N

N

Model Checking Freeze LTL over One-Counter
Automata

Stéphane Demri, Ranko Lazi¢, Arnaud Sangnier

» To cite this version:

Stéphane Demri, Ranko Lazi¢, Arnaud Sangnier. Model Checking Freeze LTL over One-Counter
Automata. 11th International Conference on Foundations of Software Science and Computation
Structures (FoSSaC’08), Apr 2008, Budapest, Hungary. pp.490-504, 10.1007/978-3-540-78499-9 34 .
hal-03201399

HAL Id: hal-03201399
https://hal.science/hal-03201399

Submitted on 18 Apr 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03201399
https://hal.archives-ouvertes.fr

Model checking freeze LTL over one-counter automata

Stéphane Dem¥j Ranko Lazt?, and Arnaud Sangnié?

LSV, ENS Cachan, CNRS, INRIA &EDF R&D
3Department of Computer Science, University of Warwick, UK

Abstract. We study complexity issues related to the model-checking problem
for LTL with registers (a.k.a. freeze LTL) over one-counter auttamélVe con-
sider several classes of one-counter automata (mainly deterministiondeter-
ministic) and several syntactic fragments (restriction on the numbeigadtees
and on the use of propositional variables for control locations). The fogs the
ability to store a counter value and to test it later against the current coathtier

By introducing a non-trivial abstraction on counter values, we showrtteatel
checking LTL with registers over deterministic one-counter automatames
complete with infinite accepting runs. By constrast, we prove that moéekatg

LTL with registers over nondeterministic one-counter automatsjiccomplete
[resp.XY-complete] in the infinitary [resp. finitary] case even if only one register
is used and with no propositional variable. This makes a difference withatie
that several verification problems for one-counter automata arerkimwe de-
cidable with relatively low complexity, and that finitary satisfiability for LTL with
a unique register is decidable. Our results pave the way for modelicigelckL
with registers over other classes of operational models, such asakbeunded
counter machines and deterministic pushdown systems.

1 Introduction

Logics for data words and treedData words are sequences in which each position is
labelled by a letter from a finite alphabet and by anotheeildtbm an infinite alphabet
(the datum). This fundamental and simple model capturesrtiesl words accepted by
timed automata [1], and its extension to trees is useful tdghEML documents with
values, see e.g. [4,15]. In order to really speak about ¢atayn logical formalisms
for data words/trees contain a mechanism that stores a waldigests it later against
other values, see e.g. [5,9]. This is a powerful featureeshby other memoryful tem-
poral logics [18,16]. However, the satisfiability probleon these logics becomes easily
undecidable even when stored data can be tested only folitggkar instance, first-
order logic for data words restricted to three individuatiahles is undecidable [5],
whereas LTL with registers (also known as freeze LTL) retd to a single register is
undecidable over infinite data words [9]. By contrast, dabld fragments of the satisfi-
ability problems have been found in [5,10,19] either by isipg syntactic restrictions
(bound the number of registers, constrain the polarity ofpteral formulae, etc.) or
by considering subclasses of data words (finiteness for pb@@nSimilar phenomena
occur with metric temporal logics and timed words [22,23]kdy point for all these

* Partially supported by project AVERISS (ANR).

logical formalisms is the ability to store a value from annité alphabet, which is a
feature also present in models of register automata, s¢e,21g25]. However, the stor-
ing mechanism has a long tradition (apart from its ubiquitpiogramming languages)
since it appeared for instance in real-time logics [2] (théadare time values) and in
so-called hybrid logics (the data are node addresses)nsearly undecidability result
with reference pointers in [13]. Meaningful restrictioms fiybrid logics can also lead
to decidable fragments, see e.g. [24].

Our motivations.In this paper, our main motivation is to analyze the effe¢tduling

a binding mechanism with registers to specify runs of op@nat models such as push-
down systems and counter automata. The registers are smgalas to compare data
values at different points of the execution. Indeed, rumskEnaturally viewed as data
words: for example, the finite alphabet is the set of locat@mmd the infinite alphabet is
the set of data values (natural numbers, stacks, etc.). So,doe enrich an ubiquitous
logical formalism for model-checking techniques, naméhgar-time temporal logic
LTL, with registers. Even though this was the initial motiea to introduce LTL with
registers in [10], most decision problems considered inl[a®] are essentially oriented
towards satisfiability. In this paper, we focus on the follogvtype of model-checking
problem: given a set of runs generated by an operational inoaee precisely by a
one-counter automaton, and a formula from LTL with regsstés there a run satisfy-
ing the given formula? In our context, it will become cleaattthe extension with two
counters is undecidable. It is not difficult to show that tiiedel-checking problem
differs from those considered in [19,10] and are of a difi¢neature from those for
hybrid logics investigated in [12,27]. However, since tvamsecutive counter values in
a run are ruled by the set of transitions, constraints on tthattzare helpful to get fine-
tuned undecidability proofs for satisfiability problemdq1®,9] may not be allowed on
runs. This is precisely what we want to understand in thiskwbike in [6], LTL with
registers makes sense to specify and reason about conifigisraf operational models,
precisely counter systems.

Our contribution. We study complexity issues related to the model-checkioglpm
for LTL with registers over one-counter automata that anepée operational models
but our undecidability results can be obviously lifted t@pdown systems when regis-
ters store the stack value. Moreover, in order to determanddslines for decidability,
we also present results for deterministic one-counter tsdtat are less powerful but
remain interesting when they are viewed as a means to sgatififinite path on which
model checking is performed, see analogous issues in [20].

We consider several classes of one-counter automata rfdeistic and nondeter-
ministic) and several fragments by restricting the use gisters or the use of letters
from the finite alphabet. Moreover, we distinguish finite guing runs from infinite
ones as data words. Unlike several results from [22,23]9th6 decidability status
of the model checking does not depend on the fact that we denBnite data words
instead of infinite ones. In this paper, we present the fatigwesults.

— Model checking LTL with registers over deterministic orminter automata is
PSPAacecomplete (see Sect. 3.2). P&Ehardness is established by reducing

QBF and it also holds when no letters from the finite alphabetused in for-
mulae. When the number of registers is bounded, the problenbessolved in
polynomial time. In order to get these complexity upper htgjrwe introduce an
abstraction on counter values even though the countervahag not be bounded
along the unique run of the deterministic automata. Thisaaaksubstantial differ-
ence with [20] in which no data values are considered, blibsti problem amounts
to model checking a path specified by a deterministic onevswautomaton.

— Model checking LTL with registers over nondeterministiceecounter automata
restricted to a unique register and without alphabétiiscomplete in the infinitary
case by reducing the recurrence problem for Minsky machiges Sect. 4). In the
finitary case, the problem is showtf’-complete by reducing the halting problem
for Minsky machines. These results are quite surprisingesseveral verification
problems for one-counter automata are known to be decideitherelatively low
complexity [14,26]. Moreover, finitary satisfiability forTIL with one register is
decidable [9] even though with nonprimitive complexity.

Because of lack of space, omitted proofs can be found in [11].

2 Preliminaries

2.1 One-counter automaton

Let us recall standard definitions and notations about oarainal models. A one-
counter automaton is a tuplé = (Q, qr, 6, F') where@ is a finite set of locations,
qr € Q is the initial location,F’ C @ is the set of accepting locations afidC @ x
L x @ is the transition relation over the instruction get= {inc,dec,ifzero}. A
counter valuation is an element oN and a configuration ofl is a pair in@ x N. The
initial configuration is the paifq;, 0). As usual, a one-counter automatdrinduces a
(possibly infinite) transition systed@) x N, —) such that(q,n) — (¢’,n’) iff one of
the conditions below holds true: (49, inc, ¢’) € andn’ = n+1, (2) (¢, dec,q’) €6
andn’ =n — 1 (andn’ € N), (3) (¢, ifzero,q’) € § andn = n’ = 0. A finite [resp.
infinite] run p is a finite [resp. infinite] sequenge = (qo,n0) — (q1,m1) — -~
where(qo, no) is the initial configuration. A finite run iacceptingiff it ends with an
accepting location. An infinite rup is accepting iff it contains an accepting location
infinitely often (Biichi acceptance condition).

A one-counter automataA is deterministiovhenever it corresponds to a determin-
istic one-counter Minsky machine: for every locatigreither.4 has a unique transition
from ¢ incrementing the counter, of has exactly two transitions frog one with in-
structionifzero and the other one with instructiatec, or A has no transition from
q (not present in original deterministic Minsky machineg)tte transition system in-
duced by any deterministic one-counter automaton, eadhigcmation has at most one
successor. One-counter automata in full generality arenstaod asondeterministic
one-counter automata.

2.2 LTL over data words

Formulae of the logi€.TL"* whereX is a finite alphabet are defined as follows:
pu=a |T,| ¢ | NG | QUG | Xo ||, ¢

wherea € ¥ andr ranges ovel \ {0}. We write LTL' to denote LTL with registers
for some unspecified finite alphabet. An occurrencd,ofvithin the scope of some
freeze quantifieff,. is bound by it; otherwise it is free. A sentence is a formulthwio
free occurrence of any,. Given a natural number > 0, we write LTL* to denote
the restriction o LTL"* to registers in(1,...,n}. Models of LTL"* aredata words
A data wordo over a finite alphabel is a non-empty word if?<* or X, together
with an equivalence relatior® on word indices. We writér| for the length of the data
word, o (7) for its letters wher® < i < |o]|.

A register valuatiorw for a data wordv is a finite partial map fronN \ {0} to the
indices ofo. Whenever(r) is undefined, the formuld,. is interpreted as false. The
satisfaction relatiof= is defined as follows (Boolean clauses are omitted).

12

o(i)=a

r € dom(v) andv(r) ~7 i

i+1<|olando,i+1E, ¢

for somej > i, 0,5 =, ¢2 andforalli < j' < j, 0,5 =, ¢

0,0 Ey a
0,1y Tr
0,1 =y X9
0,i FEy ¢1Up2

. def .
a,1 |:v br® & 0,1 ‘:v[r»—n’] o

12

18

12

v[r — 4] denotes the register valuation equabtexcept that the registeris mapped
to the position:. In the sequel, we omit the subscript™in =, when sentences are
involved. We use the standard abbreviations for the tenhpgerators ¢, F, ...) and
for the Boolean operators and constants=, T, L, ...). The infinitary [resp. finitary]
satisfiability problem for LTL with registers, notegd-SAT-LTL! [resp. f-SAT-LTL!],

is defined as follows: given a finite alphabgtand a formulap in LTL"*, is there an
infinite [resp. a finite] data woré such that, 0 = ¢?

Theorem 1. [9] w-SAT-LTL restricted to one register ig7Y-complete andf-SAT-
LTL! restricted to one register is decidable with non-primitreeursive complexity.

Given a one-counter automateh = (Q, q;, d, F), finite [resp. infinite] accepting
runs of A can be viewed as finite [resp. infinite] data words over thbalyet). Indeed,
given a runp, the equivalence relatior” is defined as followsi ~* j iff the counter
value at theith position ofp is equal to the counter value at thith position ofp. In
order to ease the presentation, in the sequel we store steegicounter values, which
is an equivalent way to proceed by slightly adapting the sgic&for {,. and |,., and
the values stored in registers (data).

The finitary [resp. infinitary] (existential) model-chenliproblem over one-counter
automata for LTL with registers, notédC<“ [resp.MC“] is defined as follows: given
a one-counter automatoh = (Q, ¢z, 6, F') and a sentencgin LTL"?, is there a finite
[resp. infinite] accepting rup of A such thap, 0 = ¢? If the answer is “yes”, we write

A E<¥ ¢ [resp.A E“ ¢]. In this existential version of model checking, this preril
can be viewed as a variant of satisfiability in which satisfecof a formula can be
only witnessed within a specific class of data words, nantedyaiccepting runs of the
automata. Results for the universal version of model cmeckiill follow easily from
those for the existential version.

We write MC;, to denote the restriction &fIC* to formulae with at most regis-
ters. Very often, it makes sense that only counter valuekrave/n but not the current
location of a configuration, which can be understood as arrat information about
the system. We writ®ureMC?, to denote the restriction @fIC?; (its “pure” version)
to formulae with atomic formulae only of the fori.

Example 1.Here are properties that can be stateIﬂTL%’Q along a run.

— “There is a suffix such that all the counter values are différeeG(|; XG— T1).

— “Whenever locatiory is reached with current counter valueand next current
counter valuen, if there is a next occurrence qf the two consecutive counter
values are alse andm”: G(¢ =-]1 X |2 XG(¢ =11 AX T2)).

We show how to get rid of propositional variables by redudimgmodel-checking
problem over one-counter automata to its pure version.

Lemma 2 (Purification). Given a one-counter automatchand a sentencg in LTL} @,
one can compute in logarithmic space|id| + |¢| a one-counter automatod » and
ép in LTL#‘ZJC(H ;) such thatA =<+ ¢ [resp. A = ¢]iff Ap =< ¢p [resp.
Ap E¥ ¢p). Mofeover,A is deterministic iftA p is deterministic.

The idea of the proof is simply to identify locations with fghs about the changes
of the unique counter that can be expressedlin.! ?,

Proof. Let A = (Q, q1,6, F) with Q = {q1, ..., ¢, } and¢ in LTL>%. In order to define
Ap, we identify locations with patterns about the changes efuthique counter. For
each locationry; in (Q we associate the new sequence of transitions described.ii Fi
andg; > q; € §iff ¢F 5 g; € ¢'. In the sequence of picks numbered fréro n + 1,
the only pick of height 2 is one numberedin order to identify the beginning of the
first pick of height 3 we introduce formulae IﬁFL{’@: ¢ expresses that “among the
7 next counter values (including the current counter valiingyre are no 3 equal values”
andyg..¢ expresses that “the current counter value is equal to theteoualue at the
6th next position”. We write LOC to denote the formu,da% A ¢o~6- By a simple case
analysis, one can check that for> 0, in the run ofAp, LOC holds true iff the current
location is inQ. We posep; = X6+2(=1) |, x2— 1, for 1 < i < n. One can check that
for k > 0, in the run ofAp LOC A ¢; holds true iff the current location ig. ¢p is
equal toT(¢) with the mapT that is homomorphic for Boolean operators dndand
its restriction tof,. is identity. The rest of the inductive definition is as folew

T(g:) = ¢i; T(X¢) = X' HIHIT(); T(¢ug') = (LOC = T(¢))U(LOC A T(¢'))

We remark that) and¢ p have the same amount of registers unlesss no register.
O

p% A
S A S o (&)

Fig. 1. Encodingg; by a pattern made of + 2 increasing picks of length0 + 2(n + 1)

3 Model checking deterministic one-counter automata

In this section, we show thatlC“ restricted to deterministic one-counter automata is
P SPACE-complete and the same restriction MIC<* is in EXPSPACE. First, we show
PSrAcE-hardness.

Proposition 3. PureMC<“ andPureMC" restricted to deterministic one-counter au-
tomata areP SPAcE-hard problems.

Proof. Consider aQBF instance¢ = Vp; Jps -+ Vpany—1 3 pan ¥(p1,-.., P2N)
wherep,...pon are propositional variables anbl(py, ..., paxn) is a quantifier-free
propositional formula built ovep, . .., pan. The fixed deterministic one-counter au-
tomatonA below generates the sequence of counter valiies’.

inc
nO=0
dec

Let ¢ be the formula inLTLY? defined from the familytyy, ..., Y9N Of formulae
With o) =laon11 1 Yans1 = Y[pi — (TseTans1)] and fori € {1,..., N}, ¥y =
F(l2i ¥2i4+1) andy;—1 = G(]2:—1 2:). One can show that is satisfiable iffA4 =,
1. ForPureMC<*“, one can enforce the sequence of counter values from thptauge
run to be(01)2V0 and then us# to define thay;s. O

Observe that in the reduction, we use an unbounded numbegisters (see Theo-
rem 12) but a fixed deterministic one-counter automaton.

3.1 Properties on runs for deterministic automata

Any deterministic one-counter automatdrhas at most one infinite run, possibly with
an infinite amount of counter values. If this run is not actepti.e. no accepting loca-
tion is repeated infinitely, then for no formutawe haved =* ¢. We show below that
we can decide in polynomial-time whethdrhas accepting runs either finite or infinite.
Moreover, we shall show that the infinite unique run has saegalarity.

Let p% be the unique run (if it exists) of the deterministic one-uten automatod
represented by the following sequence of configuratignsno) (q1,n1) (g2, n2) ...

Lemma 4. Let A be a deterministic one-counter automaton with an infinite. fthere
are K1, Ko, K3 such thatkK; + Ko, < |Q|?, K3 < |Q| and for everyi > Kj,
(GitKas NitKs) = (qisni + K3).

Hence, the rup*; can be encoded by its firéf, + K, configurationsp® has a sim-
ple structure: it is composed of a polynomial-size préfix, no) - - - (¢x, -1, N5, —1)
followed by the polynomial-size loofyk, , nk,) -+ {(qx, + k-1, Kk, +K,—1) FEPeated
infinitely often. The effect of applying the loop consistsaitding K3 to every counter
value. Testing whethe has an infinite run op®, is accepting amounts to check
whether there is an accepting location in the loop, which lmamone in cubic time
in |Q|. In the rest of this section, we assume tpgtis accepting. Similarly, testing
whetherA has a finite accepting run amounts to check whether an angdptation
occurs in the prefix or in the loop.

WhenK; = 0 and.A has an infinite runy is precisely

<CI07 no) T <QK171,NK171>(<(1K1,”K1> T <QK1+K271anK1+K271>)w-

It is then possible to apply a polynomial-space labellirgpéathm a la CTL for model
checkingLTL"® formulae onA. However, one needs to take care of register valua-
tions, which explains why unlike the polynomial-time alilom for model checking
ultimately periodic models on LTL formulae (see e.g., [201pdel checking restricted

to deterministic automata with's = 0 is still PSPACE-hard.

3.2 A PS,AcE symbolic model-checking algorithm

In this section, we provide decision procedures for solWfig<“ andMC* restricted

to deterministic one-counter automata. Let us introduceesootations. Lepy =
(g0, n0) {q1,n1) (g2,m2) ... be the unique run of the deterministic one-counter automa-
ton A and¢ be a sentence with/ > 1 registers. Let > 0 be a position inp*; andm

be aregister value iN. We writepos 4 (i, m) to denote the following (possibly infinite)
set of offsetspos 4(z,m) = {j € N: m = n;;,;}. The valuesn should be understood
as register values when evaluation of subformulae is dopesition:. In general, the
set{pos4(i,m) C N : i,m € N} can be infinite but if we restrict ourselves#toin
{no, ..., n;} then it is not anymore the case. After all, this is a reas@absumption
whenm is intended to be a value stored in a register. Before showtiisgproperty,
we establish that whenevéfs > 0, two positions with identical counter values are
separated by a distance that is bounded by a polynomjél|in

Lemma 5. Supposd(s > 0. Forall i < j, (I) n, = n; andi < K; imply (j — i) <
K+ K1 K>, (”) n; = N; andsi > K, Imply(j — Z) < K22

Lemma6. {pos4(i,m) : i € N, m € {ng,...,n;}} is finite and its cardinality is
polynomial in|Q)|.

We write REGVALUES 4 to denote the above finite set with polynomial cardinal-
ity. Observe that even though the set of counter values dogun p; may be infinite
(exactly whenK’s > 0) we can represent symbolically each register val{te at a po-
sitions by a concise representation fass 4 (¢, v(r)). One consequence of the proof of
Lemma 6 is thafREGVALUES 4| is bounded by1+ K1+ K3)?+ Ko x (1+K; +K3).

We define below the equivalence relatienbetween positions 0f%: i = i iff
g = ¢}, and for alle, B > 0, (Njta = niyp Iff niye = nyipg) and Givo = ¢itp
iff ¢va = gi4p). Typically, i ands’ are equivalent whenever the path starting at
positions is isomorphic to the path starting at positignlt is easy to see that has
at mostK; + K, equivalence classes since=g, ¢’ andi, i’ > K; imply i = ¢
(here=g, is the congruence relation). We extesdto pairs composed of positions
and register valuations. Given positioi$' € N and register valuations, v’ such that
ran(v) C {ng,...,n;} andran(v’) C {ng,...,ny}, (i,v) = @, o) iff (1) « = ' and
(2) foralla > 0 and registers € {1,..., N}, nj1o = v(r) iff nyo = v'(r). Again,
= is an equivalence relation. A pdi, v) is called acontext

Condition (2) on the definition Gt is equivalent to: for every registere {1,..., N},
pos 4(i,v(r)) = pos 4 (¢, v'(r)). Consequently,

Lemma 7. There are polynomialg”, and P, such that the number of equivalence
classes for= on contexts/i, v) is bounded byP; (|Q]) x [Px(|Q])]Y (N is the num-
ber of registers).

The bound is exactlyK; + Ks) x [(1 + K1 + K2)? + Ky x (K2 + K; + 1)}V,
where(1+ Ky + K3)* 4+ Ky x (K3 + K; + 1) is the cardinal 0REGVALUES 4 and
K1 + K is the number of equivalent positions w.r.t.20

Lemma 8. If (i,v) = (i, v’), then (I) for all j > 0,(i + j,v) = (i’ + j,v") and (Il) for
every formulay € LTLY®, p%,i b=, ¢ iff p4, i’ o 0.

Lemma 8(l) is by an easy verification (recurrencejpwhereas Lemma 8(ll) is by
structural induction on.

3.3 Abstraction and complexity issues

We have seen that the equivalence relatioon contexts has finite index. We present
below a means to represent symbolically an equivalencs.diaghe casd{; = 0, a
symbolic contexs a pair(i, pos) wherei € {0, ..., K;+Ko—1} andpos is a symbolic
register valuation of the formil,..., N} — {ng,...,nk, +K,—1} A context(i,v) is
represented by the symbolic contéxt pos) where

— i < K, impliesi’ = i otherwise’ is the unique element gfK;, ..., K1+ Ky —1}
such that =g, ¢/,

—forr € {1,...,N}, pos(r) = v(r). Observe thav(r) € {no,...,nK,+Kk,—1}
andpos(r) can be encoded wit®(log(|Q|)) bits.

When K3 > 0, the definition of a symbolic context is modified for the seteompo-
nent only since the set of counter values along the run isitefiA symbolic contexte-
mains a pairi, pos) buti € {0, ..., K1 + Ky —1} andpos is a symbolic register valua-
tion of the form{1,..., N} — P({0,..., K1+ K1 K> })UP({0, ..., K3}). Moreover,
wheni < K7y, pos(r) C {0,..., K1 + K1 Ky}, otherwisepos(r) C {0, ..., K3}. In-
deed, from Lemma 5, whenevar > 0, foralli € Nandm € {ng,...,n;},ifi < K3,

thenpos 4 (i,m) C {0,..., K1+ K1 K5} otherwisepos 4(i,m) C {0,..., K3}. Acon-
text (i, v) is represented by the symbolic contéxt pos) wherei’ is defined as above
and forr € {1,..., N}, pos(r) = pos 4(i,v(r)).

Each valuepos(r) can be encoded with a polynomial amount of bitg@i. One
can compute in polynomial time if@Q| the range of any symbolic register valuation
(whetherK3 = 0 or not) thanks to Lemma 6. When we bound the number of regijsters
the number of symbolic contexts occurringyfj is polynomial in|@Q| and they can be
computed in polynomial time.

Given a contexti, v), we write[(i, v)] to denote its corresponding symbolic context
(w.r.t. 4). Symbolic contexts correspond to the equivalence classas

Lemma 9. Let (i,v) and (i/,v') be contexts. Thef(i,v)] = [(/',v")] iff (i,v) =
(i’ 0').

Let us define a mapext that takes as argument a symbolic contéxpos) and
returns the symbolic context obtained at the next step. iEhaswell-defined function
because taking two contexts that aesquivalent, moving one step forward leads to
two new contexts that are alse-equivalent (see Lemma 10 below). The map:t is
defined as follows next((i, pos)) = (', pos’) where

— if 1 < Ky + K9 — 1thenid = ¢ + 1, otherwise’ = K.
— if K3 >0, thenforr € {1,...,N},pos’(r) = {a —1: a € pos(r),a > 0},
— if K3 =0, thenpos’ = pos.

Lemma 10. Let (i, v) be a context withan(v) C {no, ..., n;}. Thennext([(i,v)]) =
[(i 4+ 1,0)].

Below, we solve the model-checking problem by following amomata-based ap-
proach [30]. We consider alternating word automata withtBiacceptance condition
onw-words, see e.g. [29]: every infinite branch of acceptingtuas an accepting state
repeated infinitely often. Lep be a formula in NNF built over disjunctiox and the
release operatd (dual of U). Observe thak and |,. are self-dual. We build an alter-
nating automatom,, that can be viewed as the product between the rud ahd the
automaton fors. The synchronization mode between these two componergs tato
account the presence of registers. WHén > 0 and.4 has an accepting run (which
can be checked in RWE), let Ay = (X, S, so, 6, F') be defined as follows:

— ¥ = {a} and S is the set of states of the for{:, pos), 1)) where (i, pos) is a
symbolic context ang is a subformula of.

— the initial state issg = ((0, poso), ¢) Wherepos is the symbolic register valuation
representing the zero register valuation d@nd the set of accepting states whose
outermost connective of the second component is not until.

— Here is the transition functiofi (obvious dual clauses are omitted):

({(i,pos),q),a) = T if ¢ = g;, otherwised ({(z, pos), ¢),a) =L,

(i,pos),— T,),a) =L if 0 € pos(r), otherwised(({i, pos), = T,),a) =T,

EZ pos), 1 A '), a) = 6(((i, pos),)., a) A 6(((i, pos), v'), a),

(i

1, pos), X) a) = (next({i, pos)),),
i,pos), L ¥),a) = 3({(i, pos[r « pos 4(i,n:)]),), a),

o
a((
a(¢
o(¢
(¢

* 0({(i, pos), YUY’), a) =
(((i, pos), ¥'),a) Vv (6(((i, pos),), a) A (newt({i, pos)), YUy")).
(i,pos),¥)

WhenK3 = 0, the clauses fof, and{,. can be easily adapted. We wrm%
to denote the automaton defined frofg with initial location ((i, pos), 1).

Lemma 11. Leti € N andv be aregister valuation with ranggny, . . ., n; }. For every
subformulay of ¢, p4,i =, ¢ iff Ag“’””’w accepts an infinite run.

The proof (by structural induction) is a variant of the onelfbL and uses Lemma 8
and 10. This will allow us to characterize precisely the ctaxity of model checking.

Theorem 12. MC* restricted to deterministic one-counter automat#®i&ACE-com-
plete and its restriction taw > 1 registers is inP TIME.

Proof. A, is an hesitant alternating word automata over a 1-lettdraddpt with each
setS; of the partition being a set of states with identical subfaliae. By [17, Theorem
5.6], the nonemptiness problem for hesitant alternatingdvemtomata over a 1-letter
alphabet can be solved in spaBém log®>n) wheren is the number of states amd is
the number of elements in the partition of the set of statestder to obtain the PF\.CE
upper bound, it is sufficient to check that the on-the-fly ier®f the algorithm given in
the proof of [17, Theorem 5.6] can be performed (computaifdhe transition function
on demand). This is possible partly becauselin m is linear in|¢|, n is exponential
in |¢|, for each state, (s, a) can be built in polynomial-time ifg| and testing if a
state is accepting can be done in linear timégin Moreover, each state id, can be
encoded in polynomial space | + |¢|.

When the number of registers is fixed,, has a polynomial number of states and
since the nonemptiness problem for weak alternating wotdnaata over a 1-letter
alphabet can be solved in linear time [3], we get theNfETupper bound. ad

For the finitary case, we cannot invoke the result in [3] beeathe length of the
word is a distinguishing factor.

Corollary 13. MC<* restricted to deterministic one-counter automata iEPSPACE.

The proof consists in designing an alternating word autanoatw-words with a
two-letter alphabet on the lines of the previous constamctHowever, the second letter
marks the end of the word so that all the branches detect ttieoethe word in a
synchronous way. The recognizedwvords are among* - b - a*. Then, we invoke the
quadratic space upper bound for the nonemptiness of altegreeutomata [28], which
provides the EPSPACE upper bound sincel, is of exponential size ify| and.A, can
be built in polynomial space if®|.

4 Model checking nondeterministic one-counter automata

In this section, we show that several model-checking prablever nondeterministic
one-counter automata are undecidable by reducing degisabiems for Minsky ma-
chines. Undecidability is preserved even in presence ofiguerregister. This is quite
surprising sincef-SAT-LTL! restricted to one register is decidable [9].

In order to illustrate the significance of the following résuit is worth recalling
that the halting problem for Minsky machines with increniegiterrors is reducible
to finitary satisfiability for LTL with one register [9]. We sl below that, if we have
existential model checking of one-counter automata inksdéaatisfiability, then we can
use one-counter automata to refine the reduction in [9] stortims with incrementing
errors are excluded. More precisely, in the reduction inf@ were not able to exclude
incrementing errors because the logic is too weak to exphessfor every decrement,
the datum labelling it was seen before (remember that we tapast operators). Now,
the one-counter automata are used to ensure that such degltgments cannot occur.

Theorem 14. MC5 is X¥-complete.

Proof. The XY upper bound is by an easy verification since the existencefinita
run (encoded ilN) verifying anLTL{Q formula (encoded in first-order arithmetic) can
be encoded by &9 formula. So, let us reduce the halting problem for two-ceunt
automata toMC;¥. Let A = (Q, qz,9, F) be a two-counter automaton: the set of
instructionsL is {inc, dec, ifzero} x {1, 2}. We build a one-counter automatsn=

(@', q7,0', F'y and a sentencg in LTL{’QI such that4 reaches an accepting location
iff BE<Y ¢.

1 N
u inst® inst? q i
Foreachrunind [=0 | == [| = ... | ¢ | whereinst's are
=0 s e

instructions, we associate the runrbelow

ar\ = ({qr,inst® ')\ « [{q¢',inst?, ¢?) {gV=1, inst" 1, ¢V)
o)~ n! - n? T nN

where 5 hides steps for updating the counter according to the ainggrdescribed
below. During these steps, auxiliary locations are usedlae@ are of two types: loca-
tions that increment or decrement the counter in order tohrea adequate data value
(busyup, ,, andbusydown, ,, wheret, ¢" are transitions) and intermediate locations to
performe-transitions. The data values in the runf®are governed by the rules below:

(i) after any configuration labelled by, inc, ¢, ¢’) (incrementation of the countey,
there is no configuration labelled by sorg, inc, ¢, ¢}) with the same counter
value,

(iii) after any configuration labelled byg, inc, ¢, ¢'), there is at most one configura-
tion labelled by soméq, , dec, ¢, ¢;) with the same counter value (there are more
incrementations than decrementations),

(iv) after any configuration labelled by, inc, ¢, ¢}, there is no configuration labelled
by some{q;,dec, ¢, ¢}) with the same counter value ang ¢/,

(v) after any configuration labelled Hy, inc, ¢, ¢’), there is no configuration labelled
by (q1, ifzero, ¢, ¢;) followed by a configuration labelled by sonw@ , dec, ¢, ¢7)
with the same counter value &g inc, ¢, ¢'),

(vi) after any configuration labelled bly, inc, ¢, ¢’) for which there is no subsequent
configuration labelled byg:, dec, ¢, ¢}) with the same counter value, there is also
No (gs, ifzero, ¢, ¢}),

Now, let us defing3. We shall partly encode in its control graph the satisfactb
these conditions. For instance, two successive increrientaansitions in4, leads to
an incrementation i since we enforce that the counter value is fresh iff its letter
is some(—, inc, —, —) (incrementation instructions). When we wr&jtel ¢’ we mean

inc . dec f | | t .
q — auxiy e — ¢ for an auxiliary locatioruuzig g .

- Q" is equal tod ¥ ({gr} U {busydown, ,,, busyup, ,, : ¢,t' € d}) plus some
unspecified auxiliary locations,

- F'={{q,l,c,qd') €d:q€ F}U({qr} NF)andg; = qr,

— The relationy’ contains the following transitions:

For (gr, inc,c,¢) € 4, addg} in¢ (qr,1inc,c,q) to &';

Fort = (q;, ifzero,c, q) € , addg; L tto o'
For every transition = (g, inc, ¢, q¢’) € 4,

1. ift’ = {(¢,inc,d,q") € §, then add ¢ 108,

2. ift' = (¢, ifzero,d,q") € Swith # cort’ = (¢’,dec,c,q") € 4,
then addt > ¢ to &,

3. ift' = (¢ ,dec,d,q") € 6 with ¢ # ¢, then addt L busydown, 4,
busydown, 4 i busydown, ;,, andbusydown, ;, %< ' to ¢’ (decrement
the counter until it reaches a value for a previous increatent),

For every transitiont = (q,1,¢,¢') € 6 with | € {dec, ifzero},

1. if ¢/ = (¢',inc,c,¢") € 6, then addt iR busyup; ;, busyup, ,/ g

busyup, ,, and busyup, ,/ 2% ' to &' (increment the counter until it
reaches a new value),

2. ift' = (¢, ifzero,d,q") € § then add L tto o,

3. ift' = {¢,dec,,q”) € ¢, then add ta)’ the transitions from Figure 2.
Observe that this is the only case for which we do not know hdrethe
counter increases or not.

Fig. 2. Transitions iny’

In runs of B, we are only interested in positions with lettergiT he control graph oB
guarantees that the succession of transitiond is valid assuming that we ignore the
intermediate (auxiliary or busy) configurations

The formulag is the conjunction of the following requirements: (ii)-(ylus

(i) some configuration iF” is visited,

(vii) after any configuration labelled by = (g, inc, ¢, ¢’), there is no configuration
labelled by soméusyup, ,,» with the same counter value and such that the next
configuration has the same label unless there is some caatigudabelled by
some(qy, inc, ¢, ¢}) in between,

Gt=li-(=C \/ (= inc,— —))U\/(busyup, /A 11 AX busyup, ,/)))

(—»inc,—,—) t/

(viii) after any configuration labelled by = (q, inc, ¢, ¢'), there is no configuration
labelled by soméq, , dec, ¢, ¢7) with a different counter value unless there is some
configuration labelled by som@s., inc, ¢, ¢}) in between,

Gt=li~(=(\/ (=ine,—) \/ (= dec,c,~) A= T11)))

(—»inc,—,—) (—,dec,c,—)

It is easy to check that each condition in (i)-(viii) can bepessed inLTL{’Q/
(some examples are indeed provided above). Now consideuargf B which satisfies
(ii)-(viii). The key achievement of the definitions &fand¢ is that, for every position
in the run, the counter value is fresh iff either its lettes@ne(q, inc, ¢, ¢’) or the
letter is not ind U {qr}. For any counter € {1,2}, we can define its value as the
number of(q, inc, ¢, ¢’) letters for which a latter lettefq , dec, ¢, ¢;) with the same
value of the counteB has not yet occurred. Observe that the conditions (vii)i) @nd
the control graph oB induce a stack discipline for the counter values of confitjoma
with labels of the form eithef—, inc, ¢, —) and{—, dec, ¢, —). This guarantees that no
configuration labelled by—, dec, ¢, —) has a new counter value.

For any run ofBB which satisfies (ii)-(viii), we can thus extract a valid ruh.4.
Conversely, any valid run afl can be encoded in the same way as a ru8 @fhich
satisfies (ii)-(viii). The latter is done by inserting auaily letters as required to reach
appropriate values of the counter®f O

Theorem 15. MCY is X} -complete.

The proof is similar to the proof of Theorem 14 except thatdgad of reducing the
halting problem for Minsky machines, we reduce the recuegiroblem for nondeter-
ministic Minsky machines that is known to B¢} -hard [2]. TheX upper bound is by
an easy verification since an accepting run can be viewed asctidn f : N — N
and then checking that it satisfies HrFL{’Q formula can be expressed in first-order
arithmetic. Another consequence of the Purification Lemsithe result below.

Theorem 16. PureMC; is X9-complete andPureMCY is X'} -complete.

The above-mentioned undecidability holds true even if vetriet ourselves to one-
counter automata for which there are no transitions withtidal instructions going

from the same location. A one-counter automatbis weakly deterministisvhenever
for every locationy, if (q,1,q¢'),{(q,!',q") € 6, we havel = I’ impliesq¢’ = ¢"’. The
transition systems induced by these automata are not reitgsieterministic.

Theorem 17. PureMC; [resp. PureMCY] restricted to weakly deterministic one-
counter automata is©)-complete [respX;-complete].

The proof uses the Purification Lemma and provides redusticom the model-
checking problems to their restrictions to weakly deteistio automata.

5 Conclusion

We have shown that model checkib@L' over one-counter automata is undecidable,
which contrasts with the decidability of many verificatioroplems for one-counter
automata [14,26]. For instance, we have shown that modekaie nondeterministic
one-counter automata ovef'L! restricted to a unique register and without alphabet
is alreadyX’{-complete in the infinitary case. On the decidability sidesuiable ab-
straction has been introduced to establish theA2® upper bound for model checking
LTL' over deterministic one-counter automata in the infinitaryec

Viewing runs as data words is an idea that can be pushed fuRbeinstance, the
decidability status of model checkifigl'L' over the class of reversal-bounded counter
automata [8] remains open. Hence, our results pave the wagddel checking.TL'
over other classes of operational models that are knownrtotgmbwerful techniques
for solving verification tasks. Finally, among the specifiolgems left open by this pa-
per, we wish to mention the complexity of model-checkingedeiinistic one-counter
automata withLTL' in the finitary case (the complexity is however known in the in
finitary case). Finitary nonemptiness problem for 1-leltesitant alternating word au-
tomata also faces the difficulty to determine the end of thedweynchronization is
needed), see e.g. [17].

AcknowledgementiVe would like to thank Philippe Schnoebelen for suggesting
simplifications in the proofs of Lemma 2 and Proposition 3.

References

1. R. Alur and D. Dill. A theory of timed automatd@CS 126:183-235, 1994.

2. R. Alur and T. Henzinger. A really temporal logic. FOCS'89 pages 164-169. IEEE,
1989.

3. O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic amgpréa branching-time
model checking. IICAV’'94, volume 818 oLLNCS pages 142-155. Springer, 1994.

4. M. Bojahczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Tvesiable logic
on data trees and XML reasoning. R®DS’06 pages 10-19, 2006.

5. M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Tvesiable logic
on words with data. IhICS’06, pages 7-16. IEEE, 2006.

6. A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framewornkriEasoning about dy-
namic networks of infinite-state processes. TRCAS'07 volume 4424 ofLNCS pages
690-705. Springer, 2007.

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to datuéyes and timed
languagesl & C, 182(2):137-162, 2003.

Z. Dang, O. Ibarra, and P. S. Pietro. Liveness verification afreal-bounded multicounter
machines with a free counter. FST&TCS'01 volume 2245 ofLNCS pages 132-143.
Springer, 2001.

. S. Demri and R. Lazi LTL with the freeze quantifier and register automataLIl@S’06,

pages 17-26. |IEEE, 2006.

S. Demri, R. Lazi, and D. Nowak. On the freeze quantifier in constraint LTL: decidability
and complexityl & C, 205(1):2—24, 2007.

S. Demri, R. Ladi, and A. Sangnier. Model checking freeze LTL over one-count&maata.
Research report, Laboratoire Spécification et Vérification, ENS Cadt®d8.

M. Franceschet and M. de Rijke. Model checking hybrid logics (withapplication to
semistructured datajournal of Applied Logic4(3):279-304, 2006.

V. Goranko. Hierarchies of modal and temporal logics with refege pointersJournal of
Logic, Language, and Informatioh:1-24, 1996.

P. Jabar, A. K&era, F. Moller, and Z. Sawa. DP lower bounds for equivalencekihg and
model-checking of one-counter automalt& C, 188(1):1-19, 2004.

M. Jurdzinski and R. LaZi. Alternation-free modal mu-calculus for data treesLIGS'07,
pages 131-140, 2007.

O. Kupferman and M. Vardi. Memoryful Branching-Time Logia ULICS’06, pages 265—
274. IEEE, 2006.

O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theorgifsr@ach to branching-
time model checkingJACM, 47(2):312-360, 2000.

F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal {eigicforgettable past. In
LICS'02 pages 383-392. IEEE, 2002.

R. LazE. Safely freezing LTL. IFFST&TCS’06 volume 4337, pages 381-392. LNCS, 2006.
N. Markey and P. Schnoebelen. Model checking a pattCONCUR’03 volume 2761 of
LNCS pages 251-261. Springer, 2003.

F. Neven, T. Schwentick, and V. Vianu. Finite state machines fogstorer infinite alpha-
bets. TOCL, 5(3):403—-435, 2004.

J. Ouaknine and J. Worrell. On Metric Temporal Logic and faultyinffumachines. In
FOSSACS’0pvolume 3921 oL NCS pages 217-230. Springer, 2006.

J. Ouaknine and J. Worrell. On the decidability and complexity of metripéeal logic over
finite words.Logical Methods in Computer Scien@&£1:8):1-27, 2007.

T. Schwentick and V. Weber. Bounded-variable fragments ofithybgics. InSTACS’'07
volume 4393 oLNCS pages 561-572. Springer, 2007.

L. Segoufin. Automata and logics for words and trees over an inéilpteabet. INCSL'06
volume 4207 oLNCS pages 41-57. Springer, 2006.

O. Serre. Parity games played on transition graphs of one-copmtteesses. IfFOS-
SACS’'06volume 3921 ot NCS pages 337-351. Springer, 2006.

B. ten Cate and M. Franceschet. On the complexity of hybrid logics witlebs. InCSL'05
volume 3634 oLNCS pages 339-354. Springer, 2005.

M. Vardi. Alternating automata and program verificationCB Today — Recent Trends and
Developmentssolume 1000 of NCS pages 471-485. Springer, 1996.

M. Vardi. Alternating automata: unifying truth and validity checking fenp®ral logics. In
CADE-14 volume 1249 oL NCS pages 191-206. Springer, 1997.

M. Vardi and P. Wolper. Automata-theoretic techniques for modgdt$oof programsJCSS
32:183-221, 1986.

