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We define a class of modal logics LF by uniformly extending a class of modal logics L. Each logic L is characterised by a class of first-order definable frames, but the corresponding logic LF is sometimes characterised by classes of modal frames that are not first-order definable. The class LF includes provability logics with deep arithmetical interpretations. Using Belnap's proof-theoretical framework Display Logic we characterise the "pseudo-displayable" subclass of LF and show how to define polynomial-time transformations from each such LF into the corresponding L, and hence into first-order classical logic. Theorem provers for classical first-order logic can then be used to mechanise deduction in these "psuedo-displayable second order" modal logics.

Introduction

Background. There are two main approaches to modal theorem proving in the literature. The direct approach consists in defining calculi dedicated to modal logics at the cost of modifying existing theorem provers (see e.g. [START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Auffray | Strategies for modal resolution: results and problems[END_REF][START_REF] Massacci | Strongly analytic tableaux for normal modal logics[END_REF]). The translational approach consists in translating modal logics into logics for which theorem provers already exist, typically classical first-order logic (FOL). The relational translation into FOL (see e.g. [START_REF] Ch | Methods for automated theorem proving in non classical logics[END_REF][START_REF] Schmidt | Decidability by resolution for propositional modal logics[END_REF][START_REF] Ganzinger | A resolution-based decision procedure for extensions of K4[END_REF]) is the most common such translation although not the only one (see e.g. [START_REF] Ch | Methods for automated theorem proving in non classical logics[END_REF][START_REF] Ohlbach | A resolution calculus for modal logics[END_REF][START_REF] Herzig | Raisonnement automatique en logique modale et algorithmes d'unification[END_REF][START_REF] Agostino | A set-theoretical translation method for polymodal logics[END_REF][START_REF] Ohlbach | Combining Hilbert style and semantic reasoning in a resolution framework[END_REF]). These two approaches cannot always be applied with equal success (see e.g. [START_REF] Hustadt | On evaluating decision procedures for modal logic[END_REF]). For instance, for the provability logic G which is characterized by a second-order class of modal frames (see e.g. [START_REF] Boolos | The Logic of Provability[END_REF]), the relational translation is not possible unless FOL is augmented with fixedpoint operators (see e.g. [START_REF] Nonnengart | A fixpoint approach to second-order quantifier elimination with applications to correspondence theory[END_REF]). However, dedicated sequent-style calculi do exist for provability logics such as G or Grz (for Grzegorczyk); see e.g. [START_REF] Sambin | A modal sequent calculus for a fragment of arithmetic[END_REF][START_REF] Leivant | On the proof theory of the modal logic for arithmetical provability[END_REF][START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Valentini | The modal logic of provability: cut-elimination[END_REF][START_REF] Avron | On modal systems having arithmetical interpretations[END_REF][START_REF] Boolos | The Logic of Provability[END_REF][START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF]. Display Logic. Display Logic (DL) [START_REF] Belnap | Display logic[END_REF] is a proof-theoretical framework that generalises the structural language of Gentzen's sequents by using multiple complex structural connectives instead of Gentzen's comma. The term "display" comes from the nice property that any occurrence of a structure in a sequent can be displayed either as the entire antecedent or as the entire succedent of some sequent which is structurally equivalent to the initial sequent (see e.g. [START_REF] Belnap | Display logic[END_REF]). Any display calculus satisfying the conditions (C1)-(C8) [START_REF] Belnap | Display logic[END_REF] (see the appendix) enjoys cut-elimination. Kracht's characterisation of properly displayable modal logics [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF] means that any extension of the (poly)modal logic K obtained by the addition of the so-called primitive axioms admits a display calculus that obeys conditions (C1)-(C8) [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF], and therefore enjoys cut-elimination. Since every primitive axiom is a Sahlqvist formula, any such extension is first-order definable [START_REF] Sahlqvist | Completeness and correspondence in the first and second order semantics for modal logics[END_REF].

Our contribution. Let φ be a modal formula and F(φ) be a formula built from {φ} using ¬, ∧, ∨, ⇒, 2 and 3 such that any subformula of the form 2ψ in F(φ) occurs positively (when every φ 1 ⇒ φ 2 is written as ¬φ 1 ∨ φ 2 ). Let L be a properly displayable modal logic and LF be the logic obtained from L by adding the axiom scheme 2(F(φ) ⇒ φ) ⇒ 2φ. Here a logic is understood as a set of formulae and therefore is exactly a (decision) problem in the usual sense in complexity theory. That is, as a language viewed as a set of strings built upon a given alphabet.

By generalising results from [START_REF] Demri | An O((n.log n) 3 )-time transformation from Grz into decidable fragments of classical first-order logic[END_REF], we establish conditions permitting an O(n 3 .log n)-time transformation (also called a "many-one reduction" [START_REF] Ch | Computational Complexity[END_REF]) g from LF into L. If K4 ⊆ L, then g can be in O(n.log n)-time. Now, every primitive modal logic can be translated into FOL in linear-time (using a smart recycling of the variables). So in the general case, we define an O(n 3 .log n)-time transformation from LF into (possibly known) fragments of FOL even though a formula of second-order logic may be essential to describe the class of modal frames characterising LF. This provides an alternative for mechanizing modal provability logics.

Our uniform definition of such mappings shows that DL is ideal for prooftheoretical analyses of calculi for LF and L. In fact, the theoremhood preserving nature of our transformations are a characterisation of (weak) cut-elimination for many of these logics. Plan of the paper. In Section 2, we define the class of modal logics LF studied in the paper. In Section 3, we define display calculi δLF for these logics and show these calculi to be sound and complete. In Section 4, we give necessary and sufficient conditions to establish that the display calculi δLF admit a (weak) cut-elimination theorem, and provide the promised transformations. Section 5 contains a similar analysis for traditional sequent-style calculi. Proofs are omitted because of lack of space and they can be found in [START_REF] Demri | Theoremhood preserving maps as a characterisation of cut elimination for provability logics[END_REF].

Provability Logics

Given a set PRP = {p 1 , p 2 , . . .} of atomic formulae, the formulae φ ∈ FML are inductively defined as follows for p i ∈ PRP:

φ ::= ⊥ | | p i | φ 1 ∧ φ 2 | φ 1 ∨ φ 2 | ¬φ | φ 1 ⇒ φ 2 | 2φ
Standard abbreviations include ⇔, 3: for instance, 3φ def = ¬2¬φ. An occurrence of the subformula ψ in φ is positive [resp. negative] iff it is in the scope of an even [resp. odd] number of negations, where as usual, every occurrence of φ 1 ⇒ φ 2 is treated as an occurence of ¬φ 1 ∨ φ 2 . The standard axiomatic Hilbert system K consists of the axiom schemes 1. the tautologies of the Propositional Calculus (PC) 2. 2(p ⇒ q) ⇒ (2p ⇒ 2q) and the inference rules: modus ponens (from φ and φ ⇒ ψ infer ψ) and necessitation (from φ infer 2φ). When L is an extension of K (including K), we write φ ∈ L to denote that φ is a theorem of L. In the paper, we refer to the following well-known extensions L of K:

T def = K + 2p ⇒ p K4 def = K + 2p ⇒ 22p S4 def = K4 + 2p ⇒ p G def = K4 + 2(2p ⇒ p) ⇒ 2p Grz def = S4 + 2(2(p ⇒ 2p) ⇒ p) ⇒ 2p
Following [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF], a formula is primitive iff it is of the form φ ⇒ ψ where both φ and ψ are built from PRP ∪ { } with the help of ∧, ∨, 3, and where φ contains each atomic proposition at most once.

Example 1. Neither of the formulae 2p ⇒ p and 2p ⇒ 22p are primitive, but their logically equivalent (in K) forms p ⇒ 3p and 33p ⇒ 3p are both primitive.

Definition 1. [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF] A logic (defined via Hilbert system) L is properly displayable iff L is obtained from K by adding primitive formulae as axioms.

By Example 1, the logics T, K4 and S4 are properly displayable. In general, many of the traditional axioms for the most well-known modal logics are not primitive, but most of them have a primitive equivalent [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF]. In [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF], it is shown that every properly displayable logic admits a display calculus satisfying the conditions (C1)-(C8) [START_REF] Belnap | Display logic[END_REF] and therefore enjoys cut-elimination. In what follows, we write δL to denote the display calculus for L defined in [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF].

A formula generation map F : FML → FML is an application such that there is a formula ψ F containing only one atomic proposition, say p, and no logical constants, such that for φ ∈ FML, F(φ) is obtained from ψ F by replacing every occurrence of p by φ. Moreover, we assume that no subformula of the form 2ϕ occurs negatively in ψ F . F is also written λp.ψ F . For any properly displayable logic L and any formula generation map F, we write LF to denote the logic obtained from L by addition of the scheme

2(F(p) ⇒ p) ⇒ 2p (1) 
Observe that 2(F(q) ⇒ q) ⇒ 2q is not a Sahlqvist formula. This does not exclude the possibility to find a Sahlqvist formula logically equivalent (in the basic modal logic K) to it. For instance, this is the case when F(q) = ¬q since then, 2(F(q) ⇒ q)) ⇒ 2q is just 2q ⇒ 2q, and this has an equivalent primitive form ⇒ . Moreover, in numerous cases LF is not properly displayable. For instance, let F G and F Grz be λp.2p and λp.2(p ⇒ 2p) respectively. Then, by definition G = K4F G and Grz = S4F Grz . Since F G and F Grz are modal axioms that correspond to essentially second-order conditions on frames, the logics G and Grz are not properly displayable in the sense of Definition 1.

Display calculi

In this section, L is a properly displayable logic, F is a formula generation map and LF is the corresponding extension of L by the axiom scheme (1).

We briefly recall the main features of the calculus δL from [START_REF] Wansing | Sequent calculi for normal modal propositional logics[END_REF][START_REF] Kracht | Power and weakness of the modal display calculus[END_REF]. On the structural side, we have structural connectives * (unary), • (binary), I (nullary) and • (unary). A structure X ∈ struc(δL) is inductively defined as follows for φ ∈ FML:

X ::= φ | * X | X 1 • X 2 | I | •X
We assume that the unary connectives bind tighter than the binary ones. We use formula variables like φ, ψ, ϕ to stand for formulae, and use structure variables like X, Y and Z to stand for arbitrary structures from struc(δL).

A sequent is a pair of structures of the form X Y with X the antecedent and Y the succedent. The rules of δL are presented in Figures 1234. Additional structural rules satisfying conditions (C1)-(C8) are also needed but are omitted here since they depend on the primitive axioms defining L (see [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF] for details).

(Id) p p (cut) X φ φ Y X Y

Fig. 1. Fundamental logical axioms and cut rule

The display postulates (reversible rules) in Figure 2 deal with the manipulation of structural connectives.

In any structure Z, the structure X occurs negatively [resp. positively] iff X occurs in the scope of an odd number [resp. an even number] of occurrences of * [START_REF] Belnap | Display logic[END_REF]. In a sequent Z Z , an occurrence of X is an antecedent part [resp.

succedent part] iff it occurs positively in

Z [resp. negatively in Z ] or it occurs negatively in Z [resp. positively in Z] [Bel82]
. Two sequents X Y and X Y are structurally equivalent iff there is a derivation of the first sequent from the second (and vice-versa) only using display postulates from Figure 2. To define the calculus δLF we need one additional notion. Let m be a map m : FML × {0, 1} → struc(δL) that transforms certain logical connectives into structural connectives, inductively defined as follows (i ∈ {0, 1}):

Theorem 2. ([Bel82]) For every sequent X Y and every antecedent [resp. succedent] part Z of X Y, there is a structurally equivalent sequent Z Y [resp. X Z] that has Z (alone) as its antecedent [resp. succedent]. Z is said to be displayed in Z Y [resp. X Z]. X • Y Z X Z • * Y X • Y Z Y * X • Z X Y • Z X • * Z Y X Y • Z * Y • X Z * X Y * Y X X * Y Y * X * * X Y X Y X * * Y X Y X •Y •X Y Fig. 2. Display postulates I ( ) I X X ( ) X I X ⊥ ( ⊥) ⊥ I (⊥ ) X • φ ψ X φ ⇒ ψ ( ⇒) X φ ψ Y φ ⇒ ψ * X • Y (⇒ ) X * φ X ¬φ ( ¬) * φ X ¬φ X (¬ ) X φ Y ψ X • Y φ ∧ ψ ( ∧) φ • ψ X φ ∧ ψ X (∧ ) X φ • ψ X φ ∨ ψ ( ∨) φ X ψ Y φ ∨ ψ X • Y (∨ ) φ X 2φ •X (2 ) X •φ X 2φ ( 2L)
m(p, i) def = p for any p ∈ PRP m( , i) def = m(⊥, i) def = ⊥ m(φ 1 ∨ φ 2 , 0) def = φ 1 ∨ φ 2 m(φ 1 ∨ φ 2 , 1) def = m(φ 1 , 1) • m(φ 2 , 1) m(φ 1 ∧ φ 2 , 0) def = m(φ 1 , 0) • m(φ 2 , 0) m(φ 1 ∧ φ 2 , 1) def = φ 1 ∧ φ 2 m(φ 1 ⇒ φ 2 , 0) def = φ 1 ⇒ φ 2 m(φ 1 ⇒ φ 2 , 1) def = * m(φ 1 , 0) • m(φ 2 , 1) m(2φ, i) def = 2φ m(¬φ, i) def = * m(φ, 1 -i).
The second argument of m indicates when the first argument is read as an antecedent part (i = 0) or as a succedent part (i = 1). The calculus δLF has the same structures as δL, and is obtained from δL by replacing the ( 2 L )-rule from Figure 3 by the ( 2 LF ) rule: The ( 2 LF )-rules for δGrz and δG are respectively:

X •( * m(F(φ), 0) • φ) X 2φ ( 2 LF ) X Z I • X Z (I l ) X Z X I • Z (Ir) I Y * I Y (Q l ) X I X * I (Qr) X Z Y • X Z (weak l ) X Z X • Y Z (weakr) I X •I X (nec l ) X I X •I (nec r ) X1 • (X2 • X3) Z (X1 • X2) • X3 Z (assoc l ) Z X1 • (X2 • X3) Z (X1 • X2) • X3 (assocr) Y • X Z X • Y Z (com l ) Z Y • X Z X • Y (comr) X • X Y X Y (contr l ) Y X • X Y X (contrr)
X •( * 2(φ ⇒ 2φ) • φ) X 2φ ( 2 Grz ) X •( * 2φ • φ) X 2φ ( 2 G )
The calculus δLF satisfies conditions (C2)-(C7). In particular, δG satisfies the conditions (C1)-(C7). The ( 2 G )-rule in δG is similar to the GLR rule in [START_REF] Sambin | The modal logic of provability . The sequential approach[END_REF] (see also [START_REF] Avron | On modal systems having arithmetical interpretations[END_REF]). Analogously, the ( 2 Grz )-rule in δGrz is similar to the (GRZc) rule in [START_REF] Borga | On the proof theory of the modal logic Grz[END_REF] or to the (⇒ 2) rule in [START_REF] Avron | On modal systems having arithmetical interpretations[END_REF]. An intuitively obvious way to understand the ( 2 LF )-rule is to recall the double nature of the 2-formulae in LF as illustrated by the LF-theorem 2φ ⇔ 2(F(φ) ⇒ φ).

We use the label (dp) as shown below left to denote that the sequent s is obtained from the sequent s by an unspecified finite number (possibly zero) of display postulate applications from Figure 2. The ( 2 L )-rule from δL is derivable in δLF as shown below right:

s s (dp) X •φ •X φ (dp) m(F(φ), 0) • •X φ (weak l ) X •( * m(F(φ), 0) • φ) (dp) X 2φ ( 2 LF )
To prove soundness of δLF with respect to LF-theoremhood, we use the mappings a : struc(δL) → FML and s : struc(δL) → FML recalled below:

a(φ) def = s(φ) def = φ for any φ ∈ FML a(I) def = s(I) def = ⊥ a( * X) def = ¬s(X) s( * X) def = ¬a(X) a(X • Y) def = a(X) ∧ a(Y) s(X • Y) def = s(X) ∨ s(Y) a(•X) def = 3 -a(X) s(•X) def = 2s(X)
The modality 3 -is the backward existential modality associated with 2. That is, as is usual with DL, we extend the language by adding the unary modal operator 2 -. We write L + [resp. L + F] to denote the extension of L [resp. LF] obtained by adding the axiom schemes 2 -p ⇒ (2 -(p ⇒ q) ⇒ 2 -q), q ⇒ 23 -q, q ⇒ 2 -3q and the necessitation rule: from φ infer 2 -φ. The language is extended appropriately by adding 2 -, and 3 -φ is defined as ¬2 -¬φ.

Theorem 4. If X Y is derivable in δLF, then a(X) ⇒ s(Y) ∈ L + F.
The maps a and s can be found for instance in [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF] where they are called τ 1 and τ 2 respectively. The maps a and s give an intuitive way to interpret the meaning of the structural connectives depending on the polarity of their occurrence (either as antecedent part or as succedent part).

Lemma 5. The following rules are admissible in δLF:

X φ 1 ∨ φ 2 X φ 1 • φ 2 ( •) X φ 1 ⇒ φ 2 X * φ 1 • φ 2 (adm1) φ 1 ∧ φ 2 X φ 1 • φ 2 X (• ) X ¬φ X * φ ( * ) F(φ) X m(F(φ), 0) X (adm2) ¬φ X * φ X ( * )
Moreover, for each of these rules, if the premiss has a cut-free proof in δLF, then the conclusion also has a cut-free proof in δLF.

The proof of admissibility of the rules ( •), (adm1), (• ), ( * ) and ( * ) is similar to [Kra96, Lemma 9]. Admissibility of (adm2) is a mere consequence of the admissibility of the above rules. Lemma 6. φ φ is cut-free derivable in δLF for any formula φ.

Lemma 6 requires induction on the formation of φ. Theorem 7 is the DL version of Theorem 1 in [START_REF] Avron | On modal systems having arithmetical interpretations[END_REF] for Gentzen-style calculi.

Theorem 7. A formula φ ∈ LF iff I φ is derivable in δLF.

Proof. The right to left direction is just an instance of Theorem 4. The left to right direction requires uses of the cut rule (to simulate the application of the modus ponens rule) and proceeds by induction on the length of the derivation in LF (viewed as an Hilbert-style system). Most of the cases can be found in [START_REF] Wansing | Sequent calculi for normal modal propositional logics[END_REF][START_REF] Kracht | Power and weakness of the modal display calculus[END_REF][START_REF] Wansing | Displaying Modal Logic, volume 3 of Trends in Logic[END_REF]. It remains to show that I 2(F(φ) ⇒ φ) ⇒ 2φ has a proof in δLF which is done below using the fact that F(φ) F(φ) and φ φ are derivable in δLF by Lemma 6:

φ φ F(φ) F(φ) m(F(φ), 0) F(φ) (adm2) 
F(φ) ⇒ φ * m(F(φ), 0) • φ (⇒ ) 2(F(φ) ⇒ φ) •( * m(F(φ), 0) • φ) (2 ) 2(F(φ) ⇒ φ) 2φ ( 2 LF ) I • 2(F(φ) ⇒ φ) 2φ (I l ) I 2(F(φ) ⇒ φ) ⇒ 2φ ( ⇒)
As stated previously, any display calculus satisfying the conditions (C2)-(C8) from [START_REF] Belnap | Display logic[END_REF] admits cut-elimination. Unfortunately δLF does not satisfy (C8) (see the appendix).

Specifically, the cut instance below breaks (C8):

X •( * m(F(φ), 0) • φ) X 2φ ( 2 LF ) φ Y 2φ •Y (2 ) X •Y (cut)
where there is a formula ψ in m(F(φ), 0) that is not a subformula of φ. For instance, such cases are easy to find with the display calculi δG and δGrz. Furthermore, in order to infer X •Y from X •( * m(F(φ), 0) • φ) and φ Y, no cut can be used on ψ if (C8) has to be satisfied. In the display calculus δLF, for all the derivations of the sequent X Y from X •( * m(F(φ), 0) • φ), if a cut with a cut-formula that is not a subformula of φ is forbidden, then either X Y contains ψ as the subformula of some formula/structure (see the introduction rules different from ( 2 LF )), or X Y contains 2φ as the subformula of some formula/structure (see the ( 2 LF )-rule). So, in the general case, there is no way to derive X •Y since neither ψ nor 2φ are guaranteed to occur in it.

We say that LF is pseudo displayable iff for any φ ∈ FML, I φ has a proof in δLF iff I φ has a cut-free proof in δLF. "Pseudo" because strong cut-elimination is couched in terms of arbitrary sequents X Y rather than sequents of the form I φ. For mechanisation "pseudo" is sufficient for our needs since we want to check whether φ ∈ LF. We now provide a characterisation of the class of pseudo displayable logics and show that both G and Grz are pseudo displayable.

Transformations from LF into L

In this section, L is a properly displayable logic and F is a formula generation map. Let f : FML × {0, 1} → FML be the following map for i ∈ {0, 1}:

for any p ∈ PRP, f (p, 0) def = f (p, 1) def = p f ( , i) def = f (⊥, i) def =⊥ f (φ 1 ⊕ φ 2 , i) def = f (φ 1 , i) ⊕ f (φ 2 , i) for ⊕ ∈ {∧, ∨} f (¬φ, 0) def = ¬f (φ, 1) f (¬φ, 1) def = ¬f (φ, 0) f (φ 1 ⇒ φ 2 , 1) def = f (φ 1 , 0) ⇒ f (φ 2 , 1) f (φ 1 ⇒ φ 2 , 0) def = f (φ 1 , 1) ⇒ f (φ 2 , 0) f (2φ, 1) def = 2(f (F(φ), 0) ⇒ f (φ, 1)) f (2φ, 0) def = 2f (φ, 0)
In f (φ, i), the index i carries information about the polarity of φ in the translation process as in [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF]. The map f also generalises one of the maps from G into K4 defined in [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF]. By simultaneous induction one can show that for any φ ∈ FML and for any i ∈ {0, 1}, φ ⇔ f (φ, i) ∈ LF. Moreover, for any φ ∈ FML:

f (φ, 0) ⇒ φ ∈ L, φ ⇒ f (φ, 1) ∈ L and therefore f (φ, 0) ⇒ f (φ, 1) ∈ L. Lemma 8. Every positive [resp. negative] occurrence of 1. 2ψ in f (φ, 1) is of the form 2(f (F(ϕ), 0) ⇒ f (ϕ, 1)) [resp.
2f (ϕ, 0)] for some subformula ϕ of φ;

2. ¬ψ in f (φ, 1) is of the form ¬f (ϕ, 0) [resp. ¬f (ϕ, 1)] for some subformula ϕ of φ; 3.

ψ 1 ⇒ ψ 2 in f (φ, 1) is of the form f (ϕ 1 , 0) ⇒ f (ϕ 2 , 1) [resp. f (ϕ 1 , 1) ⇒ f (ϕ 2 , 0)] for some subformulae ϕ 1 , ϕ 2 of φ; 4. ψ 1 ⊕ ψ 2 (⊕ ∈ {∧, ∨}) in f (φ, 1) is of the form f (ϕ 1 , 1) ⊕ f (ϕ 2 , 1) [resp. f (ϕ 1 , 0) ⊕ f (ϕ 2 , 0)] for some subformulae ϕ 1 , ϕ 2 of φ;
The proof of Lemma 8 is by an easy verification. Lemma 8 is used in the proof of Theorem 9 below. We extend the map f to structures in the following way (i ∈ {0, 1}):

f (I, i) def = I f ( * X, i) def = * f (X, 1 -i) f (X • Y, i) def = f (X, i) • f (Y, i) f (•X, i) def = •f (X, i)
By induction on the structure of φ, the rule below is admissible in δL:

f (m(φ, 0), 0) X f (φ, 0) X (adm3)
Theorem 9 below is the main result of the paper.

Theorem 9. The statements below are equivalent:

1. For all formulae φ, φ

∈ LF iff f (φ, 1) ∈ L. 2. LF is pseudo displayable.
That is, (weak) cut-elimination of δLF is equivalent to the theoremhood preserving nature of f from LF into L. Its proof is purely syntactic and therefore it does not depend on the class of modal frames that possibly characterises LF. Moreover, Theorem 9 goes beyond the mechanisation aspect since it provides a characterisation of the class of pseudo displayable logics which is not directly based on a cut-elimination procedure.

The proof of Theorem 9 is long and tedious. For instance, when (2) holds and φ ∈ LF, to show that f (φ, 1) ∈ L, we show that in any cut-free proof Π of I φ in δLF, for any sequent X Y in Π, f (X, 0) f (Y, 1) has a cut-free proof in δL. By way of example, the proof step (in δLF) shown below left is transformed into the proof steps (in δL) shown below right:

X •( * m(F(ψ), 0) • ψ) X 2ψ ( 2 LF ) f (X, 0) •( * f (m(F(ψ), 0), 0) • f (ψ, 1)) •f (X, 0) * f (m(F(ψ), 0), 0) • f (ψ, 1) (dp) •f (X, 0) f (ψ, 1) • * f (m(F(ψ), 0), 0) (com r ) f (m(F(ψ), 0), 0) * • f (X, 0) • f (ψ, 1) (dp) f (F(ψ), 0) * • f (X, 0) • f (ψ, 1) (adm3) •f (X, 0) • f (F(ψ), 0) f (ψ, 1) (dp) •f (X, 0) f (F(ψ), 0) ⇒ f (ψ, 1) ( ⇒) f (X, 0) •(f (F(ψ), 0) ⇒ f (ψ, 1)) (dp) f (X, 0) 2(f (F(ψ), 0) ⇒ f (ψ, 1)) ( 2 L ) f -1 (I, i) def = I f -1 ( , i) def = f -1 (⊥, i) def =⊥ f -1 (X • Y, i) def = f -1 (X, i) • f -1 (Y, i) or undefined f -1 (•X, i) def = •f -1 (X, i) or undefined f -1 ( * X, 1 -i) def = * f -1 (X, i) or undefined f -1 (p, i) def = p for any p ∈ PRP for ⊕ ∈ {∧, ∨}, f -1 (φ ⊕ ψ, i) def = f -1 (φ, i) ⊕ f -1 (ψ, i) or undefined f -1 (φ ⇒ ψ, 1) def = f -1 (φ, 0) ⇒ f -1 (ψ, 1) or undefined f -1 (φ ⇒ ψ, 0) def = f -1 (φ, 1) ⇒ f -1 (ψ, 0) or undefined f -1 (¬φ, 1 -i) def = ¬f -1 (φ, i) or undefined f -1 (2φ, 0) def = 2f -1 (φ, 0) or undefined f -1 (2φ, 1) def = 2f -1 (φ2, 1) if φ = (φ1 ⇒ φ2) and f -1 (φ2, 1) is defined undefined otherwise
where "x def = y or undefined" means:

x def =
y if all components of y are defined undefined otherwise Fig. 5. Definition of f -1 (.) for i ∈ {0, 1}.

When (1) holds, f (φ, 1) ∈ L implies I f (φ, 1) has a cut-free proof Π in δL, and φ ∈ LF implies I φ is provable in δLF. To show that I φ has a cut-free proof in δLF, we prove that for every sequent X Y in Π, the sequent f -1 (X, 0) f -1 (Y, 1) admits a cut-free proof in δLF with the partial function f -1 defined in Figure 5. Since δL satisfies (C1)-(C8) (see the appendix), for every sequent X Y in Π, both f -1 (X, 0) and f -1 (Y, 1) are defined (Lemma 8 is also used to show this property). Because the map f -1 : struc(δL) × {0, 1} → struc(δL) satisfies f -1 (f (φ, 1), 1) = φ and f -1 (f (φ, 0), 0) = φ, the end-sequent I f (φ, 1) of Π becomes I φ in this procedure, as desired.

The proof of Theorem 9 actually shows that DL is particularly well-designed to reason about polarity, succedent and antecedent parts. One of the translations from G into K4 in [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF] is exactly the map f when L is K4 and F is F G .

Corollary 10. G is pseudo displayable.

Let δ -G be the calculus δG minus the cut-rule. Thus δ -G satisfies all the conditions (C1)-(C8) and for any φ ∈ FML, φ ∈ G iff I φ has a proof in δ -G. At first glance, this seems to contradict the fact that G is not properly displayable in the sense of [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF]. However, in [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF], all the axioms added to K are transformed into structural rules. By contrast, in δ -G, one of the axioms is encoded in the ( 2 G )-rule. This opens an avenue to define display calculi satisfying (C1)-(C8) for modal logics that are not properly displayable.

Theorem 11. For every pseudo displayable logic LF, there is an O(n 3 .log n)time transformation g such that any φ ∈ LF iff g(φ) ∈ L.

Form of φi ψi

( md(φ) i=0 2 i (pi,1 ⇔ ) ∧ 2 i (pi,0 ⇔ )) ⊥ ( md(φ) i=0 2 i (pi,1 ⇔⊥) ∧ 2 i (pi,0 ⇔⊥)) p ( md(φ) i=0 2 i (pi,0 ⇔ pi,1)) ¬φj ( md(φ) i=0 2 i (pi,1 ⇔ ¬pj,0) ∧ 2 i (pi,0 ⇔ ¬pj,1)) φi 1 ∧ φi 2 ( md(φ) i=0 2 i (pi,1 ⇔ (pi 1 ,1 ∧ pi 2 ,1)) ∧ 2 i (pi,0 ⇔ (pi 1 ,0 ∧ pi 2 ,0))) φi 1 ∨ φi 2 ( md(φ) i=0 2 i (pi,1 ⇔ (pi 1 ,1 ∨ pi 2 ,1)) ∧ 2 i (pi,0 ⇔ (pi 1 ,0 ∨ pi 2 ,0))) φi 1 ⇒ φi 2 ( md(φ) i=0 2 i (pi,1 ⇔ (pi 1 ,0 ⇒ pi 2 ,1)) ∧ 2(pi,0 ⇔ (pi 1 ,1 ⇒ pi 2 ,0))) 2φj ( md(φ) i=0 2 i (pi,1 ⇔ 2(F (pj,0, pj,1) ⇒ pj,1)) ∧ 2 i (pi,0 ⇔ 2pj,0)) Fig. 6. Definition of ψi
The right-hand side of the definition of f (2ψ, 1) may require several calls to f (ψ, 0) and f (ψ, 1), so f is not necessarily computable in O(n 3 .log n)-time. However, we can use a variant of f using a standard renaming technique (see e.g. [START_REF] Mints | Gentzen-type and resolution rules part I: propositional logic[END_REF]). Let md(φ) denote the modal depth of φ, let 2 0 ϕ def = ϕ and 2 i+1 ϕ def = 22 i ϕ. Then for any extension

L of K, φ ∈ L iff ( md(φ) i=0 2 i (p new ⇔ ψ)) ⇒ φ ∈ L
where φ is obtained by replacing every occurrence of ψ in φ by p new , a new propositional variable not occurring in φ.

When K4 ⊆ L, φ ∈ L iff (2(p new ⇔ ψ) ∧ (p new ⇔ ψ)) ⇒ φ ∈ L.
Proof. (Theorem 11) The key point to define g is to observe that there is a map F : FML × FML → FML and a formula ψ F containing at most two atomic propositions, say p and q, such that -F (ϕ 1 , ϕ 2 ) is obtained from ψ F by replacing simultaneously every occurrence of p [resp. q] by ϕ 1 [resp. ϕ 2 ]; for any ϕ ∈ FML, f (F(ϕ), 0) = F (f (ϕ, 0), f (ϕ, 1)).

For instance, if F = λp.p ∧ ¬p then F = λpq.p ∧ ¬q.

Let φ be a modal formula we wish to translate from LF into L. Let φ 1 , . . . , φ m be an enumeration (without repetition) of all subformulae of φ, in increasing order of size. We shall build a formula g(φ) using the set {p i,j : 1 ≤ i ≤ m, j ∈ {0, 1}} of atomic propositions such that g(φ) ∈ L iff f (φ, 1) ∈ L. We could also just consider the set {p i : i ∈ ω} of atomic propositions and use a 1-1 mapping from ω 2 → ω, but for simplicity, the present option is the most convenient.

Moreover, g(φ) can be computed in time O(|φ| 3 .log |φ|). For i ∈ {1, . . . , m}, we create a formula ψ i as shown in Figure 6 andlet g

(φ) def = ( m i=1 ψ i ) ⇒ p m,1 . If K4 ⊆ L, the generalised conjunction in Figure 6 is needed only for i ∈ {0, 1}. Each |ψ i | is in O(|φ| 2 ) since Σ md(φ) i=0 i is in O(|φ| 2 ). So |g(φ)| is in O(|φ| × (|φ| 2 × log |φ|)).
As usual in complexity theory, the extra log |φ| factor in the size of φ is because we need an index of size O(log |φ|) for these different atomic propositions. That is, these indices are represented in binary writing.

The map g is a generalisation of the map from Grz into S4 defined in [START_REF] Demri | An O((n.log n) 3 )-time transformation from Grz into decidable fragments of classical first-order logic[END_REF]. One of the maps from G into K4 in [START_REF] Ph | A translation from the modal logic of provability into K4[END_REF] is linear-time and does not use renaming (which allows us to treat the general case). We are currently investigating if their map can be generalised by considering the map f : FML × {0, 1} → FML inductively defined as f except that f (2φ, 1) def = 2(F(φ) ⇒ f (φ, 1)). Another map in P from G into K4 is given in [Fit83, Chapter 5].

Another characterisation

Theorem 9 has a counterpart when LF has a traditional Gentzen system although additional conditions are required. In this section, L is a properly displayable logic and F is a formula generation map.

Definition 12. Assume L, properly displayable by assumption, has a traditional Gentzen system GL in which 1. GL extends a standard Gentzen system for PC containing contraction, weakening, exchange and cut (shown below left), and GL satisfies cut-elimination; 2. any sequent Γ ∆ is derivable in GL iff ( φ∈Γ φ) ⇒ ( φ∈∆ φ) ∈ L; 3. the (2 )-rule (if any) and the ( 2)-rule have the form

Γ, φ ∆ Γ, 2φ ∆ (2 ) Σ φ Σ 2φ ( 2) 
where there is a map h : FML → FML such that h(Σ) = Σ , h(f (Σ, 0)) = f (Σ , 0) for any sequence Σ to which the ( 2)-rule is applicable. Both h and f (defined via F) are naturally extended to sequences. Moreover, f (Σ, 0) satisfies any further conditions on the ( 2)-rule iff Σ does too: for example, that Σ must contain only formulae beginning with 2.

These sequents consist of comma-separated lists of formulae. Then, LF is pseudo Gentzenisable iff the Gentzen system GLF obtained from GL by replacing the ( 2)-rule by ( 2 LF ) shown below right enjoys cut-elimination.

Γ φ, ∆ Γ , φ ∆ Γ, Γ ∆, ∆ (cut) F(φ), Σ φ Σ 2φ

( 2 LF ) Definition 12(3.) ensures that (C4) is satisfied when the structures are simply sequences of formulae. Following [Avr84, Theorem 1], we can show that GLF is sound and complete for LF. Here is the Gentzen counterpart of Theorem 9.

Theorem 13. If L satisfies assumptions (1)-(3) from Definition 12 then the statements below are equivalent:

1. For all φ ∈ FML, φ ∈ LF iff f (φ, 1) ∈ L.

2. LF is pseudo Gentzenisable.

By [Avr84, Corollary 3.1], Grz is pseudo Gentzenisable and therefore Grz is pseudo displayable. So by Theorem 13, for any φ ∈ FML, φ ∈ Grz iff f (φ, 1) ∈ S4 where f is defined with F = F Grz . See [START_REF] Demri | An O((n.log n) 3 )-time transformation from Grz into decidable fragments of classical first-order logic[END_REF] for a more detailed case-study showing how to translate Grz into a decidable subset of first-order logic.

Concluding remarks

We can summarise the general situation as follows: an O(n.log n)-time] transformation from LF into L.

Our contribution can be summarised as follows:

1. Automated Reasoning: We gave a uniform framework to translate every pseudo-displayable modal logic LF, which may not be first-order definable, into the first-order definable primitive modal logic L. The transformations are at most in O(n 3 .log n)-time. Since a linear-time transformation from each L into FOL is known, we can use classical theorem provers for any pseudo-displayable logic LF. 2. Cut-elimination: (Often a desirable property for mechanisation) Although the calculi δLF do not satisfy condition (C8), we can nevertheless characterise weak cut-elimination by the theoremhood preserving nature of f . 3. Display Logic: We defined DL calculi for logics that are not properly displayable à la [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF].

Fig. 3 .
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 14 Assume logic L is properly displayable and F is a formula generation map. Then, (I) (a) LF is pseudo displayable iff (b) for all φ ∈ FML, φ ∈ LF iff f (φ, 1) ∈ L (where f is defined via F). (II) If L satisfies the assumptions (1)-(3) from Definition 12, then (b) holds iff LF is pseudo Gentzenisable. (III) When (a) holds [resp. and when K4 ⊆ L], there is an O(n 3 .log n)-time [resp.
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Appendix: Belnap's Conditions.

For every sequent rule Belnap [START_REF] Belnap | Display logic[END_REF]page 388] first defines the following notions: in an application Inf of a sequent rule (ρ), "constituents occurring as part of occurrences of structures assigned to structure-variables are defined to be parameters of Inf ; all other constituents are defined as nonparametric, including those assigned to formula-variables. Constituents occupying similar positions in occurrences of structures assigned to the same structure-variable are defined as congruent in Inf ". The eight (actually seven) conditions shown below are from [START_REF] Kracht | Power and weakness of the modal display calculus[END_REF] and [START_REF] Wansing | Displaying Modal Logic, volume 3 of Trends in Logic[END_REF]: (C1) Each formula which is a constituent of some premiss of a rule ρ is a subformula of some formula in the conclusion of ρ. (C2) Congruent parameters are occurrences of the same structure. (C3) Each parameter is congruent to at most one constituent in the conclusion.

Equivalently, no two constituents of the conclusion are congruent to each other. (C4) Congruent parameters are either all antecedent parts or all succedent parts of their respective sequent. (C5) If a formula is non-parametric in the conclusion of a rule ρ, it is either the entire antecedent, or the entire succedent. Such a formula is called a principal formula. (C6/7) Each rule is closed under simultaneous substitution of arbitrary structures for congruent parameters. (C8) If there are inferences I 1 and I 2 with respective conclusions X ϕ and ϕ Y with ϕ principal in both inferences, and if cut is applied to obtain X Y, then (i) either X Y is identical to one of X ϕ and ϕ Y;

(ii) or there is derivation of X Y from the premisses of I 1 and I 2 in which every cut-formula of any application of cut is a proper subformula of ϕ.
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