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ABSTRACT. The covering and boundedness problems for branching vector addition systems are
shown complete for doubly-exponential time.

1 Introduction

Vector addition systems (shortly, VAS), or equivalently Petri nets (e.g., [14]), are a funda-

mental model of computation, which is more expressive than finite-state machines and less

than Turing-powerful. Decidability and complexity of a variety of problems have been ex-

tensively studied ([6] is a comprehensive survey).

A k-dimensional VAS consists of an initial vector of non-negative integers, and a finite

set of vectors of integers, all of dimension k. Let us call the initial vector axiom, and the

other vectors rules. A computation can then be thought of as a derivation: it starts with the

axiom, and at each step, the next vector is derived from the current one by adding a rule.

The vectors of interest are the ones derived admissibly, i.e. at the end of a derivation which

is such that none of the vectors derived during it contains a negative entry.

Covering and boundedness are two central decision problems for VAS. The former asks

whether a vector that is pointwise greater than or equal to a given vector can be admissi-

bly derived, and the latter asks whether the set of all admissibly derived vectors is finite.

In a landmark article [12], Rackoff showed that covering and boundedness for VAS are in

EXPSPACE, matching Lipton’s lower bound of EXPSPACE-hardness [10].∗ Considering the

expressively equivalent VAS with states (shortly, VASS), Rosier and Yen refined the proofs

of Lipton and Rackoff to obtain almost matching lower and upper bounds in terms of three

parameters: the dimension, the binary size of the maximum absolute value of an entry in a

rule, and the number of states [15]. Lipton’s result was also extended by Mayr and Meyer

to reversible Petri nets, which are equivalent to commutative semigroups [11]. Building fur-

ther on Rosier and Yen’s work, Habermehl showed that space exponential in the size of the

system and polynomial in the size of the formula suffices for model checking the proposi-

tional linear-time µ-calculus on VASS, and he obtained a matching lower bound already for

LTL on BPP [7].

∗We recommend http://rjlipton.wordpress.com/2009/04/08/an-expspace-lower-bound/.

c© Demri, Jurdziński, Lachish, Lazić; licensed under Creative Commons License-NC-ND
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The following is a natural extension of VAS: instead of linearly, computation proceeds

from the leaves to the root of a tree. For each node which is not a leaf, its vector is derived by

summing the vectors derived at its children and adding a rule vector. The same condition

of admissibility applies, i.e. no derived vector may contain a negative entry. This model of

computation is branching VAS (shortly, BVAS).

In recent years, it has turned out that BVAS have interesting connections to a number

of formalisms:

• BVAS correspond to a class of linear index grammars in computational linguistics [13];

• reachability (i.e. admissible derivability) for BVAS is decidable iff provability in mul-

tiplicative exponential linear logic is decidable [4];

• Verma and Goubault-Larrecq have extended the computation of Karp and Miller trees

[8] to BVAS, and used it to draw conclusions about a class of equational tree automata

which are useful for analysing cryptographic protocols [17];

• if first-order logic with 2 variables on finite data trees (which has applications to the

XPath query language for XML) is decidable, then so is reachability for BVAS [1].

Covering and boundedness for BVAS are decidable easily using the branching exten-

sion of Karp and Miller’s procedure [17]. However, the resulting algorithms do not operate

in primitive recursive time or space, even in the linear case [16].

The main results we report are that, by switching from VAS to BVAS, covering and

boundedness move two notches up the complexity hierarchy, to 2EXPTIME-complete.

For the 2EXPTIME-memberships, consider the following simple-minded idea for trans-

ferring knowledge about VAS derivations to the branching case:

✴ Every simple path from a leaf to the root in a BVAS derivation is a VAS derivation.

We show that the idea can give us mileage, but only after the following new insight, which

is needed because the subderivations that grow off the simple path and hence contribute

summands to it make the resulting VAS contain rules with unbounded positive entries.

☞ For VAS, we can obtain similar upper bounds to Rackoff’s, but which depend only on

the dimension and the minimum negative entry in a rule, i.e. not on the maximum

positive entry in a rule.

The insight is at the centre of our proofs. In the case of covering, we show it essentially by

inspecting carefully a proof of Rackoff, but in the case of boundedness, it relies on proving a

new result on small solutions of integer programming problems, which extends a classical

theorem of Borosh and Treybig and may also be a contribution of wider interest. To complete

the proofs of the 2EXPTIME-memberships, we provide arguments for reducing the heights

of appropriate BVAS derivations to at most doubly-exponential, and for why resulting small

witnesses can be guessed and verified by alternating Turing machines in exponential space.

To obtain 2EXPTIME-hardness for covering and boundedness for BVAS, we extend the

proof of Lipton to show that computations of alternating machines of size N with counters

bounded by 22N
can be simulated in reverse by BVAS of size O(N2). Although universal

branchings of alternating counter machines copy counter valutations whereas BVAS sum

vectors derived at children nodes, the inner workings of Lipton’s construction enable us to

add a bit of machinery by which the BVAS can simulate the copying. We remark that, as

is the case with Lipton’s result, the lower bound is shown already for BVAS whose rules

contain only entries −1, 0 or 1.
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After fixing notations and making some preliminary observations in the next section,

that covering and boundedness are in 2EXPTIME is shown in Sections 3 and 4, respectively.

We then argue in Section 5 that both problems are 2EXPTIME-hard.

2 Preliminaries

Numbers, vectors and matrices. We write N+, N and Z for the sets of all positive, non-

negative and arbitrary integers, respectively. Since we shall only work with integers, let the

open interval (a, b) denote (a, b) ∩Z, and analogously for half-open and closed intervals.

Given a dimension k ∈ N, let 0 denote the zero vector and, for each i ∈ [1, k], ei denote

the ith unit vector. For v, w ∈ Z
k and B ∈ Z, we write:

• v(1), . . . , v(k) for the entries of v;

• supp(v) for the set of all i ∈ [1, k] such that v(i) 6= 0;

• v ≤ w iff v(i) ≤ w(i) for all i ∈ [1, k], and v < w iff v ≤ w and v 6= w;

• min(B, v) for the vector 〈min{B, v(1)}, . . . , min{B, v(k)}〉, and analogously for max;

• v− for the vector −min(0, v), and v+ for the vector max(0, v).

For v ∈ N
k, let max(v) = max{v(1), . . . , v(k)}, where in case k = 0, we have max(〈〉) =

max ∅ = 0. For finite R ⊆ Z
k, let max(R−/+) denote max{max(r−/+) : r ∈ R}, respec-

tively.

Let Sk×n denote the set of all matrices with k rows, n columns and entries from S. Con-

veniently albeit slightly eccentrically, we use−i for an index i to denote all rows or columns

other than the ith, and • to denote all rows or columns. For example, Ai• is row i of A, and

A•(−j) is A with column j removed.

Trees. A finite binary tree T , which may contain nodes with one child, is a non-empty

finite subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · 2 ∈ T implies n · 1 ∈ T ,

and n · i ∈ T implies n ∈ T . The nodes of T are its elements. The root of T is ε, the empty

word. All notions such as parent, first child, second child, subtree and leaf, have their

standard meanings. The height of T is the length, i.e. the number of nodes, of the longest

simple path from the root to a leaf.

BVAS. The systems we define are equivalent to the branching vector addition systems

with states [17] and the vector addition tree automata [4, 1]. To simplify our technical life, we

work with stateless systems. In the linear case, it is well-known that states can be eliminated

in logarithmic space, e.g. by adding the number of states to the dimension. For branching

systems, the same is true, but computation steps that join two vectors by addition need to

be generalised so that a vector from a fixed finite set (which may contain negative entries)

is added also. Since we are not studying the systems as recognisers of languages, we do not

have to work with alphabets either. Another simplification which costs only a logarithmic

amount of space is in relation to the VATA [4], where branching up to a fixed finite arity was

permitted. Hence, adopting a proof-theoretic terminology like that of Verma and Goubault-

Larrecq [17], a system will consist of finite sets of axioms, unary rules and binary rules, all of

which are simply integral vectors. The unary rules are present for easy compatibility with

the linear case.



4 THE COVERING AND BOUNDEDNESS PROBLEMS FOR BVAS

Let a branching vector addition system (BVAS) be a tuple B = 〈k, A0, R1, R2〉, where:

• k ∈ N is the dimension;

• A0 ⊆ N
k is a non-empty finite set of axioms;

• R1, R2 ⊆ Z
k are finite sets of unary and binary rules, respectively.

A derivation starts with a number of integral vectors, proceeds by applying the rules,

and finishes with a single vector. Applying a unary rule means adding it to a derived vector,

and applying a binary rule means adding it to the sum of two derived vectors. For a vector

to be considered produced by the system, it needs to be derived by a derivation which starts

with the axioms and whose derived vectors are all non-negative.

Formally, a derivation of B is a labelling D : T → Z
k such that:

• T is a finite binary tree;

• if n has one child in T , then D(n) ∈ R1;

• if n has two children in T , then D(n) ∈ R2.

The vectors that are derived at every node are obtained recursively as follows:

• if n is a leaf in T , then D̂(n) = D(n);

• if n has one child n′ in T , then D̂(n) = D(n) + D̂(n′);

• if n has two children n′ and n′′ in T , then D̂(n) = D(n) + D̂(n′) + D̂(n′′).

Now, we say that D:

• is initialised iff, for each leaf n of T , we have D(n) ∈ A0;

• is admissible iff, for each node n of T , we have D̂(n) ∈ N
k;

• derives D̂(ε), which is the vector derived at the root.

For v ∈ N
k, we say that B produces v iff some initialised admissible derivation of B

derives v.

Substitutions and contractions. For finite binary trees T and T ′, and a node n of T , let

T [n ← T ′] denote the tree obtained by replacing with T ′ the subtree of T rooted at n. To

extend the notation to derivations, for D : T → Z
k and D′ : T ′ → Z

k, and a node n of T ,

let D[n ← D′] : T [n ← T ′] → Z
k denote the derivation obtained by replacing with D′ the

subderivation of D rooted at n. Observe that the vector derived at node n† in D[n← D′] is:

• D̂′(n′), if n† corresponds to the node n′ of D′;
• D̂(n†)− D̂(n) + D̂′(ε), if n† is an ancestor of n;

• D̂(n†), otherwise.

When D′ has only one leaf n, we write D;D′ instead of D′[n ← D].

For a derivation D and its nodes n and n′ such that n is an ancestor of n′, we write

D[n ← n′] instead of D[n ← D′], where D′ is the subderivation of D rooted at n′. We call

such substitutions contracting. For two derivationsD† andD‡, we say thatD‡ is a contraction

of D† iff D‡ is obtained from D† by a finite sequence of contracting substitutions.

VAS. The classical vector addition systems can be defined as BVAS of the form V =
〈k, {a}, R, ∅〉, i.e. with one axiom and no binary rules. We may write them as just 〈k, a, R〉.

All the definitions for BVAS apply to VAS, but they simplify. For each derivation D :

T → Z
k, its underlying tree T is a sequence.
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Restrictions and bounds. For k-dimensional X, and I ⊆ [1, k], we write X(I) for the “re-

striction of X to the set of places I”, e.g.: v(I) is the vector obtained from v by removing the

entries in places outside of I; 〈k, a, R〉(I) is the |I|-dimensional VAS obtained from 〈k, a, R〉
by replacing a with a(I), and by replacing every rule r ∈ R with r(I); andD(I) is the deriva-

tion obtained from D by replacing, for every node n, the label D(n) of n with D(n)(I).

For v ∈ Z
k and B ∈ N, we say that v is B-bounded iff v ∈ [0, B− 1]k. We regard a deriva-

tion B-bounded iff all the vectors derived at its nodes are B-bounded. Thus, B-boundedness

implies admissibility.

For a k-dimensional vector or derivation X, and I ⊆ [1, k], we say that X is I-B-bounded

iff X(I) is B-bounded.

Decision problems. We study the complexity of the following problems. As is standard,

the input sizes are with respect to binary representations of integers.

Covering Given a BVAS B and a target non-negative vector t of the same dimension, does

B produce some v such that v ≥ t?

Boundedness Given a BVAS, is the set of all vectors that it produces finite?

THEOREM 1. [10, 12] Covering and boundedness for VAS are EXPSPACE-complete.

THEOREM 2. [17] Covering and boundedness for BVAS are decidable.

3 Upper bound for the covering problem

We say that a derivationD of a BVAS B is a covering of a vector t iff the vector thatD derives

is at least t, i.e. D̂(ε) ≥ t. Thus, the covering problem asks whether there exists an initialised

admissible covering.

For VAS, Rackoff [12] established EXPSPACE-membership of the covering problem by

showing that, if an initialised admissible covering exists, then there must exist one of at

most doubly-exponential length. Such a “short” covering can be guessed and verified in

non-deterministic exponential space, and determinism is regained by Savitch’s Theorem.

More precisely, Rackoff proved:

LEMMA 3. [12, Section 3] If a VAS 〈k, a, R〉 has an initialised admissible covering of t ∈ N
k,

then it has one whose length is at most 2(3L)k+1
, where L = max{size(R), size(t)}.

Now, the following proof scheme suggests itself for showing that, if a k-dimensional

BVAS B has an initialised admissible covering D of t, then it has one of at most doubly-

exponential height:

(i) If D has an excessively high leaf n, let V be the VAS whose axiom is D(n) and whose

rules R are all the vectors:

– D(n′), such that n′ is on the path π from n to the root, and has one child;

– D(n′) + D̂(n′′), such that n′ is on π, and n′′ is a child of n′ not on π.

Hence, the sequence obtained from π by relabelling the nodes with two children as

specified is a derivation D† of V . The vectors derived along D† are the same as the

vectors derived along π in D, so D† is an initialised admissible covering of t.
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(ii) By Lemma 3, V has an initialised admissible covering D‡ of t with length at most

2(3L)k+1
, where L = max{size(R), size(t)}.

(iii) Let D′ be a derivation of B obtained from D‡ by undoing the linearisation done in (i),

i.e. by unfolding each rule in D‡ which is not a unary rule of B into a binary rule of

B and a subderivation of D. It is straightforward to check that D′ is also an initialised

admissible covering of t. We repeat from (i) with D′ instead of D, until there are no

excessively high leaves.

There are, unfortunately, two obstacles:

• Since the definition of R in (i) involves adding derived vectors (the ones at the nodes

one edge away from the path π), we have no bound on size(R) in terms of size(B)
and size(t), and therefore neither on L in (ii).

• Even if we manage to bound L, Lemma 3 gives us no guarantees about the shape of

D‡ in (ii) in relation to the shape of D†. Hence, although the length of D‡ is bounded,

we are not able to deduce that after the unfolding in (iii), D′ has fewer excessively

high leaves than D.

However, the key to overcoming both obstacles is observing that essentially Rackoff’s proof

of Lemma 3 shows more than is stated in that result! Firstly, any initialised admissible

covering has a contraction which is a short initialised admissible covering, and secondly,

the length of the latter is bounded by the sizes of the target vector and only the negative

entries in the rules of the VAS. More precisely, we have:

LEMMA 4. If a VAS 〈k, a, R〉 has an initialised admissible covering D of t ∈ N
k, then it has

one which is a contraction of D and whose length is at most (max(R−) + max(t) + 2)(3k)!.

We are now in a position to show that, indeed, if a given BVAS has an initialised admis-

sible covering of a given vector of non-negative integers, then it has one of at most doubly-

exponential height. Although that is all that is required in this article, the actual statement

is stronger for the record.

LEMMA 5. If a BVAS 〈k, A0, R1, R2〉 has an initialised admissible covering D of t ∈N
k, then

it has one which is a contraction of D and whose height is at most (max((R1 ∪ R2)−) +
max(t) + 2)(3k)!.

Therefore, to decide the covering problem, it suffices to search for an initialised admis-

sible covering of at most doubly-exponential height. Note, however, that the size of a binary

tree of doubly-exponential height can be triply-exponential, and hence vectors derived in a

derivation of doubly-exponential height may contain triply-exponential entries. In order

to prove the main result of this section, i.e., that the covering problem for is in 2EXPTIME,

we need to avoid having to manipulate such large numbers. That is achieved by our next

result, Proposition 6, which shows that for a large enough bound B, whether a derivation is

admissible and a covering can be verified accurately even if entries in the derived vectors

are truncated to be at most B.

For a derivation D : T → Z
k and B ∈ N, we define the B-truncated derived vectors by:

• if n is a leaf in T , then D̂B(n) = min(B,D(n));

• if n has one child n′ in T , then D̂B(n) = min(B,D(n) + D̂B(n′));

• if n has two children n′ and n′′ in T , then D̂B(n) = min(B,D(n) + D̂B(n′) + D̂B(n′′)).
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PROPOSITION 6. Suppose B = 〈k, A0, R1, R2〉 is a BVAS, t ∈ N
k, D is a derivation in B of

height at most H, and B ≥ H ·max((R1 ∪R2)−) + max(t). ThenD is an admissible covering
of t iff, for each node n in D, D̂B(n) ≥ 0, and D̂B(ε) ≥ t.

THEOREM 7. Covering for BVAS is in 2EXPTIME.

PROOF. Let B = 〈k, A0, R1, R2〉 be a BVAS and t ∈ N
k. Let N = size(B) + size(t). If

ℓ = max((R1 ∪ R2)−) + max(t) + 2 then ℓ ≤ 2N , and without any loss of generality we can

assume that 3k ≤ N.

Lemma 5 implies that if there is an initialised admissible covering of t in B then there

is one of height at most ℓ(3k)! ≤ (2N)N! ≤ 22C1 N log N
, for some constant C1 > 1. If we set

H = 22C1 N log N
and B = H2, then from Proposition 6 it follows that in order to establish

existence of an initialised admissible covering of t in B, it suffices to:

• guess an initialised derivation D in B of height at most H;

• guess the B-truncated derived vectors at all nodes in D, and for every node and its

children, verify that they satisfy the equations defining B-truncated derived vectors,

and that they are non-negative;

• verify that the B-truncated derived vector at the root covers t.

We argue that the guessing and verification of such a structure of at most triply-exponential

size can be carried out by an alternating Turing machine with exponential space, and hence

the covering problem is in 2EXPTIME [3]. The alternating Turing machine starts at the root

of the derivation, it uses non-deterministic states to guess the rules labelling the current

node and its children, and their B-truncated derived vectors, and it uses universal states to

proceed with the guessing and verification process to both children (for nodes labelled by

binary rules) in parallel. All those tasks can indeed be carried out by a Turing machine with

only exponential space because it can represent—in binary—and manipulate numbers of

doubly-exponential magnitude.

4 Upper bound for the boundedness problem

Let us say that a derivation D is self-covering iff, for some node n, the vector derived at n is

less than or equal to the one at the root, and less in at least one place, i.e. D̂(n) < D̂(ε).

The following fact tells us that boundedness is equivalent to non-existence of an ini-

tialised admissible self-covering derivation. The “if” part is easy. The “only if” part was

inferred by Verma and Goubault-Larrecq, using the properties of their extension of Karp

and Miller’s procedure.

THEOREM 8. [17] A BVAS produces infinitely many vectors iff it has an initialised admissi-

ble self-covering derivation.

In the simpler setting of VAS, to conclude that boundedness is in EXPSPACE, Rackoff

showed that if an initialised admissible self-covering derivation exists, then there exists one

of at most doubly-exponential length:
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LEMMA 9. [12, Section 4] If a VAS V = 〈k, a, R〉 has an initialised admissible self-covering

derivation, then it has one whose length is at most 22C2L log L
, where L = size(R) and C2 is

some constant.

Encouraged by our eventual success in Section 3, consider the following scheme for

proving that, if a BVAS B = 〈k, A0, R1, R2〉 has an initialised admissible self-covering deriva-

tion D, then it has one of at most doubly-exponential height:

(I) Let node n be such that D̂(n) < D̂(ε), and pick a simple path π in D which is from a

leaf to the root and passes through n. Let V be the VAS defined as in (i) in Section 3, i.e.

its axiom is the label of the leaf of π and its rules R are obtained by linearising the bi-

nary rules on π. Thus, V has a derivation D† whose sequence of derived vectors is the

same as the sequence of derived vectors along π in D. In particular, D† is initialised,

admissible and self-covering.

(II) By Lemma 9, V has an initialised admissible self-covering derivationD‡ whose length

is at most 22C2 L log L
, where L = size(R).

(III) Let D′ be a derivation of B obtained from D‡ by undoing the linearisation done in (I),

as in (iii) in Section 3, and let π′ be the path in D′ that is from a leaf to the root and

corresponds to D‡. It is straightforward to check that D′ is also initialised, admissible

and self-covering.

(IV) Let H be the length of π′, which equals the length of D‡. For each node n′ that is one

edge away from π′ inD′ (i.e., that was attached in (III)), the subderivation ofD′ rooted

at n′ is an initialised admissible covering of min((H − 1) ·max(R−) + 1, D̂′(n′)). By

Lemma 5, B has an initialised admissible covering D∗n′ of the same vector, whose

height is at most

(
max((R1 ∪ R2)

−) + max
(

min
(
(H − 1) ·max(R−) + 1, D̂′(n′)

))
+ 2

)(3k)!

≤
(
max((R1 ∪ R2)

−) + (H − 1) ·max(R−) + 3
)(3k)!

≤
(

H ·max((R1 ∪ R2)
−) + 3

)(3k)!
.

Let D′′ be obtained from D′ by performing each substitution [n′ ← D∗n′ ]. The trun-

cating threshold (H − 1) ·max(R−) + 1 is such that D′′ is still admissible and self-

covering, certainly it is still initialised, and H + (H ·max((R1 ∪ R2)−) + 3)(3k)! bounds

its height.

Of course, we have the same problem as the first one in Section 3: we have no bound

on size(R) in terms of size(B), and therefore neither on H in (IV). Seeking therefore a refine-

ment of Lemma 9, we find that the key ingredient in its proof is:

LEMMA 10. [12, Lemma 4.5] Suppose V = 〈k, a, R〉 is a VAS, I ⊆ [1, k] and B > 1. If V has
an initialised I-B-bounded self-covering derivation, then it has one whose length is at most

B(size(R))C3 , where C3 is some constant.

In turn, at the centre of the proof of Lemma 10, Rackoff invokes the following theorem

of Borosh and Treybig on small solutions of integer linear programming problems. Recall

that the interval notations denote sets of integers.
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THEOREM 11. [2] Let A ∈ (−m, m)k×n and b ∈ (−m, m)k, where k, n, m ∈ N. If there exists
x ∈ N

n such that Ax ≥ b, then there exists y ∈ [0, (max{n, m})C4k]n such that Ay ≥ b,
where C4 is some constant.

When we examine feeding a VAS 〈k, a, R〉 for which we have a bound on max(R−) but

not on max(R+) into Rackoff’s proof of Lemma 10, we discover that Theorem 11 is invoked

for bounded k, unbounded n, A whose entries are bounded below but not above, and b

whose entries are bounded above but not below. Surprisingly, this is where we can make

progress. We now show that, if we can afford roughly one exponential more, small solutions

exist for A and b which are only one-sidedly bounded by m. Moreover, the number of non-

zero entries in the small solutions and their values are bounded only in terms of k and m.

THEOREM 12. Let A ∈ (−m, ∞)k×n and b ∈ (−∞, m)k, where k, n, m ∈ N. If there exists
x ∈ N

n such that Ax ≥ b, then there exists y ∈ [0, L]n such that |supp(y)| ≤ L and Ay ≥ b,

where L = m2C5k2

and C5 is some constant.

In order to reformulate Theorem 12 so that it becomes appropriate for a proof by induc-

tion on k (cf. Lemma 14), we define Fk(m), for all integers k ≥ 1 and m ≥ 2, by:

Fk(m) =

{
m if k = 1,
(

Fk−1(2m)
)4C4k2

if k > 1,

where C4 is the constant from Theorem 11, which we can assume is at least 1.

PROPOSITION 13. For all integers k ≥ 1 and m ≥ 2, we have Fk(m) ≤ m(4C4)
k·(2k)!.

Observe that there is a constant C5 such that, for all integers k ≥ 1 and m ≥ 2, we have

Fk(m) ≤ m(4C4)k ·(2k)! ≤ m2C5k2

. Hence, and since Theorem 12 is true trivially when k = 0 or

m ≤ 1, Theorem 12 follows from the following lemma.

LEMMA 14. Let A ∈ (−m, ∞)k×n and b ∈ (−∞, m)k, where k ≥ 1, n and m ≥ 2 are
integers. If there exists x ∈ N

n such that Ax ≥ b, then there exists y ∈ [0, Fk(m)]n such that

|supp(y)| ≤ Fk(m) and Ay ≥ b.

PROOF. We can assume without any loss of generality that, for each j ∈ [1, n], there exists

x ∈N
n such that Ax ≥ b and x(j) ≥ 1. Otherwise, consider A′ = A•(−j), where there exists

no x ∈ N
n such that Ax ≥ b and x(j) ≥ 1.

The proof is by induction on k. First we consider the base case when k = 1. If b ≤ 0 then

Ay ≥ b for y = 0. If, however, b > 0 then the existence of x ∈ N
n such that Ax ≥ b implies

that there must be i ∈ [1, n] such that A(1, i) > 0. Then, we have Ay ≥ b for y = m · ei.

For the inductive step we consider the following three cases. Essentially, if either b

contains a large negative entry or A contains a large positive entry, then we remove that

row of A and argue by the inductive hypothesis and the largeness of the entry. Otherwise,

we have a lower bound for all entries of b and an upper bound for all entries of A, and we

invoke Theorem 11.
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Case 1. There exists i ∈ [1, k] such that b(i) ≤ −m · (Fk−1(m))2. Let A′ = A(−i)• and let

b′ = b−i. By the inductive hypothesis, there exists y ∈ [0, Fk−1(m)]n—and hence y ∈
[0, Fk(m)]n—such that |supp(y)| ≤ Fk−1(m) < Fk(m) and A′y ≥ b′. The assumption that

A(i, j) > −m for all j ∈ [1, n] then implies that Ai•y > −m · (Fk−1(m))2 ≥ b(i), and hence

we have Ay ≥ b.

Case 2. There exist i ∈ [1, k] and j ∈ [1, n] such that A(i, j) ≥ 2m · (Fk−1(2m))2, and there exists

x ∈N
n such that Ax ≥ b and x(j) ≥ 1. Let A′ = A(−i)•, let b′ = b−i, and let b′′ = b′−A(−i)j.

Note that A′(x− ej) ≥ b′′ and that, since x(j) ≥ 1, we have x− ej ∈ N
n. Observe also that

b′′ ∈ (−∞, 2m)k−1 and hence, by the inductive hypothesis, there exists y ∈ [0, Fk−1(2m)]n

such that |supp(y)| ≤ Fk−1(2m) and A′y ≥ b′′.

Let z = y + ej. Note that then z ∈ [0, Fk−1(2m) + 1]n ⊆ [0, Fk(m)]n and |supp(y)| ≤
Fk−1(2m) + 1 ≤ Fk(m), and hence we only need to establish that Az ≥ b. We have:

(Az)(i) = Ai•(y + ej) ≥ A(i, j)−m · (Fk−1(2m))2 ≥ m · (Fk−1(2m))2 ≥ m ≥ b(i),

where the first inequality follows from A ∈ (−m, ∞)k×n, from y ∈ [0, Fk−1(2m)], and from

|supp(y)| ≤ Fk−1(2m); and the second inequality follows from the assumption that A(i, j) ≥
2m · (Fk−1(2m))2. Moreover, we have:

(Az)−i = A′(y + ej) = A′y + A(−i)j ≥ b′′ + A(−i)j = b′ = b−i.

Case 3. Neither Case 1 nor Case 2 applies. Observe that, in this case, every column of A is

in [−m, 2m · (Fk−1(2m))2]k, and b ∈ [−m · (Fk−1(m))2, m]k. The number of distinct columns

of A is therefore at most (3m · (Fk−1(2m))2)k ≤ (Fk−1(2m))4k, and so without loss of general-

ity we may assume n ≤ (Fk−1(2m))4k. By Theorem 11, there exists y ∈ [0, Fk−1(2m)4C4k2
]n =

[0, Fk(m)]n such that |supp(y)| ≤ (Fk−1(2m))4k ≤ Fk(m) and Ay ≥ b.

By substituting the use of Theorem 11 in Rackoff’s proof of Lemma 10 by a use of

Theorem 12, we obtain:

LEMMA 15. Suppose V = 〈k, a, R〉 is a VAS, I ⊆ [1, k] and B > 1. If V has an initialised I-B-

bounded self-covering derivation, then it has one of length at most ((max(R−) + 1) · B)2C6k2

,
where C6 is some constant.

The final step in obtaining a revision of Lemma 9 that we can apply to VAS whose rules

are bounded below but not above is to substitute in its proof uses of Lemma 10 by uses of

Lemma 15. That yields the following result, which shows that we could indeed afford the

extra exponential in Theorem 12. Although it filters through to Lemma 15, it gets swallowed

by the steps of Rackoff’s inductive proof of Lemma 9.

LEMMA 16. If a VAS V = 〈k, a, R〉 has an initialised admissible self-covering derivation,

then it has one of length at most (2(max(R−) + 1))2C7k3

, where C7 is some constant.

THEOREM 17. Boundedness for BVAS is in 2EXPTIME.
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5 Lower bounds

Let a counter machine consist of finite sets of states, counters and transitions. Each transi-

tion changes state, and either increments a counter, or checks that a counter is positive and

decrements it, or checks that a counter is zero. We consider alternating counter machines,

where the set of states is partitioned into non-deterministic and universal. Without loss of

generality, we restrict to at most binary branching. A computation of such a machine is a

binary tree of configurations, each of which is a state together with a non-negative integer

for every counter.

To establish lower bounds for the covering and boundedness problems for BVAS, we

reduce from the following problem. Its AEXPSPACE-hardness is an easy consequence of

standard translations from Turing machines to counter machines (e.g., by simulating the

tape by two stacks and encoding the latter by counters), and so it is 2EXPTIME-hard [3].

Doubly-exponential halting Given an alternating counter machine of size N with an initial

state and a halting state, does it have an initialised 22N
-bounded halting computation,

i.e. whose root is the initial state with 0 for every counter, in which every counter value

is less than 22N
, and which is finite and such that the state of each leaf is halting?

We argue that, given an alternating counter machineM of size N, a BVAS BM which

simulatesM and is of size O(N2) is computable:

• For simulating the operations on counters, we employ Lipton’s construction [10] (cf.

the nice presentation by Esparza [5, Section 7]), in which each counter c ofM is repre-

sented by two places pc and pc of BM, and it is an invariant in all initialised admissible

derivations of BM that the sum of pc and pc is 22N
. Increments and decrements of c are

easy, but to simulate checking that c is zero, BM uses implementations of two auxil-

iary counters bounded by 22N−1
to decrement pc exactly 22N−1

· 22N−1
= 22N

times. The

implementations of the two auxiliary counters in turn require two auxiliary counters

bounded by 22N−2
etc.

• The simulation is performed in reverse, so that BM guesses and verifies an initialised

22N
-bounded halting computation ofM. To verify a universal branching, where the

two child configurations ofM are represented by two derived vectors v and v′, BM
derives v′′ from v′ by transferring each pair of places that represents a counter ofM
to a separate pair of places which is reserved for that purpose. Then, BM joins v and

v′′ by performing a binary rule, verifies that the values of each counter ofM were the

same in v and v′, and empties the auxiliary places.

• Since BM can simulate checking that every counter of M is zero, it can guess and

verify that the configuration that it represents is initial.

To reduce to the covering problem, we use the target vector to specify that the reverse

simulation has reached the initial configuration ofM. To reduce to the boundedness prob-

lem, we amend BM so that upon guessing and verifying that the configuration of M is

initial, it becomes unbounded by deriving an infinite sequence of increasing vectors.

THEOREM 18. Covering and boundedness for BVAS are 2EXPTIME-hard.
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6 Concluding remarks

The extra work in this article in relation to the proofs of Lipton and Rackoff [10, 12], and the

recent result that reachability for BVAS is 2EXPSPACE-hard [9] (the highest known lower

bound for VAS is Lipton’s), indicate that BVAS are not a trivial extension of VAS.

We would like to thank Serge Haddad (LSV, Cachan) for numerous discussions about

VAS and their extensions, Sylvain Schmitz (LSV, Cachan) for pointing us to [13], and Alexan-

der Schrijver (CWI, Amsterdam) for correspondence about integer linear programming.
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Proof of Lemma 4

For an initialised admissible covering D of t ∈ N
k in a VAS 〈k, a, R〉, let m(D, t, 〈k, a, R〉) be

the smallest length of a contraction of D that is also an initialised admissible covering of t

in 〈k, a, R〉. Trivially, m(D, t, 〈k, a, R〉) is at most the length of D. For L, k ∈ N, we then let:

ML(k) = sup
{

m(D, t, 〈k, a, R〉) : D is an initialised admissible covering of t ∈N
k

in VAS 〈k, a, R〉, and max(R−) + max(t) ≤ L
}

.

The set of tuples (D, t, 〈k, a, R〉), over which the supremum of the m(D, t, 〈k, a, R〉) values is

taken in the definition of ML(k), is always infinite, and hence it is not a priori clear that the

number ML(k) is well defined. The following lemma implies that, and it paves the way to

an easy inductive proof of Lemma 4.

LEMMA 19. For all L ∈ N, the following inequalities hold:

ML(k) ≤

{
1 if k = 0,
(

L ·ML(k− 1)
)k

+ ML(k− 1) if k ≥ 1.

PROOF. The case when k = 0 is trivial. For every k ≥ 1, it is sufficient to prove that for

every initialised admissible covering D of t ∈ N
k in a VAS 〈k, a, R〉, where max(R−) +

max(t) ≤ L, the following inequality holds:

m(D, t, 〈k, a, R〉) ≤
(

L ·ML(k− 1)
)k

+ ML(k− 1). (1)

Let B = ML(k − 1) ·max(R−) + max(t). We consider the following two cases: (a) D is

B-bounded, and (b) D is not B-bounded.

Assume that D is B-bounded. Note that if D̂(n) = D̂(n′) and n is an ancestor of n′,

then the derivation D[n ← n′] obtained by the contracting substitution is also an initialised

B-bounded covering of t. By performing such substitutions repeatedly, then we will even-

tually obtain a contraction of D that is an initialised B-bounded covering of t, and such

that the vectors derived at its nodes are mutually distinct; the length of such a derivation is

clearly at most Bk. We have now proved (1) in case (a) because

Bk =
(

ML(k− 1) ·max(R−) + max(t)
)k
≤

(
L ·ML(k− 1)

)k
,

where the inequality follows from the assumption that max(R−) + max(t) ≤ L.

We now handle case (b), i.e., when D is not B-bounded. In this case there are deriva-

tions: D1 in the VAS 〈k, a, R〉, and D2 in the VAS 〈k, D̂1(ε), R〉, such that:

• D = D1;D2,

• D1 is B-bounded except for the vector derived at its root,

• D̂1(ε) is not B-bounded because there is a place i ∈ [1, k] such that D̂1(ε)(i) ≥ B.

Observe that, as in case (a), we can choose a contraction D′1 of D1 that is an initialised

derivation of D̂1(ε), B-bounded except for the vector derived at its root, and of length at

most Bk + 1. Moreover, letting I = [1, k] \ {i}, note that D2(I) is an initialised admissible
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covering of t(I) in the VAS 〈k, D̂1(ε), R〉(I), and hence there is a contraction D′2 of D2 such

that D′2(I) is also an initialised admissible covering of t(I), and of length at most ML(|I|) =
ML(k− 1).

Observe that D′1;D′2 is a contraction of D, and that it is of length at most

Bk + ML(k− 1) ≤
(

L ·ML(k− 1)
)k

+ ML(k− 1).

In order to establish (1) in case (b) we argue that D′1;D′2 is a initialised admissible covering

of t in 〈k, a, R〉. It suffices to prove that for every node n in D′2, we have D̂′2(n)(i) ≥ t(i) ≥ 0.

This follows from

D̂′1(ε)(i) = D̂1(ε)(i) > B ≥
(

ML(k− 1)− 1
)
·max(R−) + max(t),

and the number of applications of rules in D′2 being at most ML(k− 1)− 1.

Now, to prove Lemma 4, we show by induction on k ∈ N that Mℓ(k) ≤ ℓ(3k)!, where

ℓ = max(R−) + max(t) + 2. The base case, when k = 0, is trivial.† If we assume Mℓ(k− 1) ≤
ℓ(3(k−1))! then we have:

Mℓ(k) ≤
(
ℓ ·Mℓ(k− 1)

)k
+ Mℓ(k− 1) ≤

(
ℓ ·Mℓ(k− 1)

)k+1
≤

(
ℓ

1+(3(k−1))!
)k+1

≤ ℓ
(3k)!,

where the first inequality holds by Lemma 19, the second is true because ℓ ≥ 2, and the

third follows from the inductive hypothesis.

Proof of Lemma 5

We follow the scheme in (i)–(iii) in Section 3 for B = 〈k, A0, R1, R2〉, with “excessively high”

replaced by “of height more than (max((R1 ∪ R2)−) + max(t) + 2)(3k)!”, and with the appli-

cation of Lemma 3 in (ii) replaced by an application of Lemma 4.

Let D, n, V = 〈k,D(n), R〉 and D† be as in (i). Since D is admissible, we have that,

in particular for all nodes n′′ that are one edge away from the path π from n to the root,

D̂(n′′) ≥ 0. Hence, max(R−) ≤ max((R1 ∪ R2)−), and so by Lemma 4, V has an initialised

admissible covering D‡ of t, which is a contraction of D† and whose length is at most

(
max(R−) + max(t) + 2

)(3k)!
≤

(
max((R1 ∪ R2)

−) + max(t) + 2
)(3k)!

.

As outlined in (iii), D‡ can be unfolded into an initialised admissible coveringD′ of t in

B. By taking care that, for each node in D‡ that corresponds to a node n′ in D with a child

n′′ not on the path π, the unfolding is performed so that the subderivation of D rooted at

n′′ is attached on the same side as n′′ is in relation to π, we obtain D′ which is in addition a

contraction of D.

Let n′ be the leaf of D′ that was obtained from the unique leaf of D‡. The height of

n′ equals the length of D‡, so it is not excessively high. By the properties of D′, there is

an injection ι from the leaves of D′ to the leaves of D which does not decrease heights and

such that ι(n′) = n. Since the height of n is excessively high, we conclude that D′ has fewer

excessively high leaves than D, as required.

†Recall that 0! = 1.
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Proof of Proposition 6

Given a node n, we write d(n) to denote its depth in D (the depth of a leaf is assumed to

be zero). First, it is easy to show by induction on the depth that (⋆) for all nodes n in D,

we have D̂(n) ≥ D̂B(n). Consequently, if for each node n in D, D̂B(n) ≥ 0, and D̂B(ε) ≥ t

then D is an admissible covering of t.

Now, suppose that D is an admissible covering of t. By induction on the depth, we

show that for all nodes n and i ∈ [1, k],
(I) D̂(n)(i) ≥ (H− d(n)) max((R1∪R2)−)+ max(t) iff D̂B(n)(i) ≥ (H− d(n)) max((R1∪

R2)−) + max(t),

(II) if D̂(n)(i) < (H − d(n)) max((R1 ∪ R2)−) + max(t), then for all descendant nodes n′

of n, we have D̂(n′)(i) = D̂B(n′)(i).

Since d(ε) = H, by (I) we get D̂B(ε) ≥ t. Moreover, by (I)–(II) for each node n in D,

D̂B(n) ≥ 0. We recall that B = H ·max((R1 ∪ R2)−) + max(t). When n is a leaf in D, it is

easy to check that (I) and (II) hold true.

Case 1: D(n) = r, r ∈ R1 and n has unique child n′. Let i ∈ [1, k]. Let us start by

showing (I). If D̂B(n)(i) ≥ (H − d(n)) max((R1 ∪ R2)−) + max(t), then by (⋆), D̂(n)(i) ≥
(H − d(n)) max((R1 ∪ R2)−) + max(t). Now suppose D̂(n)(i) ≥ (H − d(n)) max((R1 ∪
R2)−) + max(t). Observe that d(n) = d(n′) + 1. In the case D̂(n′)(i) ≥ (H − d(n) +
1) max((R1 ∪ R2)−) + max(t), by the inductive hypothesis, we get D̂B(n′)(i) ≥ (H− d(n) +
1) max((R1 ∪ R2)−) + max(t). Since r(i) ≥ −max((R1 ∪ R2)−), we have D̂B(n)(i) ≥ (H −
d(n)) max((R1 ∪ R2)−) + max(t). If D̂(n′)(i) < (H − d(n) + 1) max((R1 ∪ R2)−) + max(t),

then by the inductive hypothesis, D̂(n′)(i) = D̂B(n′)(i), and therefore D̂(n)(i) = D̂B(n)(i).

So, D̂B(n)(i) ≥ (H − d(n)) max((R1 ∪ R2)−) + max(t). Now let us show (II). If we have

D̂(n)(i) < (H − d(n)) max((R1 ∪ R2)−) + max(t), then D̂(n′)(i) < (H − d(n′)) max((R1 ∪
R2)−) + max(t), and by the inductive hypothesis, for all descendant nodes n′′ of n′, we

have D̂(n′′)(i) = D̂B(n′′)(i). Moreover, D̂B(n′)(i) + r(i) ≤ B since D̂(n)(i) < (H −
d(n)) max((R1∪R2)−)+ max(t) and D̂(n′)(i) = D̂B(n′)(i), whence D̂B(n)(i) = D̂B(n′)(i)+
r(i), i.e. D̂(n)(i) = D̂B(n)(i).

Case 2: D(n) = r, r ∈ R2 and n has two children n′1 and n′2. Let i ∈ [1, k]. Let us start by show-

ing (I). Again, if D̂B(n)(i) ≥ (H − d(n)) max((R1 ∪ R2)−) + max(t), then by (⋆), D̂(n)(i) ≥
(H − d(n)) max((R1 ∪ R2)−) + max(t). Now suppose D̂(n)(i) ≥ (H − d(n)) max((R1 ∪
R2)−) + max(t). Observe that

d(n) = max(d(n′1), d(n′2)) + 1.

In the case D̂(n′j)(i) ≥ (H − d(n′j) max((R1 ∪ R2)−) + max(t) for some j ∈ {1, 2}, by the in-

ductive hypothesis, we get D̂B(n′j)(i) ≥ (H− d(n′j)) max((R1∪R2)−)+ max(t). Since r(i)+

D̂(n′2−j)(i) ≥ −max((R1 ∪ R2)−), we have D̂B(n)(i) ≥ (H − d(n)) max((R1 ∪ R2)−) +

max(t). If D̂(n′j)(i) < (H − d(n) + 1) max((R1 ∪ R2)−) + max(t) for j ∈ {1, 2}, then by the

inductive hypothesis, D̂(n′j)(i) = D̂B(n′j)(i), and therefore D̂B(n)(i) = min(B, D̂B(n′1)(i) +

D̂B(n′2)(i) + r(i)). Either D̂B(n)(i) = B and hence D̂B(n)(i) ≥ (H − d(n)) max((R1 ∪
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R2)−) + max(t), or D̂B(n)(i) = D̂B(n′1)(i) + D̂B(n′2)(i) + r(i) and hence D̂(n)(i) = D̂B(n)(i)
(leading to the same conclusion). Now let us show (II). If D̂(n)(i) < (H − d(n)) max((R1 ∪
R2)−) + max(t), then D̂(n′j)(i) < (H − d(n′j)) max((R1 ∪ R2)−) + max(t) j ∈ {1, 2}, and by

the inductive hypothesis, for j ∈ {1, 2} and for all descendant nodes n′′ of n′j, we have

D̂(n′′)(i) = D̂B(n′′)(i). Moreover, D̂B(n′1)(i) + D̂B(n′2)(i) + r(i) ≤ B since D̂(n)(i) <

(H − d(n)) max((R1 ∪ R2)−) + max(t) and D̂(n′j)(i) = D̂B(n′j)(i) for j ∈ {1, 2}, whence

D̂B(n)(i) = D̂B(n′1)(i) + D̂B(n′2)(i) + r(i), i.e. D̂(n)(i) = D̂B(n)(i).

Proof of Proposition 13

The proof is by induction on k. The base case, i.e., when k = 1, is trivial. If we assume that

Fk−1(m) ≤ m(4C4)k−1·(2(k−1))! for all integers m ≥ 2, then we have:

Fk(m) =
(

Fk−1(2m)
)4C4k2

≤
(
(2m)(4C4)k−1·(2(k−1))!

)4C4k2

≤ m(4C4)k·(2k)!,

where the equality holds by the definition of Fk(m), and the first inequality holds by the

inductive hypothesis.

Proof of Lemma 15

Let d = |I|. Let D be a minimal (i.e., shortest) initialized I-B-bounded self-covering deriva-

tion, and let D1 and D2 be the I-B-bounded derivations, such that D = D1;D2 and D̂1(ε) <

D̂(ε). By minimality of D, it follows that D1 is of height at most Bd ≤ Bk (cf. the argument

in the second paragraph of the proof of Lemma 19).

Below, following Rackoff’s proof of Lemma 10, but using Theorem 12 instead of Theo-

rem 11, we argue that:

the height of D2 is at most (Bk + 1)2 + Bk ·
((

(max(R−) + 1) · (Bk + 1)2
)2

)2C5k2

, (2)

where C5 is the constant from Theorem 12, and hence the height of D is at most

Bk + (Bk + 1)2 + Bk ·
((

(max(R−) + 1) · (Bk + 1)2
)2

)2C5k2

≤ ((max(R−) + 1) · B)2C6k2

,

where C6 is some constant.

For a derivationD′ we define its effect ∆(D′) to be the sum of the labels of all its non-leaf

nodes. A derivationD′′ is a sub-derivation ofD′ (from node n to node n′) if it can be obtained

from D′ by removing the nodes “above” node n and the nodes “below” node n′ (where the

root is the “top” node). We say that a derivation D′ is a simple I-loop if: ∆(D′)(I) = 0, and

for every proper sub-derivation D′′ of D′, we have ∆(D′′)(I) 6= 0. Observe that the height

of every simple I-loop that is an I-B-bounded derivation is at most Bd ≤ Bk.

Let E be the set of effects of all sub-derivations of D2 that are simple I-loops. Note that

for every e ∈ E, we have e ∈ [−max(R−) · Bk, ∞)k, i.e., although the number of elements

of E may depend both on max(R−) and max(R+) (cf. the proof of Lemma 10 in Rackoff’s
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paper [12]), we obtain a lower bound for the components of vectors in E that depends only

on max(R−).

For a derivation D′ we define DV(D′) = {D̂′(n) : n is a node in D′}, i.e., the set of all

vectors derived at nodes of D, and we write DV(D′)(I) = {v(I) : v ∈ DV(D′)} for set of

all restrictions of vectors in DV(D′) to the set of places I. From the arguments in the proof

of Lemma 10 in Rackoff’s paper [12], it follows that there is a contraction D′2 of D2, whose

height is at most (Bd + 1)2 ≤ (Bk + 1)2, it holds that DV(D′2)(I) = DV(D2)(I), and there is

an |E|-tuple of numbers 〈xe〉e∈E ∈ N
|E|, such that:

∆(D2) = ∆(D′2) + ∑
e∈E

xe · e > 0,

i.e., there is i ∈ [k], such that:

(∑
e∈E

xe · e)([k] \ {i}) ≥ −∆(D′2)([k] \ {i}), (3)

(∑
e∈E

xe · e)({i}) ≥ 1− ∆(D′2)({i}). (4)

One should think of the derivation D′2 as obtained from derivation D2 by a sequence of

contractions, each of which “removes” a sub-derivation that is a simple I-loop, and so that

for every e ∈ E, the total number of simple I-loops thus removed, and whose effect is e,

is xe. Moreover, as argued in the proof of Lemma 10 in Rackoff’s paper [12], the system of

inequalities (3)–(4) has a solution x ∈ N
|E| if, and only if, there is a derivation D′′2 , such that:

1. D1;D′′2 is an I-B-bounded derivation;

2. D′2 can be obtained from D′′2 by a sequence of contractions, each of which removes

a sub-derivation that is a simple I-loop, and so that for every e ∈ E, the number of

I-loops thus removed, and whose effect is e, is exactly xe.

3. D̂1(ε) < ̂D1;D′′2 (ε), i.e., D1;D′′2 is a self-covering derivation.

Observe that if we write the system of inequalities (3)–(4) in matrix notation as Ax ≥
b, then A ∈ [−max(R−) · Bk, ∞)k×|E| and b ∈ (−∞, max(R−) · (Bk + 1)2]k. If we apply

Theorem 12 to it, we conclude that it has a solution x ∈ [0, m2C5k2

]|E| such that |supp(x)| ≤

m2C5k2

, where

m =
(

max(R−) + 1
)
· (Bk + 1)2.

From 2. above, and from the Bk upper bound on the height of a simple I-loop, it follows that

the height of a derivation D′′2 corresponding to this solution is at most:

Bk ·
((

(max(R−) + 1) · (Bk + 1)2
)2

)2C5k2

,

i.e., by minimality of D2, we have established (2).

Proof of Lemma 16

Given a VAS V = 〈k, a, R〉 and I ⊆ [1, k], let m(〈k, a, R〉, I) be the smallest length of an ini-

tialized self-covering D such that D(I) is admissible in V(I). If there is none, by convention

m(〈k, a, R〉, I) = 0.
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For L ≥ 2 and i ∈ N, we then let:

mL(i) = sup
{

m(〈k, a, R〉, I) : |I| = i, 〈k, a, R〉 is a VAS and max(R−) + 1 ≤ L
}

.

The set over which the supremum of the m(〈k, a, R〉, I) values is taken in the definition

of mL(i), is always infinite, and hence it is not a priori clear that the number mL(i) is well

defined.

By Lemma 15, ML(0) ≤ (2L)2C6k2

. Let D be an initialized self-covering such that D(I)
is admissible in V(I) with |I| = i + 1. Let B = max(R−) · mL(i) ≤ L · mL(i). If D is

I-B-bounded, then by Lemma 15, there is an initialized self-covering D′ such that D′(I)

is admissible in V(I) and its length is at most ((max(R−) + 1) ·max(R−) · mL(i))2C6k2

≤

(L2×mL(i))2C6k2

.

Now, suppose that D is not B-bounded. In this case there are derivations: D1 in the

VAS 〈k, a, R〉, and D2 in the VAS 〈k, D̂1(ε), R〉, such that:

• D = D1;D2,

• D1 is B-bounded except for the vector derived at its root,

• D̂1(ε) is not B-bounded because there is a place i ∈ [1, k] such that D̂1(ε)(i) ≥ B, and

• there is a node n such that D̂(n) < D̂(ǫ).

Without any loss of generality, we can assume that the node n belongs to D2, for example

by considering the derivation D;D′′1 ;D2 where D′′1 is the restriction of D1 to nodes strictly

above n. Observe that, as in the first case, we can choose a contraction D′1 of D1 that is

an initialised derivation of D̂1(ε), B-bounded except for the vector derived at its root, and

of length at most Bi+1 + 1 ≤ (L × mL(i))k. Moreover, letting I ′ = I \ {i}, note that D2 is

an initialised self-covering in 〈k, D̂1(ε), R〉 such that D2(I ′) is admissible in 〈k, D̂1(ε), R〉(I ′).

Hence, there is an initialised admissible self-covering D′2 and of length at most mL(i) such

that D′2(I ′) is admissible in 〈k, D̂1(ε), R〉(I ′). Observe thatD′1;D′2 is an initialised admissible

self-covering and (D′1;D′2)(I) is admissible in V(I). The length of D′1;D′2 is at most

(L×mL(i))k + mL(i) ≤ [L2mL(i)]2
C6k2

.

Consequently, mL(0) ≤ (2L)2C6k2

and mL(i + 1) ≤ (L2 ·mL(i))2C6k2

. One can then show

that for i ≤ k:

mL(i) ≤ [(L)21+i·C6k2

]i · (2L)2(i+1)·C6k2

.

So,

mL(k) ≤ L2log2 k+k·C6k2

· (2L)2(k+1)·C6k2

≤ (2L)2C7k3

,

for some constant C7.

Proof of Theorem 17

We can fix the proof scheme in (I)–(IV) in Section 4 by using Lemma 16 instead of Lemma 9

in (II), and thus deduce that every unbounded BVAS 〈k, A0, R1, R2〉 has an initialised admis-

sible self-covering derivation whose height is at most

H +
(

H ·max((R1 ∪ R2)
−) + 3

)(3k)!
≤

(
2(max((R1 ∪ R2)

−) + 1)
)2C8k3
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for a constant C8, since H ≤ (2(max(R−) + 1))2C7k3

and max(R−) ≤ max((R1 ∪ R2)−).

Moreover, the argument in (IV) shows that, to establish existence of such an initialised ad-

missible self-covering derivation, it suffices to guess and verify an admissible self-covering

derivation which is a path with single edges attached to it, all of whose derived vectors are

doubly-exponentially bounded, and such that the vectors that label the nodes off the path

are coverable. By Lemma 5 and Proposition 6, as in the proof of Theorem 7, each of the

instances of covering is decidable in alternating exponential space.
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