N
N

N

HAL

open science

Reasoning About Sequences of Memory States

Rémi Brochenin, Stéphane Demri, Etienne Lozes

» To cite this version:

Rémi Brochenin, Stéphane Demri, Etienne Lozes. Reasoning About Sequences of Memory States.
Proceedings of the Symposium on Logical Foundations of Computer Science (LFCS07), Sergei Arte-
mov; Anil Nerode, Jul 2007, New York, United States. pp.100-114, 10.1007/978-3-540-72734-7_8 .
hal-03201337

HAL Id: hal-03201337
https://hal.science/hal-03201337

Submitted on 18 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03201337
https://hal.archives-ouvertes.fr

Reasoning about sequences of memory states™

Rémi Brochenin, Stéphane Demri, and Etienne Lozes

LSV, ENS Cachan, CNRS, INRTA
{brocheni,demri,lozes}@lsv.ens-cachan.fr

Abstract. In order to verify programs with pointer variables, we intro-
duce a temporal logic LTL™™ whose underlying assertion language is
the quantifier-free fragment of separation logic and the temporal logic
on the top of it is the standard linear-time temporal logic LTL. We an-
alyze the complexity of various model-checking and satisfiability prob-
lems for LTL™™, considering various fragments of separation logic (in-
cluding pointer arithmetic), various classes of models (with or without
constant heap), and the influence of fixing the initial memory state. We
provide a complete picture based on these criteria. Our main decidabil-
ity result is PSPACE-completeness of the satisfiability problems on the
record fragment and on a classical fragment allowing pointer arithmetic.
39 completeness or Xi-completeness results are established for various
problems by reducing standard problems for Minsky machines, and un-
derline the tightness of our decidability results.

1 Introduction

Verification of programs with pointers. Model-checking of infinite-state systems
is a very active area of formal verification [BCMSO01] even though in full gener-
ality, simple reachability questions are undecidable. Nevertheless, many classes
of infinite-state systems can be analyzed, such as Petri nets, timed automata,
etc. Programs with pointer variables suffer the same drawback since reachabil-
ity problems are also undecidable, see e.g. [BFN04,BBH™06]. It is worth noting
that specific properties need to be verified for such programs, such as the exis-
tence of memory leaks, memory violation, or shape analysis. Prominent logics
for analyzing such programs are Separation Logic [Rey02], pointer assertion logic
PAL [JJKS97], TVLA [LAS00] and alias logic [BILO04], to quote a few examples.
Temporal Separation Logic: what for? Since [Pnu77], temporal logics are also
used as languages for formal specification of programs. General and powerful
automata-based techniques for verification have been developed, see e.g. [VW94].
On the other hand, Separation Logic is a static logic for program annota-
tion [Rey02], and more recently for symbolic computation [BCOO05]. Extending
the scope of application of Separation Logic to standard temporal logic-based
verification techniques has many potential interests. First, it provides a rich un-
derlying assertion language where properties more complex than accessibility

* Work supported by the RNTL project “AVERILES”. The first author is supported
by a fellowship from CNRS/DGA.

can be stated. Second, this probably yields a significant feedback for the purely
static Separation Logic extended with general recursion, which has not been very
studied up to now. For instance, if we write Xx to denote the next value of x
(also sometimes written x’), the formula (x — Xx)U(x < null), understood
on a model with constant heap, characterises the existence of a simple flat list,
which is usually written pL(x). x < nullV 3x’.x — x’ A L(x’). Third, temporal
logics allow to work in the very convenient framework of "programs-as-formulae"
and decision procedures for logical problems can be directly used for program
verification. For instance, the previous formula can be seen as a program walk-
ing on a list, and more generally programs without destructive updates can be
expressed as formulae. Some programs with destructive updates that perform a
simple pass on the heap, have an input-output relation that may be described by
a formula. For instance, the formula (x < ¢ XxAXx < x)Ux < null expresses
broadly that the list in initial heap hg is reversed in final heap h;. Fourth, pointer
arithmetic has been poorly studied until now, whereas arithmetical constraints
in temporal logics are known to lead to undecidability, see e.g. [CC00]. Actually,
there is a growing interest in understanding the interplay of pointer arithmetic,
temporal reasoning, and non aliasing properties.

Our contribution. We introduce a linear-time temporal logic LTL™" to spec-

ify sequences of memory states with underlying assertion language based on
quantifier-free Separation Logic [Rey02]. From a logical perspective, the logic
LTL™®™ can be viewed as a many-dimensional logic [GKWZ03] since LTL™*™
contains a temporal dimension and the spatial dimension for memory states.
Our logic addresses a very general notion of models, including the aspects of
pointer arithmetic and recursive structures with records. We distinguish the sat-
isfiability problems from the model-checking problems, as well as distinct sub-
classes of interesting programs, like for instance the programs without destruc-
tive update. The result that is the most promising for future implementation is
the PSPACE-completeness of the satisfiability problems SAT(CL) and SAT (RF)
where CL is the classical fragment without separation connectives and RF is
the record fragment with no pointer arithmetic but with separation connec-
tives. This result is very tight, as both propositional LTL and static Separation
Logic are already PSPACE-complete [SC85,CYO01]. These results are obtained
by reduction to the nonemptiness problem for Biichi automata on an alpha-
bet of symbolic memory states obtained by an abstraction that we show sound
and complete, see e.g. [Loz04,CGHO05|. Such abstractions are similar to resource
graphs from [GMO05]. This is a variant of the automata-based approach intro-
duced in [VW94] for plain LTL and further developed with concrete domains of
interpretation in [DDO7]. Surprisingly, the abstraction method used to establish
these results does not scale to the whole logic, due to a subtle interplay between
separation connectives and pointer arithmetic. Moreover, we provide new un-
decidability results for several problems, for instance SAT(LF) (satisfiability
with constant heap on the list fragment).

Related work. Previous temporal logics designed for pointer verification include
Evolution Temporal Logic [YRSWO03], based on the three-valued logic abstrac-

tion method that made the success of TVLA [LAS00], and Navigation temporal
logic [DKRO04], based on a tableau method quite similar to our automaton-based
reduction. In these works, the assertion language for states is quite rich, as it
includes for instance list predicate, quantification over adresses, and a freshness
predicate. Because of this high expressive power, only incomplete abstractions
are proposed, whereas we stick to exact methods. More importantly, our work
addresses models with constant heaps and pointer arithmetic, which has not
been done so far, and leads to a quite different perspective.
Omitted proofs can be found in the report [BDLO07].

2 Memory Model and Specification Language

In this section, we introduce a separation logic dealing with pointer arithmetic
and record values, and a temporal logic LTL™™". Unlike BI’s pointer logic from
[I001], we allow pointer arithmetic. Model-checking programs with pointer vari-
ables over LTL™™ gpecifications is our main problem of interest.

2.1 A separation logic with pointer arithmetic

Memory states. Let us introduce our model of memory. It captures features of
programs with pointer variables that use pointer arithmetic and records. We
assume a countably infinite set Var of variables (as usual, for a fixed formula we
need only a finite amount), and an infinite set Val of values containing the set N
of naturals, thought as address indexes, and a special value nil. For simplicity, we
assume that Val = NW {nil}. In order to model field selectors, we consider some
infinite set Lab of labels. We will usually range over values with u, v, over naturals
with 4,7, over labels with [, r, next, prev, and over variables with x,y. In the
remainder, we will assume some fixed injection (x,7) € Var x N (x,4) € Var.

We use the notation & —¢;,, F' for the set of partial functions from E to I
of finite domain; and E —;, F for the set of partial functions from E to F
of finite and nonempty domain. The sets S of stores and H of heaps are then
defined as follows: S = Var — Val and H = N — fin (Lab — iy Val). We will
range over a store with s, s’ and over a heap with h, h', hi, hy. We call memory
state a couple (s,h) € S x H.

We will refer to the domain of a heap h by dom(h) C N. Intuitively, in our
memory model, each index is thought as an entry point on some record cell
containing several fields. Cells are either not allocated, or allocated with some
record stored in. In a memory state (s, k), the memory cell at index i is allocated
if ¢ € dom(h); in this case the stored record is h(i) = {l1 — v1,..,l, — v, }.

Note that the size of the information held in a memory cell is not fixed,
nor bounded. Our models could be more concrete considering labels as offsets
and relying on pointer arithmetic. But for our purpose, it will be convenient to
consider pointer arithmetic independently.

Expressions State Formulae

e = x | null A= 7

Atomic formulae | AxB| A=B| emp (spatial fragment)
Ti= e=¢ | e+i‘i>e | ANB| A— A| T L (classical fragment)
Satisfaction

(s,h)EsLe=¢€¢ iff[e]s=[¢€]s with [x]s =s(x) and [null], = nil
s etiseiff[e]s€Nand [e]+i€ dom(h) and h(s(x) +4)(1) = [e]

(s,h) EsL A" — A iff (s,h) s A’ implies (s, h) Esi A
(s,

(s,h)
(s, h) EsL emp iff dom(h) =0
(s,h) Est A1 x A2 iff 3 hy, ha s.t. h = hy % ha, (s,h1) Esi A1 and (s, ha) Est A2
(s,h) Est. A+ A iff forall B, if h L b’ and (s,h’) st A’ then (s,h * h') a1, A
(s,h) Est A1 A A iff (s, h) st Ar and (s, h) EsiL A2

)

)

h
h
h) Est L never and (s, h) Esi, T always

Table 1. The syntax and semantics of SL with pointer arithmetic and records

Separation Logic. We now introduce the separation logic (SL) on top of which
we will define our temporal logic. The syntax of the logic is given in Table 1.
In short, Separation logic is about reasoning on disjoint heaps, and we need
to define what we mean by “disjoint heaps” in our model. We choose to allow
to reason at the granularity of record cells, so that a record cell cannot be
decomposed in disjoint parts. Let h; and ho be two heaps; we say that h; and
hs are disjoint, noted hi Lhs, if dom(hy) N dom(hs) = 0. The operation hi * ho
is defined for disjoint heaps as the disjoint union of the two partial functions.
Semantics of formulae is defined by the satisfaction relation j=g1, (see Table 1).
Formulae A of SL are called state formulae. The size of the state formula A,
written |A|, is the length of the string A for some reasonably succinct encoding of
variables and integers (binary representation). We will use the map |- | for other
syntactic objects such as LTL™®™ formulae. A formula A x* B with the separation
conjunction states that A holds on some portion of the memory heap and B
holds on a disjoint portion. A formula .A-B states that the current heap, when
extended with any disjoint heap verifying A, will verify 5. Boolean operators are
understood as usual. In the remainder, we focus on several specific fragments
of this separation logic. We say that a formula is in the record fragment (RF)

l l
if all subformulae x +¢ — e use ¢« = 0. In that case, we write x — e. We say
that a formula is in the classical fragment (CL) if it does not use the connectives
*, —. Finally, we say that a formula is in the list fragment (LF) if it is in the

classical fragment and all subformulae x + ¢ iR e use ¢ = 0 and [= next, and
we may simply write x < e. Clearly, the classical and record fragments are
incomparable, while the list fragment is included in both of them.

Let us illustrate the expressive power of SL on examples. The formula —emp *

—emp means that at least two memory cells are allocated. The formula x KN e,

! !
defined as —(—emp * —emp) Ax < e, is the local version of x < e: s, h =g, x e

iff dom(h) = {s(x)} and h(s(x))(l) = [e]s. The formula (x <& null)—=L is
satisfied at (sg, ho) whenever there is no heap hy with hq Lhg that allocates the
variable x to nil on [field, that is x is allocated in hy.

A is valid iff for every memory state (s, h), we have (s,h) s A (written
Esi A). Satisfiability is defined dually.

Proposition 1. The model-checking, satisfiability and validity problems for SL
are PSPACE-complete.

PSPACE-hardness results are consequences of [CYOO01, Sect. 5.2]. The PSPACE
upper bound for model-checking for SL is obtained by reduction to model-
checking for RF that is shown in PSPACE thanks to forthcoming Lemma 2. Sat-
isfiability for SL is reduced to model-checking for SL thanks to a small memory
state property: every satisfiable state formulae A can be satisfied by a memory
state that can be encoded in polynomial size in .A.

2.2 Temporal extension

Memory states sequences Models of the logic LTL™" are w-sequences of mem-

ory states, that is elements in (S x H)“ and they are understood as infinite
computations of programs with pointer variables. In order to analyze computa-
tions from programs without destructive update, we shall also consider models
with constant heap, that is elements in S¥ x H.

The logic LTL™". Formulae of LTL™™ are defined in Table 2. Atomic formulae
of LTL™®™ are state formulae from SL except that variables can be prefixed
by the symbol “X”. For instance, Xx is interpreted by the value of x at the
4 7 times
next memory state. We use the notation X'x for X...Xx (but keep in mind
that encoding X'x requires memory space in O(i)). The temporal operators are
the standard next-time operator X and until operator U present in LTL, see
e.g. [SC85]. The satisfaction relation p,t = ¢ where p is a model of LTL™™,
t € N and ¢ is a formula is also defined in Table 2. We use standard abbreviations
such as Fo, Go ... We freely use propositional variables p, ¢, having in mind that
the propositional variable p should be understood as x, = xT for some fixed extra
variables x,,xq,...,%xT.

Given a fragment Frag of SL, LTL™"(Frag) is the restriction of LTL™™"
to formulae in which occur only state formulae built over Frag (with extended
variables X'x), and we write SAT (Frag) to denote the satisfiability problem for
LTL™™ (Frag): given a temporal formula ¢ in LTL™" (Frag), is there a model
p such that p,0 = ¢? The variant problem in which we require that the model
has a constant heap [resp. that the initial memory state is fixed, say (s, h)] is
denoted by SAT“(Frag) [resp. SAT,,,;,(Frag)]. The problem SAT(. (Frag) is
defined analogously.

Enriched expressions 7 ::= x | Xn | null

Atomic formulae Tmu=n=n| 77+i<i>77/
State formulae Auw= 7| emp| AxB| AxB| ANB| A—B| L
pu= Al Xo| U | oA | =

Temporal formulae
Semantics
pt =X i pt 41k o
p,t = U@ iff there is t1 >t s.t. p,t1 = ¢’ and p,t’ = ¢ for all t’ € {¢,..,t1 — 1}.
ptEoNYiff pit = ¢ and pt 1.
p7t):ﬁ¢ 1ﬂ‘p7tbé¢
ptE A iff s}, he Esn AXEx (x,k)] where p = (s¢, ht)i>0 and
st is defined by s;((x,k)) = s¢1r(x).

Lmem

Table 2. The syntax and semantics of LT

2.3 Programs with pointer variables

In this section, we define the model-checking problems for programs with pointer
variables over LTL™™ specifications. The set I of instructions used in the pro-
grams is defined by the grammar below:

instr n=x:=y | skip
|xi=y—l|x—l:=y|x:=cons(ly : 21,.,l : x) | free x
| x :=y[] | x[i] ==y | x =malloc(i) | free x,i

The denotational semantics of an instruction instr is defined as a partial
function [instr | : S x H — S x H, undefined when the instruction would
cause a memory violation. We list in Table 3 the formal denotational semantics
of our instruction set. Boolean combinations of equalities between expressions
are called guards and its set is denoted by G. A program is defined as a triple
(Q, 9, qr) such that @ is a finite set of control states, g; is the initial state and ¢

is the transition relation, a subset of) x G X I x Q). We use ¢ ginsty ¢’ to denote
a transition. We say that a program is without destructive update if transitions
are labeled only with instructions of the form x : =y, x :== y — [, and x := y][i].
We write P to denote the set of programs and P to denote the set of programs
without destructive update.

A program is a finite object whose interpretation can be viewed as an infinite-
state system. More precisely, given a program p = (Q, J, qr), the transition sys-
tem S, = (S, —) is defined as follows: S = @ x (S x H) (set of configurations)

,instr

and (¢, (s,h)) — (¢, (s',n')) iff there is a transition ¢ 2= ¢’ € § such that
(s,h) = g and (s',h') = [instr [(s, h). Note that S, is not necessarily linear.
A computation (or execution) of p is defined as an infinite path in S, starting
with control state ¢;. Computations of p can be viewed as LTL™*™ models, using

[x:=y1(sh) = (s syl n).
[x:=y—=1] (s,h*{i—{l—v,...}}) = (sfx— v hx{i—{l—wv,...}})
Zvith s(y) =1
[x—=1l=y] (s,h*{i—{l—wv,...}}) = (s,hx{i— {l—s(y),...}})
with s(x) :z: .
[x:=cons(ly:x1,., 0k :xk)] (s,h) = (S[fljbi}’s}z:kgl}}';} = s(x),
with i & dom(h)
[free x,i] (s,h+{ir{lv,...}}) = (s,hx{ir{...}})
with s(x) =1
[skip] (s, h) £ (s,h)

[x:=yv[i]] (s;h={i+i — {next— v}}) = (s[x — v], h * {i — {next — v}}))
with s(y) =4’

def

[x[i]:=y] (s;h*{i' +i {next—v}}) = (s,h*{i+i — {next— s(y)}})
with s(x) =14’

gt (s[x 1], hx{i' — {next — nil}}
..ok {i' + i {newt — nil})
with i',..,i’ + i & dom(h)

def

[free x,i]| (s,h* {i' +i— f}) = (s,h) with s(x) =17

[x :=malloc(i)](s, h)

Table 3. Semantics for instructions

propositional variables to encode the extra information about the control states
(details are omitted herein).

Model-checking aims at checking properties expressible in LT along
computations of programs. To a logical fragment (SL, CL, RF, or LF), we asso-
ciate a set of programs : all programs for SL and CL, programs with instructions
having + = 0 for RF, and moreover with only the label next for LF. Given one
of these fragments Frag of SL, we write MC(Frag) to denote the model-checking
problem for Frag: given a temporal formula ¢ in LTL™®" with state formulae
built over Frag and a program p of the associated fragment, is there an infinite
computation p of p such that p,0 = ¢ (which we write p = ¢)? The variant
problem in which we require that the program is without destructive update
[resp. that the initial memory state is fixed, say (s, h)] is denoted by MC** (Frag)
[resp. MC,,,;;(Frag)]. The problem MC¢’ ., (Frag) is defined analogously. We may
write p, (s,h) |E ¢ to emphasize what is the initial memory state.

All the model-checking and satisfiability problems defined above can be
placed in X} in the analytical hierarchy. Additionnally, all the above problems
can easily be shown PSPACE-hard since they all generalize LTL satisfiability and
model-checking [SC85].

Using extended variables Xx, we may express some programs as formulae.
This actually holds only for programs without update, for the semantics with

Lmem

constant heap. Intuitively, we express the control of the program with propo-
sitional variables, and define a formula that encode the transitions. To do so,
we translate instructions of the form x := y into Xx = y, x := y — [into

1
y — Xx, and x := y[i] into y + ¢ — Xx. Guards are translated accordingly. As a
consequence, the following result can be derived:

Lemma 1. Let Frag be a fragment among SL, CL, RF, or LF. There is a
logspace reduction from MC (Frag) to SAT® (Frag) (resp. from MC{.,, (Frag)
to SATS , (Frag)).

nit

3 Decidable Satisfiability Problems by Abstracting
Computations

In this section we establish the PSPACE-completeness of the problems SAT (CL)
and SAT(RF). To do so, we abstract memory states whose size is a priori un-
bounded by finite symbolic memory states. As usual, temporal infinity in mod-
els is handled by Biichi automata recognizing w-sequences. We propose below
an abstraction that is correct for CL (allowing pointer arithmetic) and for RF
(allowing all operators from Separation Logic) taken separately but that is not
exact for the full language SL.

3.1 Syntactic measures

The main approach to get decision procedures to verify infinite-state systems
consists in introducing a symbolic representation for infinite sets of configura-
tions. The symbolic representation defined below plays a similar role and has
similarities with symbolic heaps for Separation Logic in Smallfoot [BCOO05]. Let
us start by some useful definitions. Following [Loz04], we introduce the set of
test formulae that are formulae from SL of the forms below:

— alloc x = (x %' null)—L (x is allocated).

k times

— size > k = —emp*...* —emp (at least k indices are allocated).

Given a formula ¢ of LTL™™, we define its measure p, understood as some
pieces of information about the syntactic resources involved in ¢. Indeed, forth-
coming symbolic states are finite objects parameterized by such syntactic mea-
sures.

For a state formula A of LTL™®™, the size of memory examined by A,
written w4, is inductively defined as follows: w4 is 1 for atomic formulae,
max{wa,,wa,} for Ay AAs or A; — Ay or Aj—*As, and wa, +w 4, for Ag x As.
Observe that w4 < |A|. Other simple sets about the syntactic resources of A
need to be defined: Laby is the set of labels from Lab occurring in A, Var4

is the set of variables from Var occurring in A, ¢4 is the set of natural num-

bers ¢ such that e 4 ¢ R e’ occurs in A and my4 is the maximal k such that
X¥x occurs in A for some variable x. A measure is defined as an element of
N x P(N) x N x Pg(Lab) x Pf(Var) where P¢(X) denotes the set of finite sub-
sets of some set X. The set of measures has a natural lattice structure for the
pointwise order, noted below p < p/. We also write p[w < 0] to denote the
measure p except that w = 0.

The measure for A, written 4, is the tuple (m.4, €4, w4,Lab4,Var 4). The
measure of some formula ¢ of LTL™™, written p4, is sup{pt4 : A occurs in ¢}.

Definition 1. Given a measure p = (m, e, w, X,Y), we write 7, to denote the
finite set of test formulae ¥ of the grammar:

e = (x,u) | null fu=e+i
!
Yu=fe | alloc f | e=¢€ | size > k

withu<m,i€e,leX,k<wandx €Y.

Observe that the cardinal of 7,, is polynomial in |¢|. Given a measure y =
(m,e,w,X,Y) and a memory state (s,h), we write Abs,(s,h) = {A € T, :
(s,h) EsL A} to denote the abstraction of (s, h) wrt u. Given a measure y and
two memory states (s,h) and (s', '), we write (s, h) ~, (s',h’) iff Abs,(s,h) =
Abs,,(s',h"), that is formulae in 7,, cannot distinguish the two memory states.
Lemma 2 below states that our abstraction is correct for CL and RF.

Lemma 2. Let (s,h) and (s',h') be two memory states such that (s,h) ~,
(s',1') [resp. (s,h) ~ujw—o) (8, 1")]. For any state formula A such that pa < p
and A belongs to RF [resp. CLJ, we have (s,h) s A iff (s',h') EsL A.

Note that we can extend this result to the whole SL by considering test formulae
of the form e +i =¢' + j.

3.2 Symbolic models

We write X, to denote the powerset of 7,,; X, is thought as an alphabet, and
elements ¢ € Y, are called letters. A symbolic model wrt p is defined as an
infinite sequence o € X}7. Symbolic models are abstractions of models from
LTL™™: given a model p : N — S x H and a measure p, we write Abs,(p) :
N — X, to denote the symbolic model wrt x such that for any ¢, Abs,(p)(t) =
{AeT,:ptE Al(xu) — X"x]}.

To a letter a, we associate the formula A, = A 4, AN 4, " A For o a
symbolic model, and ¢ a formula such that ;14 < 11, we define the symbolic sat-
isfaction relation o, t |=,, ¢ as satisfaction for models except for the clause about
atomic subformulae that becomes: o,t =, A iff |Fs1 Ay = AX"x «— (x,u)].
We write L*(¢) to denote the set of symbolic models o wrt p such that 0,0 =, ¢.
As a corollary of Lemma 2, we get a soundness result for our abstraction:

Proposition 2. Let ¢ be a formula of LTL™*™(RF) [resp. of LTL™*"(CL)]
and py < p. For any model p, we have that p = ¢ iff Abs,(p) = ¢ [resp.
Abs;t[uﬂ—O] (p)): ¢]

Note that Abs,, is not surjective; we note L, the set of symbolic models wrt ;1

that are abstractions of some model of LTL™™. Consequently, ¢ in LTL™"(RF)
is satisfiable iff L**(¢) N L%, is nonempty.

sat

3.3 w-regularity and PSPACE upper bound

In order to show that SAT (RF) and SAT (CL) are in PSPACE we shall explain why
testing the nonemptiness of L*#(¢)NL.?, can be done in PSPACE. Below we treat
explicitly the case for RF. For CL, replace every occurrence of py by pe[w < 0].
To do so, we show that each language can be recognized by an exponential-size
Biichi automaton satisfying the good properties to establish the PSPACE upper
bound. If A is a Biichi automaton, we note L(A) the language recognized by A.
Following [VW94,DD07], let A be the generalized Biichi automaton defined by

the structure (X, Q, 0,1, F) s.t.:

— @ is the set of so-called atoms of ¢, that are sets of temporal formulae
included in the so-called closure set cl(¢) (see [VW94]), I ={X € Q : ¢ €
X}tand X=X,

X L Y iff 1. for every atomic formula A of X, s A, = A[X"x «— (x,u)].

B 2. for every X¢' € cl(¢), X¢' € X iff ¢’ €Y.

— Let {¢1Ug], ..., d,Udl} be the set of until formulae in cl(¢p). We pose F =
{F1,....,F,} where F; ={X € Q: »;U¢, & X or ¢, € X} fori € {1,...,n}.

Let AZ be the Biichi automaton equivalent to the generalized Biichi automa-

ton A. It is easy to observe that Afﬁ has an exponential amount of states in the
size of ¢ and its transition relation can be checked in polynomial space in the
size of ¢. Moreover,

Lemma 3. Let ¢ in LTL™""(RF) [resp. LTL™""(CL)/ and p > py [resp. p >
jglw — O]). Then, L(A%) = Li(6).

We can also build a Biichi automaton A’

a

. such that L(AL) =LL,,. AL, is

sat

defined as (¥,Q,0,1, F), where ¥ = ,, Q= ¥,, F=I = Q and a % o iff:

1. A, A, are satisfiable, and a = o/,
2. for every formula (x,u) = (x',u’) € 7, with u,v’ > 1, (x,u) = (x',u') € a iff
(x,u—1) =&, v —1) € d”.
If 4 = py, then AL, is of exponential-size in |¢| and the transition relation
can be checked in polynomial space in |¢|. More importantly, this automaton
recognizes satisfiable symbolic models.

Lemma 4. Let ¢ in LTL™"(RF) f[resp. LTL™"(CL)/ and p = py [resp. pp =
plw < 0]]. Then, L(AL,,) =L

sat*

10

This lemma is essential and it is not possible to extend it to the whole logic
LTL™™" even by allowing test formulae of the form x4 = y + j since we would
need automata with counters. Now, we can state our main complexity result.

Theorem 1. SAT(RF) and SAT(CL) are PSPACE-complete.

Proof. (sketch) The lower bound is from LTL [SC85]. Let ¢ be an instance
formula of SAT(RF) (for SAT(CL) replace below pg by pew < 0]). As seen
earlier, ¢ is satisfiable iff L*¢(¢) N L.?, is nonempty. Hence, ¢ is satisfiable iff
L(AL”) NL(AL7) # 0. The intersection automaton is of exponential size in the
size of ¢ and can be checked nonempty by a nondeterministic on-the-fly algo-
rithm. Since nonemptiness problem for Biichi automata is NLOGSPACE-complete
and the transition relation in the intersection automaton can be checked in poly-
nomial space in |¢|, we obtain a nondeterministic polynomial space algorithm
for testing satisfiability of ¢. By Savitch’s theorem, we get the PSPACE upper
bound. ad

3.4 Other problems in PSPACE

Let Frag be either the classical fragment or the record fragment. Lemma 1 pro-

vides a reduction from MC{ ,, (Frag) to SATS ,(Frag) based on a program-as-

init
formula encoding. As we will see now, we may also reduce SATS ., (Frag) to
SAT (Frag) internalizing an approximation of the initial memory state whose
logical language cannot distinguish from the initial memory state. As a conse-
quence, the PSPACE upper bound for SAT (Frag) entails the PSPACE upper bound

for both SATS ., (Frag) and MCS!,, (Frag).

init

Proposition 3. The problems SATS. ., (RF), MC$. ., (RF), SATS.,,(CL) and
MCS ., (CL) are PSPACE-complete.

init
Proof. By Lemma 1 and since SATS,,,(RF) is known to be PSPACE-hard, it
remains to establish the PSPACE upper bound for SATS. ., (RF).

Given a formula ¢ and an initial memory state (s,h), we shall build in
polynomial-time a formula ¢¢%, in SAT (RF) such that ¢ is satisfiable in a model
with initial memory state (s,h) and constant heap iff ¢¢', is satisfiable by a
general model. Since we have shown that SAT (RF) is in PSPACE, this guarantees
that SATS" . (RF) is in PSPACE. The idea of the proof is to internalize the initial
memory state and the fact that the heap is constant in the logic SAT (RF). Ac-
tually, one cannot exactly express that the heap is constant (see details below)
but the approximation we use will be sufficient for our purpose.

Apart from the variables of ¢, the formula ¢, is built over additional vari-
ables in V = {x; : i € dom(h) U Im(s)} U {x;; : i € dom(h),! € dom(h(i))}. The
formula qﬁgfh is of the form G(¢1 At Aths) Aths A1), where the subformulae are
defined as follows.

— 17 states that the heap is almost equal to h since we cannot forbid in the
logical language additional labels (dom(h) = {i1,...,ix}):
1

€: l
i & (/\ledom(h(il)) iy > Kig) * .o (/\ledom(h(ik)) i, 7 Xig 1)-

11

—)9 states which variables are equal and which ones are not, depending on
the initial memory state. By way of example, for i # j € dom(h), a conjunct
of 19 is x; # x;. Similarly, if h(¢)({) = j and j € dom(h) then x;; = x; is a
conjunct of 1. Details are omitted.

— 13 states that the auxiliary variables remain constant: A, , x = Xx.

!
— The formula 7’ is obtained from ¢ by replacing each occurrence of x < e by

1
Xx—eA /\ X # x;.

i€dom(h),l¢Zdom(h (7))

The additional conjunct is useful because our logical language cannot state
that a label is not in the domain of some allocated address.

— 1), states constraints about the initial store s: 1, = Nico X = Xs(x)-

XEP

It is then easy to check that ¢ is satisfiable in a model with initial memory
state (s,h) with constant heap iff ¢%, is satisfiable by a general model.

As far as the results for the classical fragment are concerned, by Lemma 1,
there is a logspace reduction from MCS, ., (CL) to SATS",,(CL) and as done above

one can reduce SATS ., (CL) to SAT(CL). O

4 Undecidability Results

In this section, we show several undecidability results by using reduction from
problems for Minsky machines. So, first, we recall that a Minsky machine M
consists of two counters C; and Cy, and a sequence of n > 1 instructions, each
of which may increment or decrement one of the counters, or jump conditionally
upon of the counters being zero. The I'" instruction ([is its location counter)
has one of the following forms either “I: C; := C; +1 ; goto I"” or “I: if C; = 0
then goto I’ else C; := C; — 1; goto I"””. In a nondeterministic machine, after an
incrementation or a decrementation a nondeterministic choice of the form “goto
l1 or goto l5” is performed.

The configurations of M are triples (I, c1,c2), where 1 <1 <mn, ¢; > 0, and
co > 0 are the current values of the location counter and the two counters C;
and Cs, respectively. The consecution relation on configurations is defined in
the obvious way. A computation of M is a sequence of related configurations,
starting with the initial configuration (1,0, 0).

Different encodings of counters are used here. For instance, in [BFLS06],
a counter C with value n is represented by a list of length n pointed to by a x
dedicated to C. The same idea is used in the proof of Proposition 4 below. In order
to show undecidability of SAT(SL) we alternatively encode counters by relying
on pointer arithmetic and properties of heaps. Programs without destructive
updates can simulate finite computations of Minsky machines by guessing at the
start of the computation the maximal value of counters (encoded by a list of the
length of the maximal value). As a consequence,

12

Proposition 4. SAT(LF) and MC“(LF) are X9-complete.

By constrast, programs with destructive update can work with unbounded
heaps, and by using the representation of counters as above, they can faithfully
simulate a Minsky machine even if an empty heap is the initial heap. Because
LTL can express repeated accessibility, X;-hardness can be obtained.

Proposition 5. The problems MC(LF) and MC,,,;;,(LF) are X{-complete.

init

Let us briefly explain how to encode incrementation and decrementation with
separating connectives and pointer arithmetic. Observe that expressions of the
form x = y 4+ 1 are not allowed in the logical language. We solve this point in
two different ways: using non-aliasing expressed by the separating conjunction,
and using the precise pointing assertion x negt 7 stating that the heap contains
only one cell, in conjunction with the — operator.

t t t t
e = (Xx a1l Ax+ 1S null) A -(Xx 'S null s x + 1< null)
% next next next next
F _=Xx+1 <= nullAx — null) A—=(Xx+1 < null*x < null)
(;5:;_,_ =emp A ((Xx negt null)—x + 1 nest null)

¢ _=emp A ((x negt null)-«Xx +1 negt null)
The formulae based on the separating conjunction correctly express incremen-
tation and decrementation when the cells at index x,x 4+ 1,x — 1 are allocated,
whereas formulae based on the operator — do not need the same assumption.
Let SAT?(SL) be any satisfiability problem among the four variants.

Proposition 6. SATS(SL) is X} -complete.

Proof. We reduce the recurrence problem for nondeterministic Minsky machines
[AH94] to SAT}(SL). Let ¢ be the formula G(emp A /\le(xi # null)). In-
crementation and decrementation are performed thanks to qS:ﬁ 4 and qﬁ;k _,
respectively. For any model p such that p,0 = ¢, and for any ¢, we have
ot E ¢}:k++ iff s¢(x;) + 1 = si41(x;). Hence, we have a means to encode in-
crementation. Similarly, p,t = ¢, _ and s;(x;) > 0 iff sy(x;) — 1 = sy41(x;).
The fact that a counter does not change is encoded by x; = Xx;. Given that
01 = G(Xzero = XXzero N Xzero 7 null) holds, zero tests are encoded by
Xj = Xzero-

Given a nondeterministic Minsky machine M, we write v¢; to denote the
formula encoding instruction /. For intance for the instruction “I: if C; = 0 then
goto I’ else Cy := Cy — 1; goto I} or goto 15” 1)y is equal to G((I A x1 # Xzero) =
(x2 = Xxa A (X VX)) A ¢) AG(I AT = Kzero) = (%1 = Xx1 Axp =
Xxo AXI")). Hence, (x1 = X2 = Xzero) A o A d1 A N\, 1 A GFn is satisfiable iff M
has a computation with location counter n repeated infinitely often. a

Proposition 7. The problem SAT(SL\ {—}) is X} -complete.

The proof of Proposition 7 is similar to the proof of Theorem 6 except that
incrementation and decrementation are performed with the formulae ¢, , and
@%__, respectively.

13

5 Conclusion

In the paper, we have introduced a temporal logic LTL™™ for which assertion
language is quantifier-free separation logic. Figure 1 contains a summary of the
complexity results about satisfiability and model-checking problems for the frag-
ments LF, CL and RF. X!-completeness results for SATS(SL), SAT(SL \ {—})
and MC(LF) can be found in Propositions 6, 7, and 5, respectively. A thin and
straight [resp. bold and curved] arrow between a source problem and a target
problem means that the upper [resp. lower] bound for the target problem is
shown thanks to the upper [resp. lower| bound for the source problem.

PSPACE-complete problems X9 complete problems

Prop. 3 ; "
SATS,;; (LF) AT (LF) op. 4

C°(LF)

(SAT(CL)H

Theo. 1

SAT,::(CL)

SATS,.(RF)

Cinit(CL)

ct
init

SAT(RF)

C

(RF)
Fig. 1. Complexity of reasoning tasks with LTL™™

Finally, extending LTL™™ with a special propositional variable heap™ stat-

ing that the current heap is equal to the next one, can lead to undecidability
(look at the problems of the form SAT$(Frag)). However, it is open whether
satisfiability becomes decidable if we restrict the interplay between the “until”
operator U and heap™, for instance to forbid subformulae of the form G heap™
with positive polarity.

References

[AH94] R. Alur and T.A. Henzinger. A really temporal logic. JACM, 41:181-204,
1994.

[BBHT06] A. Bouajjani, M. Bozga, P. Habermehl, R. Tosif, P. Moro, and T. Vojnar.
Programs with lists are counter automata. In CAV’06, volume 4144 of
LNCS, pages 517-531. Springer, 2006.

[BCMSO01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite
structures. In Handbook of Process Algebra, pages 545-623. Elsevier, 2001.

[BCOO5] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. APLAS’05, 3780:52—68, 2005.

[BDL0O7] R. Brochenin, S. Demri, and E. Lozes. Reasoning about sequences of mem-
ory states. Technical report, LSV, ENS de Cachan, 2007.

14

[BFLS06] S. Bardin, A. Finkel, E. Lozes, and A. Sangnier. From pointer systems
to counter systems using shape analysis. 5th International Workshop on
Automated Verification of Infinite-State Systems (AVIS’06), 2006.

[BFN04] S. Bardin, A. Finkel, and D. Nowak. Toward symbolic verification of pro-
grams handling pointers. In 3rd International Workshop on Automated
Verification of Infinite-State Systems (AVIS’04), 2004.

[BILO4] M. Bozga, R. Iosif, and Y. Lakhnech. On logics of aliasing. In SAS’04,
volume 3148 of LNCS, pages 344-360. Springer, 2004.

[CCoo] H. Comon and V. Cortier. Flatness is not a weakness. CSL’00, 1862:262—
276, 2000.

[CGHO5] C. Calcagno, Ph. Gardner, and M. Hague. From separation logic to
first-order logic. In FOSSACS’05, volume 3441 of LNCS, pages 395-409.
Springer, 2005.

[CYOO01] C. Calcagno, H. Yang, and P. O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. In FST&TCS 01,
volume 2245 of LNCS, pages 108-119. Springer, 2001.

[DDO7] S. Demri and D. D’Souza. An automata-theoretic approach to constraint
LTL. Information and Computation, 205(3):380-415, 2007.

[DKRO4] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when
to whom? on the automated verification of linked list structures. In
FST&TCS’04, volume 3328 of LNCS, pages 250-262. Springer, 2004.

[GKWZ03] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
dimensional modal logics: theory and applications. CUP, 2003.

[GMO5] D. Galmiche and D. Mery. Characterizing provability in BI’s pointer logic
through resource graphs. In LPAR’05, volume 3835 of LNCS, pages 459—
473. Springer, 2005.

[I001] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. In POPL’01, pages 14-26, 2001.

[JJKS97] J. Jensen, M. Jorgensen, N. Klarlund, and M. Schwartzbach. Automatic
verification of pointer programs using monadic second-order logic. In
PLDI’97, pages 226-236. ACM, 1997.

[LAS00] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static anal-
yses. In SAS’00, pages 280-301, 2000.

[Loz04] E. Lozes. Separation logic preserves the expressive power of classical logic.
In 2nd Workshop on Semantics, Program Analysis, and Computing Envi-
ronments for Memory Management (SPACE’04), 2004.

[Pnu77] A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46-57.
IEEE, 1977.

[Rey02] J.C. Reynolds. Separation logic: a logic for shared mutable data structures.
In LICS’02, pages 55—74. IEEE, 2002.

[SC85] A. Sistla and E. Clarke. The complexity of propositional linear temporal
logic. JACM, 32(3):733-749, 1985.

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115:1-37, 1994.

[YRSWO03] E. Yahav, Th. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap
properties specified via evolution logic. In ESOP’03, volume 2618 of LNCS,
pages 204-22. Springer, 2003.

15

