(X, i) ◦ f−1(Y, i) or undefined

f−1(•X, i) def
= •f−1(X, i) or undefined

f−1(∗X, 1− i) def
= ∗f−1(X, i) or undefined

f−1(p, i)
def
= p for any p ∈ PRP

for ⊕ ∈ {∧,∨}, f−1(φ⊕ ψ, i) def
= f−1(φ, i)⊕ f−1(ψ, i) or undefined

f−1(φ⇒ ψ, 1)
def
= f−1(φ, 0)⇒ f−1(ψ, 1) or undefined

f−1(φ⇒ ψ, 0)
def
= f−1(φ, 1)⇒ f−1(ψ, 0) or undefined

f−1(¬φ, 1− i) def
= ¬f−1(φ, i) or undefined

f−1(2φ, 0)
def
= 2f−1(φ, 0) or undefined

f−1(2φ, 1)
def
=

{
2f−1(φ2, 1) if φ = (φ1 ⇒ φ2) and f−1(φ2, 1) is defined
undefined otherwise

where “x
def
= y or undefined” means: x

def
=

{
y if all components of y are defined
undefined otherwise

Fig. 5. Definition of f−1(.) for i ∈ {0, 1}.

When (1) holds, f(φ, 1) ∈ L implies I ` f(φ, 1) has a cut-free proof Π in δL,
and φ ∈ LF implies I ` φ is provable in δLF. To show that I ` φ has a cut-free
proof in δLF, we prove that for every sequent X ` Y in Π, the sequent f−1(X, 0) `
f−1(Y, 1) admits a cut-free proof in δLF with the partial function f−1 defined in
Figure 5. Since δL satisfies (C1)-(C8) (see the appendix), for every sequent X ` Y
in Π, both f−1(X, 0) and f−1(Y, 1) are defined (Lemma 8 is also used to show
this property). Because the map f−1 : struc(δL)× {0, 1} → struc(δL) satisfies
f−1(f(φ, 1), 1) = φ and f−1(f(φ, 0), 0) = φ, the end-sequent I ` f(φ, 1) of Π
becomes I ` φ in this procedure, as desired.

The proof of Theorem 9 actually shows that DL is particularly well-designed
to reason about polarity, succedent and antecedent parts. One of the translations
from G into K4 in [BH94] is exactly the map f when L is K4 and F is FG.

Corollary 10. G is pseudo displayable.

Let δ−G be the calculus δG minus the cut-rule. Thus δ−G satisfies all the
conditions (C1)-(C8) and for any φ ∈ FML, φ ∈ G iff I ` φ has a proof in
δ−G. At first glance, this seems to contradict the fact that G is not properly
displayable in the sense of [Kra96]. However, in [Kra96], all the axioms added to
K are transformed into structural rules. By contrast, in δ−G, one of the axioms
is encoded in the (` 2G)-rule. This opens an avenue to define display calculi
satisfying (C1)-(C8) for modal logics that are not properly displayable.

Theorem 11. For every pseudo displayable logic LF, there is an O(n3.log n)-
time transformation g such that any φ ∈ LF iff g(φ) ∈ L.



Form of φi ψi

> (
∧md(φ)
i=0 2i(pi,1 ⇔ >) ∧ 2i(pi,0 ⇔ >))

⊥ (
∧md(φ)
i=0 2i(pi,1 ⇔⊥) ∧ 2i(pi,0 ⇔⊥))

p (
∧md(φ)
i=0 2i(pi,0 ⇔ pi,1))

¬φj (
∧md(φ)
i=0 2i(pi,1 ⇔ ¬pj,0) ∧ 2i(pi,0 ⇔ ¬pj,1))

φi1 ∧ φi2 (
∧md(φ)
i=0 2i(pi,1 ⇔ (pi1,1 ∧ pi2,1)) ∧ 2i(pi,0 ⇔ (pi1,0 ∧ pi2,0)))

φi1 ∨ φi2 (
∧md(φ)
i=0 2i(pi,1 ⇔ (pi1,1 ∨ pi2,1)) ∧ 2i(pi,0 ⇔ (pi1,0 ∨ pi2,0)))

φi1 ⇒ φi2 (
∧md(φ)
i=0 2i(pi,1 ⇔ (pi1,0 ⇒ pi2,1)) ∧ 2(pi,0 ⇔ (pi1,1 ⇒ pi2,0)))

2φj (
∧md(φ)
i=0 2i(pi,1 ⇔ 2(F′(pj,0, pj,1)⇒ pj,1)) ∧ 2i(pi,0 ⇔ 2pj,0))

Fig. 6. Definition of ψi

The right-hand side of the definition of f(2ψ, 1) may require several calls
to f(ψ, 0) and f(ψ, 1), so f is not necessarily computable in O(n3.log n)-time.
However, we can use a variant of f using a standard renaming technique (see

e.g. [Min88]). Let md(φ) denote the modal depth of φ, let 20ϕ
def
= ϕ and 2i+1ϕ

def
=

22iϕ. Then for any extension L of K, φ ∈ L iff (
∧md(φ)
i=0 2i(pnew ⇔ ψ))⇒ φ′ ∈ L

where φ′ is obtained by replacing every occurrence of ψ in φ by pnew, a new
propositional variable not occurring in φ. When K4 ⊆ L, φ ∈ L iff (2(pnew ⇔
ψ) ∧ (pnew ⇔ ψ))⇒ φ′ ∈ L.

Proof. (Theorem 11) The key point to define g is to observe that there is a
map F′ : FML × FML → FML and a formula ψF′ containing at most two atomic
propositions, say p and q, such that

– F′(ϕ1, ϕ2) is obtained from ψF′ by replacing simultaneously every occurrence
of p [resp. q] by ϕ1 [resp. ϕ2];

– for any ϕ ∈ FML, f(F(ϕ), 0) = F′(f(ϕ, 0), f(ϕ, 1)).

For instance, if F = λp.p ∧ ¬p then F′ = λpq.p ∧ ¬q.
Let φ be a modal formula we wish to translate from LF into L. Let φ1, . . . , φm

be an enumeration (without repetition) of all subformulae of φ, in increasing
order of size. We shall build a formula g(φ) using the set {pi,j : 1 ≤ i ≤ m, j ∈
{0, 1}} of atomic propositions such that g(φ) ∈ L iff f(φ, 1) ∈ L. We could also
just consider the set {pi : i ∈ ω} of atomic propositions and use a 1-1 mapping
from ω2 → ω, but for simplicity, the present option is the most convenient.

Moreover, g(φ) can be computed in time O(|φ|3.log |φ|). For i ∈ {1, . . . ,m},
we create a formula ψi as shown in Figure 6 and let g(φ)

def
= (

∧m
i=1 ψi) ⇒ pm,1.

If K4 ⊆ L, the generalised conjunction in Figure 6 is needed only for i ∈ {0, 1}.
Each |ψi| is in O(|φ|2) since Σ

md(φ)
i=0 i is in O(|φ|2). So |g(φ)| is in O(|φ| ×

(|φ|2 × log |φ|)). As usual in complexity theory, the extra log |φ| factor in the



size of φ is because we need an index of size O(log |φ|) for these different atomic
propositions. That is, these indices are represented in binary writing.

The map g is a generalisation of the map from Grz into S4 defined in [DG99a].
One of the maps from G into K4 in [BH94] is linear-time and does not use renam-
ing (which allows us to treat the general case). We are currently investigating
if their map can be generalised by considering the map f ′ : FML× {0, 1} → FML

inductively defined as f except that f ′(2φ, 1)
def
= 2(F(φ) ⇒ f ′(φ, 1)). Another

map in P from G into K4 is given in [Fit83, Chapter 5].

5 Another characterisation

Theorem 9 has a counterpart when LF has a traditional Gentzen system although
additional conditions are required. In this section, L is a properly displayable
logic and F is a formula generation map.

Definition 12. Assume L, properly displayable by assumption, has a traditional
Gentzen system GL in which

1. GL extends a standard Gentzen system for PC containing contraction, weak-
ening, exchange and cut (shown below left), and GL satisfies cut-elimination;

2. any sequent Γ ` ∆ is derivable in GL iff (
∧
φ∈Γ φ)⇒ (

∨
φ∈∆ φ) ∈ L;

3. the (2 `)-rule (if any) and the (` 2)-rule have the form

Γ, φ ` ∆
Γ,2φ ` ∆ (2 `)

Σ′ ` φ
Σ ` 2φ

(` 2)

where there is a map h : FML → FML such that h(Σ) = Σ′, h(f(Σ, 0)) =
f(Σ′, 0) for any sequence Σ to which the (` 2)-rule is applicable. Both h
and f (defined via F) are naturally extended to sequences. Moreover, f(Σ, 0)
satisfies any further conditions on the (` 2)-rule iff Σ does too: for example,
that Σ must contain only formulae beginning with 2.

These sequents consist of comma-separated lists of formulae. Then, LF is pseudo
Gentzenisable iff the Gentzen system GLF obtained from GL by replacing the
(` 2)-rule by (` 2LF) shown below right enjoys cut-elimination.

Γ ` φ,∆ Γ ′, φ ` ∆′

Γ, Γ ′ ` ∆,∆′
(cut)

F(φ), Σ′ ` φ
Σ ` 2φ

(` 2LF)

Definition 12(3.) ensures that (C4) is satisfied when the structures are simply
sequences of formulae. Following [Avr84, Theorem 1], we can show that GLF is
sound and complete for LF. Here is the Gentzen counterpart of Theorem 9.

Theorem 13. If L satisfies assumptions (1)-(3) from Definition 12 then the
statements below are equivalent:

1. For all φ ∈ FML, φ ∈ LF iff f(φ, 1) ∈ L. 2. LF is pseudo Gentzenisable.



By [Avr84, Corollary 3.1], Grz is pseudo Gentzenisable and therefore Grz is
pseudo displayable. So by Theorem 13, for any φ ∈ FML, φ ∈ Grz iff f(φ, 1) ∈ S4
where f is defined with F = FGrz. See [DG99a] for a more detailed case-study
showing how to translate Grz into a decidable subset of first-order logic.

6 Concluding remarks

We can summarise the general situation as follows:

Theorem 14. Assume logic L is properly displayable and F is a formula gener-
ation map. Then,

(I) (a) LF is pseudo displayable iff
(b) for all φ ∈ FML, φ ∈ LF iff f(φ, 1) ∈ L (where f is defined via F).

(II) If L satisfies the assumptions (1)-(3) from Definition 12, then (b) holds iff
LF is pseudo Gentzenisable.

(III) When (a) holds [resp. and when K4 ⊆ L], there is an O(n3.log n)-time [resp.
an O(n.log n)-time] transformation from LF into L.

Our contribution can be summarised as follows:

1. Automated Reasoning: We gave a uniform framework to translate every
pseudo-displayable modal logic LF, which may not be first-order definable,
into the first-order definable primitive modal logic L. The transformations
are at most in O(n3.log n)-time. Since a linear-time transformation from
each L into FOL is known, we can use classical theorem provers for any
pseudo-displayable logic LF.

2. Cut-elimination: (Often a desirable property for mechanisation) Although
the calculi δLF do not satisfy condition (C8), we can nevertheless characterise
weak cut-elimination by the theoremhood preserving nature of f .

3. Display Logic: We defined DL calculi for logics that are not properly dis-
playable à la [Kra96].
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Appendix: Belnap’s Conditions.

For every sequent rule Belnap [Bel82, page 388] first defines the following
notions: in an application Inf of a sequent rule (ρ), “constituents occurring as
part of occurrences of structures assigned to structure-variables are defined to
be parameters of Inf ; all other constituents are defined as nonparametric,
including those assigned to formula-variables. Constituents occupying similar
positions in occurrences of structures assigned to the same structure-variable
are defined as congruent in Inf ”. The eight (actually seven) conditions shown
below are from [Kra96] and [Wan98]:

(C1) Each formula which is a constituent of some premiss of a rule ρ is a
subformula of some formula in the conclusion of ρ.

(C2) Congruent parameters are occurrences of the same structure.
(C3) Each parameter is congruent to at most one constituent in the conclusion.

Equivalently, no two constituents of the conclusion are congruent to each
other.

(C4) Congruent parameters are either all antecedent parts or all succedent parts
of their respective sequent.

(C5) If a formula is non-parametric in the conclusion of a rule ρ, it is either
the entire antecedent, or the entire succedent. Such a formula is called a
principal formula.

(C6/7) Each rule is closed under simultaneous substitution of arbitrary struc-
tures for congruent parameters.

(C8) If there are inferences I1 and I2 with respective conclusions X ` ϕ and
ϕ ` Y with ϕ principal in both inferences, and if cut is applied to obtain
X ` Y, then
(i) either X ` Y is identical to one of X ` ϕ and ϕ ` Y;
(ii) or there is derivation of X ` Y from the premisses of I1 and I2 in which

every cut-formula of any application of cut is a proper subformula of ϕ.
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