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Model checking freeze LTL over one-counter automata?

Stéphane Demri1, Ranko Lazíc3, and Arnaud Sangnier1,2

1LSV, ENS Cachan, CNRS, INRIA &2EDF R&D
3Department of Computer Science, University of Warwick, UK

Abstract. We study complexity issues related to the model-checking problem
for LTL with registers (a.k.a. freeze LTL) over one-counter automata. We con-
sider several classes of one-counter automata (mainly deterministic vs.nondeter-
ministic) and several syntactic fragments (restriction on the number of registers
and on the use of propositional variables for control locations). The logic has the
ability to store a counter value and to test it later against the current countervalue.
By introducing a non-trivial abstraction on counter values, we show thatmodel
checking LTL with registers over deterministic one-counter automata is PSPACE-
complete with infinite accepting runs. By constrast, we prove that model checking
LTL with registers over nondeterministic one-counter automata isΣ1

1 -complete
[resp.Σ0

1 -complete] in the infinitary [resp. finitary] case even if only one register
is used and with no propositional variable. This makes a difference with thefacts
that several verification problems for one-counter automata are known to be de-
cidable with relatively low complexity, and that finitary satisfiability for LTL with
a unique register is decidable. Our results pave the way for model-checking LTL
with registers over other classes of operational models, such as reversal-bounded
counter machines and deterministic pushdown systems.

1 Introduction

Logics for data words and trees.Data words are sequences in which each position is
labelled by a letter from a finite alphabet and by another letter from an infinite alphabet
(the datum). This fundamental and simple model captures thetimed words accepted by
timed automata [1], and its extension to trees is useful to model XML documents with
values, see e.g. [4,15]. In order to really speak about data,known logical formalisms
for data words/trees contain a mechanism that stores a valueand tests it later against
other values, see e.g. [5,9]. This is a powerful feature shared by other memoryful tem-
poral logics [18,16]. However, the satisfiability problem for these logics becomes easily
undecidable even when stored data can be tested only for equality. For instance, first-
order logic for data words restricted to three individual variables is undecidable [5],
whereas LTL with registers (also known as freeze LTL) restricted to a single register is
undecidable over infinite data words [9]. By contrast, decidable fragments of the satisfi-
ability problems have been found in [5,10,19] either by imposing syntactic restrictions
(bound the number of registers, constrain the polarity of temporal formulae, etc.) or
by considering subclasses of data words (finiteness for example). Similar phenomena
occur with metric temporal logics and timed words [22,23]. Akey point for all these
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logical formalisms is the ability to store a value from an infinite alphabet, which is a
feature also present in models of register automata, see e.g[7,21,25]. However, the stor-
ing mechanism has a long tradition (apart from its ubiquity in programming languages)
since it appeared for instance in real-time logics [2] (the data are time values) and in
so-called hybrid logics (the data are node addresses), see an early undecidability result
with reference pointers in [13]. Meaningful restrictions for hybrid logics can also lead
to decidable fragments, see e.g. [24].

Our motivations.In this paper, our main motivation is to analyze the effects of adding
a binding mechanism with registers to specify runs of operational models such as push-
down systems and counter automata. The registers are simplemeans to compare data
values at different points of the execution. Indeed, runs can be naturally viewed as data
words: for example, the finite alphabet is the set of locations and the infinite alphabet is
the set of data values (natural numbers, stacks, etc.). To doso, we enrich an ubiquitous
logical formalism for model-checking techniques, namely linear-time temporal logic
LTL, with registers. Even though this was the initial motivation to introduce LTL with
registers in [10], most decision problems considered in [10,19,9] are essentially oriented
towards satisfiability. In this paper, we focus on the following type of model-checking
problem: given a set of runs generated by an operational model, more precisely by a
one-counter automaton, and a formula from LTL with registers, is there a run satisfy-
ing the given formula? In our context, it will become clear that the extension with two
counters is undecidable. It is not difficult to show that thismodel-checking problem
differs from those considered in [19,10] and are of a different nature from those for
hybrid logics investigated in [12,27]. However, since two consecutive counter values in
a run are ruled by the set of transitions, constraints on datathat are helpful to get fine-
tuned undecidability proofs for satisfiability problems in[10,9] may not be allowed on
runs. This is precisely what we want to understand in this work. Like in [6], LTL with
registers makes sense to specify and reason about configurations of operational models,
precisely counter systems.

Our contribution. We study complexity issues related to the model-checking problem
for LTL with registers over one-counter automata that are simple operational models
but our undecidability results can be obviously lifted to pushdown systems when regis-
ters store the stack value. Moreover, in order to determine borderlines for decidability,
we also present results for deterministic one-counter models that are less powerful but
remain interesting when they are viewed as a means to specifyan infinite path on which
model checking is performed, see analogous issues in [20].

We consider several classes of one-counter automata (deterministic and nondeter-
ministic) and several fragments by restricting the use of registers or the use of letters
from the finite alphabet. Moreover, we distinguish finite accepting runs from infinite
ones as data words. Unlike several results from [22,23,9,19], the decidability status
of the model checking does not depend on the fact that we consider finite data words
instead of infinite ones. In this paper, we present the following results.

– Model checking LTL with registers over deterministic one-counter automata is
PSPACE-complete (see Sect. 3.2). PSPACE-hardness is established by reducing



QBF and it also holds when no letters from the finite alphabet are used in for-
mulae. When the number of registers is bounded, the problem can be solved in
polynomial time. In order to get these complexity upper bounds, we introduce an
abstraction on counter values even though the counter values may not be bounded
along the unique run of the deterministic automata. This makes a substantial differ-
ence with [20] in which no data values are considered, but still our problem amounts
to model checking a path specified by a deterministic one-counter automaton.

– Model checking LTL with registers over nondeterministic one-counter automata
restricted to a unique register and without alphabet isΣ1

1 -complete in the infinitary
case by reducing the recurrence problem for Minsky machines(see Sect. 4). In the
finitary case, the problem is shownΣ0

1 -complete by reducing the halting problem
for Minsky machines. These results are quite surprising since several verification
problems for one-counter automata are known to be decidablewith relatively low
complexity [14,26]. Moreover, finitary satisfiability for LTL with one register is
decidable [9] even though with nonprimitive complexity.

Because of lack of space, omitted proofs can be found in [11].

2 Preliminaries

2.1 One-counter automaton

Let us recall standard definitions and notations about our operational models. A one-
counter automaton is a tupleA = 〈Q, qI , δ, F 〉 whereQ is a finite set of locations,
qI ∈ Q is the initial location,F ⊆ Q is the set of accepting locations andδ ⊆ Q ×
L × Q is the transition relation over the instruction setL = {inc, dec, ifzero}. A
counter valuationv is an element ofN and a configuration ofA is a pair inQ×N. The
initial configuration is the pair〈qI , 0〉. As usual, a one-counter automatonA induces a
(possibly infinite) transition system〈Q × N,−→〉 such that〈q, n〉 −→ 〈q′, n′〉 iff one of
the conditions below holds true: (1)〈q, inc, q′〉 ∈ δ andn′ = n+1, (2) 〈q, dec, q′〉 ∈ δ
andn′ = n − 1 (andn′ ∈ N), (3) 〈q, ifzero, q′〉 ∈ δ andn = n′ = 0. A finite [resp.
infinite] run ρ is a finite [resp. infinite] sequenceρ = 〈q0, n0〉 −→ 〈q1, n1〉 −→ · · ·
where〈q0, n0〉 is the initial configuration. A finite run isacceptingiff it ends with an
accepting location. An infinite runρ is accepting iff it contains an accepting location
infinitely often (Büchi acceptance condition).

A one-counter automatonA is deterministicwhenever it corresponds to a determin-
istic one-counter Minsky machine: for every locationq, eitherA has a unique transition
from q incrementing the counter, orA has exactly two transitions fromq, one with in-
structionifzero and the other one with instructiondec, orA has no transition from
q (not present in original deterministic Minsky machines). In the transition system in-
duced by any deterministic one-counter automaton, each configuration has at most one
successor. One-counter automata in full generality are understood asnondeterministic
one-counter automata.



2.2 LTL over data words

Formulae of the logicLTL↓,Σ whereΣ is a finite alphabet are defined as follows:

φ ::= a | ↑r | ¬φ | φ ∧ φ | φUφ | Xφ | ↓r φ

wherea ∈ Σ andr ranges overN \ {0}. We writeLTL↓ to denote LTL with registers
for some unspecified finite alphabet. An occurrence of↑r within the scope of some
freeze quantifier↓r is bound by it; otherwise it is free. A sentence is a formula with no
free occurrence of any↑r. Given a natural numbern > 0, we writeLTL↓,Σ

n to denote
the restriction ofLTL↓,Σ to registers in{1, . . . , n}. Models ofLTL↓,Σ aredata words.
A data wordσ over a finite alphabetΣ is a non-empty word inΣ<ω or Σω, together
with an equivalence relation∼σ on word indices. We write|σ| for the length of the data
word,σ(i) for its letters where0 ≤ i < |σ|.

A register valuationv for a data wordσ is a finite partial map fromN \ {0} to the
indices ofσ. Wheneverv(r) is undefined, the formula↑r is interpreted as false. The
satisfaction relation|= is defined as follows (Boolean clauses are omitted).

σ, i |=v a
def
⇔ σ(i) = a

σ, i |=v ↑r
def
⇔ r ∈ dom(v) andv(r) ∼σ i

σ, i |=v Xφ
def
⇔ i+ 1 < |σ| andσ, i+ 1 |=v φ

σ, i |=v φ1Uφ2
def
⇔ for somej ≥ i, σ, j |=v φ2 and for alli ≤ j′ < j, σ, j′ |=v φ2

σ, i |=v ↓r φ
def
⇔ σ, i |=v[r 7→i] φ

v[r 7→ i] denotes the register valuation equal tov except that the registerr is mapped
to the positioni. In the sequel, we omit the subscript “v” in |=v when sentences are
involved. We use the standard abbreviations for the temporal operators (G, F, . . . ) and
for the Boolean operators and constants (∨,⇒,>,⊥, . . . ). The infinitary [resp. finitary]
satisfiability problem for LTL with registers, notedω-SAT-LTL↓ [resp.f -SAT-LTL↓],
is defined as follows: given a finite alphabetΣ and a formulaφ in LTL↓,Σ , is there an
infinite [resp. a finite] data wordσ such thatσ, 0 |= φ?

Theorem 1. [9] ω-SAT-LTL↓ restricted to one register isΠ0
1 -complete andf -SAT-

LTL↓ restricted to one register is decidable with non-primitiverecursive complexity.

Given a one-counter automatonA = 〈Q, qI , δ, F 〉, finite [resp. infinite] accepting
runs ofA can be viewed as finite [resp. infinite] data words over the alphabetQ. Indeed,
given a runρ, the equivalence relation∼ρ is defined as follows:i ∼ρ j iff the counter
value at theith position ofρ is equal to the counter value at thejth position ofρ. In
order to ease the presentation, in the sequel we store in registers counter values, which
is an equivalent way to proceed by slightly adapting the semantics for↑r and↓r, and
the values stored in registers (data).

The finitary [resp. infinitary] (existential) model-checking problem over one-counter
automata for LTL with registers, notedMC<ω [resp.MCω] is defined as follows: given
a one-counter automatonA = 〈Q, qI , δ, F 〉 and a sentenceφ in LTL↓,Q, is there a finite
[resp. infinite] accepting runρ ofA such thatρ, 0 |= φ? If the answer is “yes”, we write



A |=<ω φ [resp.A |=ω φ ]. In this existential version of model checking, this problem
can be viewed as a variant of satisfiability in which satisfaction of a formula can be
only witnessed within a specific class of data words, namely the accepting runs of the
automata. Results for the universal version of model checking will follow easily from
those for the existential version.

We writeMCαn to denote the restriction ofMCα to formulae with at mostn regis-
ters. Very often, it makes sense that only counter values areknown but not the current
location of a configuration, which can be understood as an internal information about
the system. We writePureMCαn to denote the restriction ofMCαn (its “pure” version)
to formulae with atomic formulae only of the form↑r.

Example 1.Here are properties that can be stated inLTL↓,Q
2 along a run.

– “There is a suffix such that all the counter values are different”: FG(↓1 XG¬ ↑1).
– “Whenever locationq is reached with current counter valuen and next current

counter valuem, if there is a next occurrence ofq, the two consecutive counter
values are alson andm”: G(q ⇒↓1 X ↓2 XG(q ⇒↑1 ∧X ↑2)).

We show how to get rid of propositional variables by reducingthe model-checking
problem over one-counter automata to its pure version.

Lemma 2 (Purification). Given a one-counter automatonA and a sentenceφ in LTL↓,Q
n ,

one can compute in logarithmic space in|A| + |φ| a one-counter automatonAP and
φP in LTL↓,∅

max(n,1) such thatA |=<ω φ [resp.A |=ω φ ] iff AP |=<ω φP [resp.
AP |=

ω φP ]. Moreover,A is deterministic iffAP is deterministic.

The idea of the proof is simply to identify locations with patterns about the changes
of the unique counter that can be expressed inLTL↓,∅.

Proof. LetA = 〈Q, qI , δ, F 〉withQ = {q1, ..., qn} andφ in LTL↓,Q. In order to define
AP , we identify locations with patterns about the changes of the unique counter. For
each locationqi in Q we associate the new sequence of transitions described in Fig. 1
andqi

a

−→ qj ∈ δ iff qFi
a

−→ qj ∈ δ
′. In the sequence of picks numbered from0 to n+ 1,

the only pick of height 2 is one numberedi. In order to identify the beginning of the
first pick of height 3 we introduce formulae inLTL↓,∅

1 : ϕ¬ 3

7

expresses that “among the
7 next counter values (including the current counter value), there are no 3 equal values”
andϕ0∼6 expresses that “the current counter value is equal to the counter value at the
6th next position”. We write LOC to denote the formulaϕ¬ 3

7

∧ϕ0∼6. By a simple case
analysis, one can check that fork ≥ 0, in the run ofAP , LOC holds true iff the current
location is inQ. We poseφi = X

6+2(i−1) ↓1 X
2¬ ↑1 for 1 ≤ i ≤ n. One can check that

for k ≥ 0, in the run ofAP LOC ∧ φi holds true iff the current location isqi. φP is
equal toT(φ) with the mapT that is homomorphic for Boolean operators and↓r, and
its restriction to↑r is identity. The rest of the inductive definition is as follows.

T(qi) = φi; T(Xφ) = X
10+2(n+1)+1T(φ); T(φUφ′) =

`

LOC ⇒ T(φ)
´

U

`

LOC ∧ T(φ′)
´

We remark thatφ andφP have the same amount of registers unlessφ has no register.
ut
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0

1 2

i

i + 1 n + 1

qF
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inc

dec

. . . . . . . . . . . . . . . . . .

Fig. 1.Encodingqi by a pattern made ofn + 2 increasing picks of length10 + 2(n + 1)

3 Model checking deterministic one-counter automata

In this section, we show thatMCω restricted to deterministic one-counter automata is
PSPACE-complete and the same restriction forMC<ω is in EXPSPACE. First, we show
PSPACE-hardness.

Proposition 3. PureMC<ω andPureMCω restricted to deterministic one-counter au-
tomata arePSPACE-hard problems.

Proof. Consider aQBF instanceφ = ∀p1 ∃p2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ...,p2N )
wherep1,...,p2N are propositional variables andΨ(p1, . . . ,p2N ) is a quantifier-free
propositional formula built overp1, . . . ,p2N . The fixed deterministic one-counter au-
tomatonA below generates the sequence of counter values(01)ω.

q0 q1
inc

dec

Let ψ be the formula inLTL↓,∅ defined from the familyψ1, . . . , ψ2N+1 of formulae
with ψ =↓2N+1 ψ1: ψ2N+1 = Ψ [pi ← (↑i⇔↑2N+1)] and fori ∈ {1, ..., N}, ψ2i =
F(↓2i ψ2i+1) andψ2i−1 = G(↓2i−1 ψ2i). One can show thatφ is satisfiable iffAφ |=ω

ψ. ForPureMC<ω, one can enforce the sequence of counter values from the accepting
run to be(01)2N0 and then useX to define theψis. ut

Observe that in the reduction, we use an unbounded number of registers (see Theo-
rem 12) but a fixed deterministic one-counter automaton.

3.1 Properties on runs for deterministic automata

Any deterministic one-counter automatonA has at most one infinite run, possibly with
an infinite amount of counter values. If this run is not accepting, i.e. no accepting loca-
tion is repeated infinitely, then for no formulaφ, we haveA |=ω φ. We show below that
we can decide in polynomial-time whetherA has accepting runs either finite or infinite.
Moreover, we shall show that the infinite unique run has some regularity.

Let ρωA be the unique run (if it exists) of the deterministic one-counter automatonA
represented by the following sequence of configurations〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . .

Lemma 4. LetA be a deterministic one-counter automaton with an infinite run. There
are K1,K2,K3 such thatK1 + K2 ≤ |Q|

3, K3 ≤ |Q| and for everyi ≥ K1,
〈qi+K2

, ni+K2
〉 = 〈qi, ni +K3〉.



Hence, the runρωA can be encoded by its firstK1+K2 configurations.ρωA has a sim-
ple structure: it is composed of a polynomial-size prefix〈q0, n0〉 · · · 〈qK1−1, nK1−1〉
followed by the polynomial-size loop〈qK1

, nK1
〉 · · · 〈qK1+K2−1, nK1+K2−1〉 repeated

infinitely often. The effect of applying the loop consists inaddingK3 to every counter
value. Testing whetherA has an infinite run orρωA is accepting amounts to check
whether there is an accepting location in the loop, which canbe done in cubic time
in |Q|. In the rest of this section, we assume thatρωA is accepting. Similarly, testing
whetherA has a finite accepting run amounts to check whether an accepting location
occurs in the prefix or in the loop.

WhenK3 = 0 andA has an infinite run,ρωA is precisely

〈q0, n0〉 · · · 〈qK1−1, nK1−1〉(〈qK1
, nK1

〉 · · · 〈qK1+K2−1, nK1+K2−1〉)
ω.

It is then possible to apply a polynomial-space labelling algorithm à la CTL for model
checkingLTL↓,Q formulae onA. However, one needs to take care of register valua-
tions, which explains why unlike the polynomial-time algorithm for model checking
ultimately periodic models on LTL formulae (see e.g., [20]), model checking restricted
to deterministic automata withK3 = 0 is still PSPACE-hard.

3.2 A PSPACE symbolic model-checking algorithm

In this section, we provide decision procedures for solvingMC<ω andMCω restricted
to deterministic one-counter automata. Let us introduce some notations. LetρωA =
〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . . be the unique run of the deterministic one-counter automa-
tonA andφ be a sentence withN ≥ 1 registers. Leti ≥ 0 be a position inρωA andm
be a register value inN. We writeposA(i,m) to denote the following (possibly infinite)
set of offsets:posA(i,m) = {j ∈ N : m = ni+j}. The valuesm should be understood
as register values when evaluation of subformulae is done atpositioni. In general, the
set{posA(i,m) ⊆ N : i,m ∈ N} can be infinite but if we restrict ourselves tom in
{n0, . . . , ni} then it is not anymore the case. After all, this is a reasonable assumption
whenm is intended to be a value stored in a register. Before showingthis property,
we establish that wheneverK3 > 0, two positions with identical counter values are
separated by a distance that is bounded by a polynomial in|Q|.

Lemma 5. SupposeK3 > 0. For all i ≤ j, (I) ni = nj and i < K1 imply (j − i) ≤
K1 +K1K2, (II) ni = nj andi ≥ K1 imply (j − i) ≤ K2

2 .

Lemma 6. {posA(i,m) : i ∈ N, m ∈ {n0, . . . , ni}} is finite and its cardinality is
polynomial in|Q|.

We writeREGVALUESA to denote the above finite set with polynomial cardinal-
ity. Observe that even though the set of counter values occurring in ρωA may be infinite
(exactly whenK3 > 0) we can represent symbolically each register valuev(r) at a po-
sition i by a concise representation forposA(i, v(r)). One consequence of the proof of
Lemma 6 is that|REGVALUESA| is bounded by(1+K1+K

2
2 )2+K2×(1+K1+K

2
2 ).



We define below the equivalence relation≡ between positions ofρωA: i ≡ i′ iff
qi = q′i, and for allα, β ≥ 0, (ni+α = ni+β iff ni′+α = ni′+β) and (qi+α = qi+β
iff qi′+α = qi′+β). Typically, i and i′ are equivalent whenever the path starting at
positioni is isomorphic to the path starting at positioni′. It is easy to see that≡ has
at mostK1 + K2 equivalence classes sincei ≡K2

i′ and i, i′ ≥ K1 imply i ≡ i′

(here≡K2
is the congruence relation). We extend≡ to pairs composed of positions

and register valuations. Given positionsi, i′ ∈ N and register valuationsv, v′ such that
ran(v) ⊆ {n0, . . . , ni} andran(v′) ⊆ {n0, . . . , ni′}, 〈i, v〉 ≡ 〈i′, v′〉 iff (1) i ≡ i′ and
(2) for all α ≥ 0 and registersr ∈ {1, . . . , N}, ni+α = v(r) iff ni′+α = v′(r). Again,
≡ is an equivalence relation. A pair〈i, v〉 is called acontext.

Condition (2) on the definition of≡ is equivalent to: for every registerr ∈ {1, . . . , N},
posA(i, v(r)) = posA(i′, v′(r)). Consequently,

Lemma 7. There are polynomialsP1 and P2 such that the number of equivalence
classes for≡ on contexts〈i, v〉 is bounded byP1(|Q|) × [P2(|Q|)]

N (N is the num-
ber of registers).

The bound is exactly(K1 +K2) × [(1 +K1 +K2
2 )2 +K2 × (K2

2 +K1 + 1)]N ,
where(1 +K1 +K2

2 )2 +K2× (K2
2 +K1 + 1) is the cardinal ofREGVALUESA and

K1 +K2 is the number of equivalent positions w.r.t. to≡.

Lemma 8. If 〈i, v〉 ≡ 〈i′, v′〉, then (I) for allj > 0,〈i+ j, v〉 ≡ 〈i′ + j, v′〉 and (II) for
every formulaψ ∈ LTL↓,Q

N , ρωA, i |=v ψ iff ρωA, i
′ |=v′ ψ.

Lemma 8(I) is by an easy verification (recurrence onj) whereas Lemma 8(II) is by
structural induction onψ.

3.3 Abstraction and complexity issues

We have seen that the equivalence relation≡ on contexts has finite index. We present
below a means to represent symbolically an equivalence class. In the caseK3 = 0, a
symbolic contextis a pair〈i, pos〉wherei ∈ {0, . . . ,K1+K2−1} andpos is a symbolic
register valuation of the form{1, . . . , N} → {n0, . . . , nK1+K2−1}. A context〈i, v〉 is
represented by the symbolic context〈i′, pos〉 where

– i < K1 impliesi′ = i otherwisei′ is the unique element of{K1, . . . ,K1+K2−1}
such thati ≡K2

i′,
– for r ∈ {1, . . . , N}, pos(r) = v(r). Observe thatv(r) ∈ {n0, . . . , nK1+K2−1}

andpos(r) can be encoded withO(log(|Q|)) bits.

WhenK3 > 0, the definition of a symbolic context is modified for the second compo-
nent only since the set of counter values along the run is infinite. A symbolic contextre-
mains a pair〈i, pos〉 but i ∈ {0, . . . ,K1+K2−1} andpos is a symbolic register valua-
tion of the form{1, . . . , N} → P({0, . . . ,K1+K1K2})∪P({0, . . . ,K2

2}). Moreover,
wheni < K1, pos(r) ⊆ {0, . . . ,K1 +K1K2}, otherwisepos(r) ⊆ {0, . . . ,K2

2}. In-
deed, from Lemma 5, wheneverK3 > 0, for all i ∈ N andm ∈ {n0, . . . , ni}, if i < K1,



thenposA(i,m) ⊆ {0, . . . ,K1+K1K2} otherwiseposA(i,m) ⊆ {0, . . . ,K2
2}. A con-

text 〈i, v〉 is represented by the symbolic context〈i′, pos〉 wherei′ is defined as above
and forr ∈ {1, . . . , N}, pos(r) = posA(i, v(r)).

Each valuepos(r) can be encoded with a polynomial amount of bits in|Q|. One
can compute in polynomial time in|Q| the range of any symbolic register valuation
(whetherK3 = 0 or not) thanks to Lemma 6. When we bound the number of registers,
the number of symbolic contexts occurring inρωA is polynomial in|Q| and they can be
computed in polynomial time.

Given a context〈i, v〉, we write[〈i, v〉] to denote its corresponding symbolic context
(w.r.t.A). Symbolic contexts correspond to the equivalence classesof ≡:

Lemma 9. Let 〈i, v〉 and 〈i′, v′〉 be contexts. Then[〈i, v〉] = [〈i′, v′〉] iff 〈i, v〉 ≡
〈i′, v′〉.

Let us define a mapnext that takes as argument a symbolic context〈i, pos〉 and
returns the symbolic context obtained at the next step. Thisis a well-defined function
because taking two contexts that are≡-equivalent, moving one step forward leads to
two new contexts that are also≡-equivalent (see Lemma 10 below). The mapnext is
defined as follows :next(〈i, pos〉) = 〈i′, pos′〉 where

– if i < K1 +K2 − 1 theni′ = i+ 1, otherwisei′ = K1.
– if K3 > 0, then forr ∈ {1, . . . , N}, pos′(r) = {α− 1 : α ∈ pos(r), α > 0},
– if K3 = 0, thenpos′ = pos.

Lemma 10. Let 〈i, v〉 be a context withran(v) ⊆ {n0, . . . , ni}. Thennext([〈i, v〉]) =
[〈i+ 1, v〉].

Below, we solve the model-checking problem by following an automata-based ap-
proach [30]. We consider alternating word automata with Büchi acceptance condition
onω-words, see e.g. [29]: every infinite branch of accepting runs has an accepting state
repeated infinitely often. Letφ be a formula in NNF built over disjunction∨ and the
release operatorR (dual ofU). Observe thatX and↓r are self-dual. We build an alter-
nating automatonAφ that can be viewed as the product between the run ofA and the
automaton forφ. The synchronization mode between these two components takes into
account the presence of registers. WhenK3 > 0 andA has an accepting run (which
can be checked in PTIME), letAφ = 〈Σ,S, s0, δ, F 〉 be defined as follows:

– Σ = {a} andS is the set of states of the form〈〈i, pos〉, ψ〉 where〈i, pos〉 is a
symbolic context andψ is a subformula ofφ.

– the initial state iss0 = 〈〈0, pos0〉, φ〉 wherepos0 is the symbolic register valuation
representing the zero register valuation andF is the set of accepting states whose
outermost connective of the second component is not until.

– Here is the transition functionδ (obvious dual clauses are omitted):
• δ(〈〈i, pos〉, q〉, a) = > if q = qi, otherwiseδ(〈〈i, pos〉, q〉, a) =⊥,
• δ(〈〈i, pos〉,¬ ↑r〉, a) =⊥ if 0 ∈ pos(r), otherwiseδ(〈〈i, pos〉,¬ ↑r〉, a) = >,
• δ(〈〈i, pos〉, ψ ∧ ψ′〉, a) = δ(〈〈i, pos〉, ψ〉, a) ∧ δ(〈〈i, pos〉, ψ′〉, a),
• δ(〈〈i, pos〉, Xψ〉, a) = 〈next(〈i, pos〉), ψ〉,
• δ(〈〈i, pos〉, ↓r ψ〉, a) = δ(〈〈i, pos[r ← posA(i, ni)]〉, ψ〉, a),



• δ(〈〈i, pos〉, ψUψ′〉, a) =
δ(〈〈i, pos〉, ψ′〉, a) ∨ (δ(〈〈i, pos〉, ψ〉, a) ∧ 〈next(〈i, pos〉), ψUψ′〉).

WhenK3 = 0, the clauses for↓r and↑r can be easily adapted. We writeA〈〈i,pos〉,ψ〉
φ

to denote the automaton defined fromAφ with initial location〈〈i, pos〉, ψ〉.

Lemma 11. Leti ∈ N andv be a register valuation with range{n0, . . . , ni}. For every

subformulaψ of φ, ρωA, i |=v ψ iff A〈[〈i,v〉],ψ〉
φ accepts an infinite run.

The proof (by structural induction) is a variant of the one for LTL and uses Lemma 8
and 10. This will allow us to characterize precisely the complexity of model checking.

Theorem 12. MCω restricted to deterministic one-counter automata isPSPACE-com-
plete and its restriction ton ≥ 1 registers is inPTIME.

Proof. Aφ is an hesitant alternating word automata over a 1-letter alphabet with each
setSj of the partition being a set of states with identical subformulae. By [17, Theorem
5.6], the nonemptiness problem for hesitant alternating word automata over a 1-letter
alphabet can be solved in spaceO(m log2n) wheren is the number of states andm is
the number of elements in the partition of the set of states. In order to obtain the PSPACE

upper bound, it is sufficient to check that the on-the-fly version of the algorithm given in
the proof of [17, Theorem 5.6] can be performed (computationof the transition function
on demand). This is possible partly because inAφ, m is linear in|φ|, n is exponential
in |φ|, for each states, δ(s, a) can be built in polynomial-time in|φ| and testing if a
state is accepting can be done in linear time in|φ|. Moreover, each state inAφ can be
encoded in polynomial space in|A|+ |φ|.

When the number of registers is fixed,Aφ has a polynomial number of states and
since the nonemptiness problem for weak alternating word automata over a 1-letter
alphabet can be solved in linear time [3], we get the PTIME upper bound. ut

For the finitary case, we cannot invoke the result in [3] because the length of the
word is a distinguishing factor.

Corollary 13. MC<ω restricted to deterministic one-counter automata is inEXPSPACE.

The proof consists in designing an alternating word automata onω-words with a
two-letter alphabet on the lines of the previous construction. However, the second letter
marks the end of the word so that all the branches detect the end of the word in a
synchronous way. The recognizedω-words are amonga∗ · b · aω. Then, we invoke the
quadratic space upper bound for the nonemptiness of alternating automata [28], which
provides the EXPSPACEupper bound sinceAφ is of exponential size in|φ| andAφ can
be built in polynomial space in|φ|.

4 Model checking nondeterministic one-counter automata

In this section, we show that several model-checking problems over nondeterministic
one-counter automata are undecidable by reducing decisionproblems for Minsky ma-
chines. Undecidability is preserved even in presence of a unique register. This is quite
surprising sincef -SAT-LTL↓ restricted to one register is decidable [9].



In order to illustrate the significance of the following results, it is worth recalling
that the halting problem for Minsky machines with incrementing errors is reducible
to finitary satisfiability for LTL with one register [9]. We show below that, if we have
existential model checking of one-counter automata instead of satisfiability, then we can
use one-counter automata to refine the reduction in [9] so that runs with incrementing
errors are excluded. More precisely, in the reduction in [9], we were not able to exclude
incrementing errors because the logic is too weak to expressthat, for every decrement,
the datum labelling it was seen before (remember that we haveno past operators). Now,
the one-counter automata are used to ensure that such faultydecrements cannot occur.

Theorem 14. MC<ω1 isΣ0
1 -complete.

Proof. TheΣ0
1 upper bound is by an easy verification since the existence of afinite

run (encoded inN) verifying anLTL↓,Q
1 formula (encoded in first-order arithmetic) can

be encoded by aΣ0
1 formula. So, let us reduce the halting problem for two-counter

automata toMC<ω1 . Let A = 〈Q, qI , δ, F 〉 be a two-counter automaton: the set of
instructionsL is {inc, dec, ifzero}× {1, 2}. We build a one-counter automatonB =

〈Q′, q′I , δ
′, F ′〉 and a sentenceφ in LTL↓,Q′

1 such thatA reaches an accepting location
iff B |=<ω φ.

For each run inA





qI
c01 = 0
c02 = 0





inst
0

−−→





q1

c11
c12





inst
1

−−→ . . .





qN

cN1
cN2



 whereinstis are

instructions, we associate the run inB below
(

qI
0

)

?
−→

(

〈qI , inst
0, q1〉

n1

)

?
−→

(

〈q1, inst1, q2〉
n2

)

. . .

(

〈qN−1, instN−1, qN 〉
nN

)

where
?
−→ hides steps for updating the counter according to the constraints described

below. During these steps, auxiliary locations are used andthere are of two types: loca-
tions that increment or decrement the counter in order to reach an adequate data value
(busyupt,t′ andbusydownt,t′ wheret, t′ are transitions) and intermediate locations to
performε-transitions. The data values in the run ofB are governed by the rules below:

(ii) after any configuration labelled by〈q, inc, c, q′〉 (incrementation of the counterc),
there is no configuration labelled by some〈q1, inc, c′, q′1〉 with the same counter
value,

(iii) after any configuration labelled by〈q, inc, c, q′〉, there is at most one configura-
tion labelled by some〈q1, dec, c, q′1〉 with the same counter value (there are more
incrementations than decrementations),

(iv) after any configuration labelled by〈q, inc, c, q′〉, there is no configuration labelled
by some〈q1, dec, c′, q′1〉 with the same counter value andc 6= c′,

(v) after any configuration labelled by〈q, inc, c, q′〉, there is no configuration labelled
by 〈q1, ifzero, c, q′1〉 followed by a configuration labelled by some〈q1, dec, c, q′1〉
with the same counter value as〈q, inc, c, q′〉,

(vi) after any configuration labelled by〈q, inc, c, q′〉 for which there is no subsequent
configuration labelled by〈q1, dec, c, q′1〉 with the same counter value, there is also
no 〈q2, ifzero, c, q′2〉,



Now, let us defineB. We shall partly encode in its control graph the satisfaction of
these conditions. For instance, two successive incrementation transitions inA, leads to
an incrementation inB since we enforce that the counter value is fresh inB iff its letter
is some〈−, inc,−,−〉 (incrementation instructions). When we writeq

>
−→ q′ we mean

q
inc

−→ auxiq,q′
dec

−→ q′ for an auxiliary locationauxiq,q′ .

– Q′ is equal toδ ] ({qI} ∪ {busydownt,t′ ,busyupt,t′ : t, t′ ∈ δ}) plus some
unspecified auxiliary locations,

– F ′ = {〈q, l, c, q′〉 ∈ δ : q ∈ F} ∪ ({qI} ∩ F ) andq′I = qI ,
– The relationδ′ contains the following transitions:

• For 〈qI , inc, c, q〉 ∈ δ, addq′I
inc

−→ 〈qI , inc, c, q〉 to δ′;

• For t = 〈qI , ifzero, c, q〉 ∈ δ, addq′I
>
−→ t to δ′;

• For every transitiont = 〈q, inc, c, q′〉 ∈ δ,

1. if t′ = 〈q′, inc, c′, q′′〉 ∈ δ, then addt
inc

−→ t′ to δ′,
2. if t′ = 〈q′, ifzero, c′, q′′〉 ∈ δ with c′ 6= c or t′ = 〈q′, dec, c, q′′〉 ∈ δ,

then addt
>
−→ t′ to δ′,

3. if t′ = 〈q′, dec, c′, q′′〉 ∈ δ with c′ 6= c, then addt
>
−→ busydownt,t′ ,

busydownt,t′
dec

−→ busydownt,t′ , andbusydownt,t′
dec

−→ t′ to δ′ (decrement
the counter until it reaches a value for a previous incrementation),

• For every transitiont = 〈q, l, c, q′〉 ∈ δ with l ∈ {dec, ifzero},

1. if t′ = 〈q′, inc, c′, q′′〉 ∈ δ, then addt
>
−→ busyupt,t′ , busyupt,t′

inc

−→

busyupt,t′ , and busyupt,t′
inc

−→ t′ to δ′ (increment the counter until it
reaches a new value),

2. if t′ = 〈q′, ifzero, c′, q′′〉 ∈ δ then addt
>
−→ t′ to δ′,

3. if t′ = 〈q′, dec, c′, q”〉 ∈ δ, then add toδ′ the transitions from Figure 2.
Observe that this is the only case for which we do not know whether the
counter increases or not.

t

busydownt,t′

busyupt,t′

t′

>

>

dec

inc

dec

inc

Fig. 2.Transitions inδ′



In runs ofB, we are only interested in positions with letters inδ. The control graph ofB
guarantees that the succession of transitions inA is valid assuming that we ignore the
intermediate (auxiliary or busy) configurations

The formulaφ is the conjunction of the following requirements: (ii)-(vi) plus

(i) some configuration inF ′ is visited,
(vii) after any configuration labelled byt = 〈q, inc, c, q′〉, there is no configuration

labelled by somebusyupt,t′ with the same counter value and such that the next
configuration has the same label unless there is some configuration labelled by
some〈q1, inc, c, q′1〉 in between,

G(t ⇒↓1 ¬(¬(
_

〈−,inc,−,−〉

〈−, inc,−,−〉)U
_

t′

(busyupt,t′∧ ↑1 ∧X busyupt,t′)))

(viii) after any configuration labelled byt = 〈q, inc, c, q′〉, there is no configuration
labelled by some〈q1, dec, c, q′1〉 with a different counter value unless there is some
configuration labelled by some〈q2, inc, c, q′2〉 in between,

G(t ⇒↓1 ¬(¬(
_

〈−,inc,−,−〉

〈−, inc,−,−〉)U(
_

〈−,dec,c,−〉

(〈−, dec, c,−〉 ∧ ¬ ↑1))))

It is easy to check that each condition in (i)-(viii) can be expressed inLTL↓,Q′

1

(some examples are indeed provided above). Now consider anyrun ofB which satisfies
(ii)-(viii). The key achievement of the definitions ofB andφ is that, for every position
in the run, the counter value is fresh iff either its letter issome〈q, inc, c, q′〉 or the
letter is not inδ ∪ {qI}. For any counterc ∈ {1, 2}, we can define its value as the
number of〈q, inc, c, q′〉 letters for which a latter letter〈q1, dec, c, q′1〉 with the same
value of the counterB has not yet occurred. Observe that the conditions (vii), (viii) and
the control graph ofB induce a stack discipline for the counter values of configurations
with labels of the form either〈−, inc, c,−〉 and〈−, dec, c,−〉. This guarantees that no
configuration labelled by〈−, dec, c,−〉 has a new counter value.

For any run ofB which satisfies (ii)-(viii), we can thus extract a valid run of A.
Conversely, any valid run ofA can be encoded in the same way as a run ofB which
satisfies (ii)-(viii). The latter is done by inserting auxiliary letters as required to reach
appropriate values of the counter ofB. ut

Theorem 15. MCω1 isΣ1
1 -complete.

The proof is similar to the proof of Theorem 14 except that instead of reducing the
halting problem for Minsky machines, we reduce the recurrence problem for nondeter-
ministic Minsky machines that is known to beΣ1

1 -hard [2]. TheΣ1
1 upper bound is by

an easy verification since an accepting run can be viewed as a functionf : N → N

and then checking that it satisfies anLTL↓,Q
1 formula can be expressed in first-order

arithmetic. Another consequence of the Purification Lemma is the result below.

Theorem 16. PureMC<ω1 isΣ0
1 -complete andPureMCω1 isΣ1

1 -complete.

The above-mentioned undecidability holds true even if we restrict ourselves to one-
counter automata for which there are no transitions with identical instructions going



from the same location. A one-counter automatonA is weakly deterministicwhenever
for every locationq, if 〈q, l, q′〉, 〈q, l′, q′′〉 ∈ δ, we havel = l′ implies q′ = q′′. The
transition systems induced by these automata are not necessarily deterministic.

Theorem 17. PureMC<ω1 [resp. PureMCω1 ] restricted to weakly deterministic one-
counter automata isΣ0

1 -complete [resp.Σ1
1 -complete].

The proof uses the Purification Lemma and provides reductions from the model-
checking problems to their restrictions to weakly deterministic automata.

5 Conclusion

We have shown that model checkingLTL↓ over one-counter automata is undecidable,
which contrasts with the decidability of many verification problems for one-counter
automata [14,26]. For instance, we have shown that model checking nondeterministic
one-counter automata overLTL↓ restricted to a unique register and without alphabet
is alreadyΣ1

1 -complete in the infinitary case. On the decidability side, asuitable ab-
straction has been introduced to establish the PSPACE upper bound for model checking
LTL↓ over deterministic one-counter automata in the infinitary case.

Viewing runs as data words is an idea that can be pushed further. For instance, the
decidability status of model checkingLTL↓ over the class of reversal-bounded counter
automata [8] remains open. Hence, our results pave the way for model checkingLTL↓

over other classes of operational models that are known to admit powerful techniques
for solving verification tasks. Finally, among the specific problems left open by this pa-
per, we wish to mention the complexity of model-checking deterministic one-counter
automata withLTL↓ in the finitary case (the complexity is however known in the in-
finitary case). Finitary nonemptiness problem for 1-letterhesitant alternating word au-
tomata also faces the difficulty to determine the end of the word (synchronization is
needed), see e.g. [17].

Acknowledgement:We would like to thank Philippe Schnoebelen for suggesting
simplifications in the proofs of Lemma 2 and Proposition 3.
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