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INTRODUCTION

A driver-less (a.k.a. automated or self-driving) vehicle can be defined as a computer-controlled vehicle that drives itself and perform trips safely. Autonomous vehicles (AVs) can be seen as a sort of driver-less vehicles with extra capabilities, e.g., chose their route upon the traffic situation, coordinate with other vehicles to share information and improve the traffic quality. Significant issues in managing On-Demand Transport (ODT) systems are allocation problems consisting of finding feasible and reasonable allocations of requests to vehicles. Being autonomous, the vehicles within a taxi fleet can be responsible for their choice of allocation to requests (making decentralized decisions), or follow the schedules that are centrally decided by a dispatcher. In practice, the feasibility and efficiency of the choice to centralize/decentralize the solution depend on the problem complexity, its constraints and the environment's dynamics. In this work, (i) we propose AV-OLRA, a generic model for online resource allocation problem with autonomous vehicles. This model defines the hypothesis of the problem (components, constraints) and the indicators to evaluate the different allocation strategies; (ii) we propose a generic multi-agent model for ODT problem solution methods, where autonomous vehicles (agents) communicate with their neighbors via peer-to-peer communication through connected sets; (iii) we classify the different allocation methods based on the agents' coordination behavior (Selfish, Cooperative, Competitive, and Dispatching); (iv) we experimentally evaluate and compare different solution methods (centralized, greedy, auction-based, and distributed constraint optimization). The paper is structured as follows. Section 2 presents some related works to multi-agent resource allocation and ODT. Based on this literature review, we expound on the AV-OLRA problem in Section 3, and a generic multi-agent model to address it in Section 4. Section 5 discusses in more detail the different coordination mechanisms investigated in this study, which are then experimentally evaluated in Section 6. Finally, the paper concludes with some perspectives in Section 7.

MULTI-AGENT RESOURCE ALLOCATION AND ODT

In recent years, the number of articles devoted to applying agentbased technologies to transport and communications engineering has increased significantly. Existing simulations and models of ODT were described by [START_REF] Ronald | Simulating demandresponsive transportation: a review of agent-based approaches[END_REF]. To become demand-responsive, a transport system's model has to include considering people with their behavior and their interaction with a complex transport environment. A survey conducted in [START_REF] Ana | A review on agent-based technology for traffic and transportation[END_REF] on agent-based modeling and simulation of transport, and stated that agent-based approaches are well suited to traffic and transport management, given the geographic, functional and temporal distribution of data and control, as well as frequent and flexible interactions between participants and their environment. Multi-Agent Resource Allocation (MARA) vision is relevant for a wide range of application domains [START_REF] Chevaleyre | Issues in Multiagent Resource Allocation[END_REF]. It has been applied in areas of network routing, public transport, e-commerce [START_REF] Chen | An agentbased model for consumer-to-business electronic commerce[END_REF], social activities [START_REF] Furtado | A crime simulation model based on social networks and swarm intelligence[END_REF], and scheduling [START_REF] Liu | An optimal scheduling algorithm for an agent-based multicast strategy on irregular networks[END_REF]. Centralization of the allocation process with an automatic dispatcher is still quite common in multiagent approaches [START_REF] Egan | Market mechanism design for profitable on-demand transport services[END_REF][START_REF] Maciejewski | The influence of multi-agent cooperation on the efficiency of taxi dispatching[END_REF][START_REF] Shen | Managing Autonomous Mobility on Demand Systems for Better Passenger Experience[END_REF]. On the other hand and to achieve real time planning for ODT services, several decentralized models were proposed [START_REF] Glaschenko | Multi-Agent Real Time Scheduling System for Taxi Companies[END_REF][START_REF] Kiam Tian Seow | A Collaborative Multiagent Taxi-Dispatch System[END_REF]. A theoretical transport system model is developed by [START_REF] Lammoglia | A dynamic cooperation modelling for improving taxi fleet efficiency[END_REF] to study the cooperation behavior of vehicles, with a global perspective; the best efficiency of cooperating vehicles should be to share knowledge in a flexible public transport. On the contrary, in the absence of communication between agents, [START_REF] Rinde | Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems[END_REF] investigates the applicability of genetic programming for developing decentralized MAS that solve ODT problems. They concluded that long-term planning is not beneficial in such settings because of the rapidly changing dynamics; thus, agents should consider only one request in advance. One of the main issues for using MARA approaches to solve ODT related problems is the communication bottleneck. [START_REF] Xu | A Study Of Multi-Agent Based Model For Urban Intelligent Transport Systems[END_REF] proposes that each agent has a limited space of planning area and does not need to communicate with all others. Not far from the problem at hand, Monier et al. introduced the multi-agent exploration problem under limited range communication constraints to provide a performance evaluation of distributed constraint satisfaction problem (DCSP) algorithms, namely ABT, AWC, and DBS [START_REF] Monier | Comparison of DCSP Algorithms: A Case Study for Multi-agent Exploration[END_REF]. So far, the solutions for resource allocation problems in ODT systems' dynamic environments must challenge vehicles' schedules in real-time. This challenge makes the achievement of an optimal solution in practice an elusive goal. However, designing improving approaches for feasible solutions is a suitable alternative to tackle the dynamic aspect issues; this requires taking the communication aspect into account and providing robust and efficient communication and coordination mechanisms [START_REF] Glaschenko | Multi-Agent Real Time Scheduling System for Taxi Companies[END_REF][START_REF] Xu | A Study Of Multi-Agent Based Model For Urban Intelligent Transport Systems[END_REF][START_REF] Lammoglia | A dynamic cooperation modelling for improving taxi fleet efficiency[END_REF]. Similarly, [START_REF] Zargayouna | Generic model for resource allocation in transportation. Application to urban parking management[END_REF] proposed a generic, i.e., independent of the solution/strategy, modeling of the Online Localized Resource Allocation (OLRA) problem, and a multi-agent system to solve the management of urban parking problem. The solution relies on a driver community that shares its local knowledge of the availability of parking spaces. This work relies on this later model to propose our specific model for the on-demand resource allocation problem in autonomous vehicle fleets.

AV-OLRA PROBLEM

In this paper, we define the AV-OLRA problem, a specialization of OLRA for online resource allocation with autonomous vehicles, and an extension with the communication and additional time constraints modeling.

We thus formulate the AV-OLRA problem as follows:

AV-OLRA := R, V, G, T (1) 
R = {𝑟 𝑖 |𝑖 ∈ N} (2) 
V = {𝑣 𝑖 |𝑖 ∈ N} (3) 
G = N, E, 𝜔 (4) 
T := {𝑡 0 , 𝑡 1 , . . . , 𝑡 𝑒𝑛𝑑 } (5) 
where R defines a dynamic set of resources that occur to be available for a specific time window at the time of execution, representing passengers' requests; the set of consumers is represented by a fleet V of 𝑚 autonomous vehicles that are mobile and can only communicate within a limited range; The spatial environment of the problem is the urban network defined by the directed graph G , with N the set of nodes, and E the set of edges, 𝑒 𝑖 𝑗 ∈ E is the edge between the nodes 𝑖 and 𝑗, 𝜔 is a valuation function that 𝜔 associates each edge 𝑒 ∈ E with the value 𝜔 𝑒 based on a temporal distance measure (e.g., average driving time in minutes), which will be used to calculate the operational costs of vehicle trips; In addition to the temporal distance measure, we use another notion of distance in this spatial environment. The function 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 : N × N → R+ calculates the euclidean distance between two locations Definition 1. An autonomous vehicle 𝑣 ∈ V is characterized by its capacity 𝑐 : V → N, its driving cost per traveled distance 𝑐𝑝𝑑 : V → R+ and a limited communication range 𝑟𝑛𝑔 : V → R+ that never changes upon time 𝑣 := 𝑐 𝑣 , 𝑐𝑝𝑑 𝑣 , 𝑟𝑛𝑔 𝑣 while it has also a set of time-dependant properties which are its current location loc : V × T → N ∪ E, its current destination, dest : V × T → N and the number of currently available seats seats : V × T → N .

Connectivity between two components in the system is achieved if the distance between them is less than or equals their communication range. However, as the vehicles' communication range is limited, and to maximize their connectivity, two vehicles can be connected by transitivity. The binary function d_ctd : V × V × T → {0, 1} defines if two vehicles are connected directly to each other.

𝑑_𝑐𝑡𝑑 (𝑖, 𝑗, 𝑡) =          1, if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 loc 𝑡 𝑖 , loc 𝑡 𝑗 ≤ 𝑟 : 𝑟 = 𝑚𝑖𝑛(𝑟𝑛𝑔 𝑖 , 𝑟𝑛𝑔 𝑖 ) 0, otherwise
Two vehicles 𝑣 𝑖 and 𝑣 𝑗 are connected by transitivity if there exists 𝑣 𝑘 that is connected directly or by transitivity to both of them. The binary function ctd : V × V × T → {0, 1} generalizes the d_ctd with the transitive connectivity.

𝑐𝑡𝑑 (𝑖, 𝑗, 𝑡) =          1, if 𝑑_𝑐𝑡𝑑 (𝑖, 𝑗, 𝑡)
or ∃𝑘 : 𝑐𝑡𝑑 (𝑖, 𝑘, 𝑡)&𝑐𝑡𝑑 (𝑘, 𝑗, 𝑡) 0, otherwise This leads to the definition of connected sets: Definition 2. A connected set is a set of entities that are connected directly or by transitivity.

𝐶𝑆 : V × T → 2 𝑉 𝐶𝑆 (𝑖, 𝑡) = { 𝑗 ∈ V |𝑐𝑡𝑑 (𝑖, 𝑗, 𝑡)}
The connected sets are dynamic entities; they are created, split, merged at run-time based on the vehicles' movement (see Figure 1). Thus, based on the previous definitions, a vehicle may communicate at time 𝑡 only with the members of its connected set by directed or broadcast messages. The limited communication range implicitly partitions the fleet into multiple connected sets. Definition 3. A solution for AV-OLRA is defined for each connected set as an aggregation of the allocations of all consumers in this set, avoiding all conflicts that could happen.

This definition implies that a solution to an AV-OLRA problem defined for the consumers and the resources may be sub-optimal because several vehicles consider the same resources or because the optimal solution is not the union of the optimal solutions in each connected set. Also, any solution is time-dependent according to the online dimension of the problem.

The communication range value depends only on the used communication technology standard, considering it in our model adds There is only one type of agents in our model. An autonomous vehicle agent (AV) is associated with each vehicle in the system. We can distinguish three different sub-behaviors (acting, communicating, and planning). As we model AV-OLRA in discrete time space, the time horizon is defined as set of ticks. At each time tick every agent performs the following actions as shown in Figure 2: (1) read the received messages and update the context (communicating sub-behavior) (2) choose the locations to visit (planning sub-behavior) (3) act by performing a driving action (acting subbehavior) (4) broadcast its context information (communicating sub-behavior)

AV Acting Sub-behavior

Based on the existence of passengers on-board, the vehicle location, and its knowledge about upcoming requests, the AV agent can be in one of the following states, as shown in Figure 3: Marauding (the vehicle has no passenger on-board and is looking around for its next destination), Moving (the vehicle has a destination and is moving in the urban topology towards this destination), Picking up (the vehicle is located at the origin location of the passenger 𝑝's request to perform the pick_up(𝑝) action and then start moving again), Dropping off (the vehicle is located at the destination location of the passenger 𝑝's request to perform the drop_off(𝑝) action and then look for a new destination). Transitions between these states are based on the following set of events shown in Figure 3. request to serve (vehicle 𝑣 has no passenger on board and a request 𝑟 is selected to be served, this implies the vehicle has a new destination to go to), passenger at origin (vehicle 𝑣 arrived at request 𝑟 's origin location 𝑜 𝑟 , passengers of 𝑟 are present in 𝑜 𝑟 so 𝑣 can start to pick up), ready to drive (the passengers of a request 𝑟 got on vehicle 𝑣 that is now ready to drive to the destination location 𝑑 𝑟 ), arrived at destination (vehicle 𝑣 has passengers on board belonging to a request 𝑟 and arrived at the destination location 𝑑 𝑟 ), client served (vehicle 𝑣 is free to choose a request to serve, after delivering passengers at their destination, and may look for the next request to serve), no passenger at origin (the vehicle 𝑣 has no request on board, arrived at the origin 𝑜 𝑟 of a request 𝑟 , but the passengers of 𝑟 are absent. the vehicle becomes free again).

AV Communicating Sub-Behavior

As communicating agents, AVs have a communication behavior with other surrounding entities; they can join/leave connected sets, broadcast, send, and receive messages.

• join(𝑐): agent joins a connected set 𝑐 as a result of being in the communication range of one of its members, • leave(𝑐): agent leaves its connected set 𝑐 as a result of being disconnected from all its members, • send(𝑚, 𝑎): agent sends a message 𝑚 to another agent 𝑎 in condition they are in the same connected set, • receive(𝑚): agent receives a message 𝑚 from another agent in its connected set (once received and read, the message is stored in the agent's belief base), • broadcast(𝑚) similar to send(𝑚, 𝑎) but here the agent doesn't specify the receiving agent, instead it broadcasts the message to the whole connected set members.

AV Planning Sub-Behaviors

AVs' planning behavior depends on the chosen coordination mechanism (centralized/decentralized, cooperative/competitive). Figure 4 illustrates the abstract and generic planning behavior of AVs. For updating its schedule, an AV continuously looks for planning options. If any option is found, the AV selects one and depending on the coordination mechanism it communicates or not its decision with its neighbors. The neighborhood reaches an agreement or disagreement, depending on the coordination mechanism and the selected option. On agreement, the AV updates its schedule and look for the next option and until no option is available. The nature of planning options is also dependent on the coordination mechanism.

In Section 5, we present in details a set of different coordination mechanisms that we use to validate our model, including some state-of-the-art cooperative mechanisms (DCOP algorithms) and an auction-based mechanism for agent coordination behavior, designed to meet the requirements of the AV-OLRA problem in order to obtain a solution using lightweight calculations, dynamic and continuously subject to improvement.

Utility, Constraints and Objective

In any MARA problem, the utility function represents the degree of satisfaction of an agent for a given allocation [START_REF] Chevaleyre | Issues in Multiagent Resource Allocation[END_REF]. Every agent has a utility value expressed as an explicit value or a relationship that reveals the most satisfactory solution (optimal). An allocation procedure attempts to provide agents with alternative resources that match their utilities as much as possible. In this model, we define the AV agents' utility function based on the indicators of the quality of solution described in section 3. AVs are gluttons for request satisfaction to maximize their utility. That means the more requests an agent satisfies, the more value of utility he gains. Hence, the Quality indicator if considered individually for each agent 𝑎 ∈ V defines its utility:

𝑢 𝑎 = |𝑅 𝑎 | |𝐾 𝑎 | (6) 
where 𝑅 𝑎 is the set of requests that are allocated to 𝑎 (inserted in a's schedule to be served) and 𝐾 𝑎 is the set of all the known requests by 𝑎. Of course, allocating request 𝑟 to agent 𝑎 is constrained by the spatial and temporal availability of both 𝑎 and 𝑟 . We consider each request's origin and destination are constants, and a request is available to pick-up only at its origin during its defined timewindow 𝑤 𝑟 [𝑙 𝑟 , 𝑢 𝑟 ]. Thus, allocating 𝑟 to 𝑎 requires that 𝑎 can arrive in 𝑟 's origin point at a time 𝑡 in between the lower bound 𝑙 𝑟 and the upper bound 𝑢 𝑟 of 𝑟 's time validity.

In this paper, we do not consider car-sharing scenarios. We assume a vehicle trip is dedicated to one request, but we still need to take the request size (required seats) and the vehicle capacity into account. This implies that the availability definition should also include the capacity constraint:

∃𝑡 ∈ 𝑤 𝑟 [𝑙 𝑟 , 𝑢 𝑟 ] : seats(𝑎, 𝑡) ≥ 𝑠 𝑟 & loc(𝑎, 𝑡) = 𝑜 𝑟 (7) 
However, being members of a fleet impose that AVs are cooperative and must follow the coordination mechanism that is predefined to achieve their global objective. From a global perspective of ODT as a business model, the main objective of ODT service providers is optimize their benefits by reducing costs and raise the profit. From this point of view we can define the objective function F to be maximized by the allocation process based on the relation between the Utility and Cost indicators:

F = 𝑟 ∈R 𝑠 (𝑃 + 𝑝 * dist(𝑟 )) - 𝑣 ∈V 𝑐𝑝𝑑 𝑣 * driven(𝑣) (8) 
where R 𝑠 ⊆ R is the set of all satisfied requests, 𝑃 is a fixed price (service fee) per request, 𝑝 is a pricing factor per unit of travelled distance, dist(𝑟 ) is the total trip distance for a request 𝑟 and driven(𝑣) is the total driven distance by 𝑣.

COORDINATION MECHANISMS

A coordination mechanism is defined by 3-tuple (𝐷𝐴, 𝐴𝐶, 𝐴𝑀), where 𝐷𝐴 denotes the level of decision autonomy which is either centralized (𝐶) or decentralized (𝐷); 𝐴𝐶 denotes the agents' cooperativeness level with (𝑆) or without sharing (𝑁 ) of schedule information, and 𝐴𝑀 is the allocation mechanism name.

Although we support several coordination mechanisms, we consider in any scenario that the same fleet agents are homogeneous,i.e. they have the same coordination mechanism to prevent any ambiguous action in any scenario.

We can thus instantiate our generic model to implement coordination mechanisms from the literature, like: classical selfish behavior ⟨𝐷, 𝑁 , Greedy⟩ [START_REF] Rinde | Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems[END_REF], centralized dispatching ⟨𝐶, 𝑆, MILP⟩ [START_REF] Falou | On demand transport system's approach as a multi-agent planning problem[END_REF][START_REF] Lee | Taxi Dispatch System Based on Current Demands and Real-Time Traffic Conditions[END_REF][START_REF] Yang | Central Decision Intellective Taxi System and Multi Ride Algorithm[END_REF], cooperative team using DCOP to coordinate ⟨𝐷, 𝑆, DCOP⟩ [START_REF] Fioretto | Distributed Constraint Optimization Problems and Applications: A Survey[END_REF], and auction-based allocation ⟨𝐷, 𝑆, Auction⟩ [START_REF] Daoud | ORNInA: A decentralized, auction-based multi-agent coordination in ODT systems[END_REF][START_REF] Egan | Market mechanism design for profitable on-demand transport services[END_REF].

Selfish Behavior

In this case, the coordination mechanism is based on a decentralized allocation (𝐷𝐴 = 𝐷) with competitive agents and without coordinated allocation process. In this model, agents do not rely on each other's decisions and never exchange their plans (𝐴𝐶 = 𝑁 ). In real-world scenarios, one allocation mechanism to this model is a greedy-based one (𝐴𝑀 = Greedy), in which the vehicle may consider only one request in advance (e.g., the closest one to shorten the empty driving distance). One of the recent examples of the Selfish behavior approaches is the work done in [START_REF] Rinde | Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems[END_REF]. When a vehicle is not already carrying customers, it has to decide which request it will handle first, depending on the information it has about available requests. A heuristic computes a priority value for each request. Then, the agent handles the request with the highest priority value first. Conflicts can arise, but are solved simply by applying the first arrival policy. The set of options for an agent is its set of known requests; if the agent has no passenger on board, otherwise no option is considered. And because of that, the state Coordinating is ignored (as if it reaches an agreement for any chosen option), so that the quality of the solution is dependent on the agent's ranking and priority functions for the upcoming requests.

Centralized Dispatching

The difference from the previous coordination mechanism is that the allocation process is centralized (𝐷𝐴 = 𝐶). The agent's role is to update its schedule based on what he receives from the dispatcher. In our model, we need one dispatcher per connected set. Thus, when created (or updated), a member of a connected set (e.g. the one with the lower index in the set) becomes the dispatcher that will be responsible for: gathering the information from other agents and about the request (𝐴𝐶 = 𝑆), and doing the calculation on its own, or by calling an external service to obtain an optimal allocation (e.g. a MILP solver in this case 𝐴𝑀 = 𝑀𝐼𝐿𝑃) , and then send to each other vehicle its potential schedule, as in [START_REF] Falou | On demand transport system's approach as a multi-agent planning problem[END_REF][START_REF] Lee | Taxi Dispatch System Based on Current Demands and Real-Time Traffic Conditions[END_REF][START_REF] Yang | Central Decision Intellective Taxi System and Multi Ride Algorithm[END_REF]. In this centralized model, the role of AVs' planning behavior is to request a communication portal (the responsible agent) continuously to update their schedule. In this case, the only available option is to request the portal, and the coordinating state consists of a request/response protocol that will send the new schedule as an agreement.

DCOP-based Cooperative Coordination

In this case, the coordination mechanism is decentralized (𝐷𝐴 = 𝐷), the agents are cooperative (𝐴𝐶 = 𝑆), and a coordination protocol is applied by the allocation process. In this class of coordination mechanisms, agents exchange information and cooperate to achieve a common objective, avoiding conflicts and optimizing the solution quality. There exist several approaches to implement an allocation mechanism for this behavior like distributed constraint optimization (DCOP) [START_REF] Fioretto | Distributed Constraint Optimization Problems and Applications: A Survey[END_REF]. Here, agents decide on their own but coordinate with the same connected set agents using a distributed constraint optimization algorithm to avoid conflicts within the connected set. At each time a connected set changes, a DCOP: 𝐴, 𝑋, 𝐷, 𝐶 is generated from the AV-OLRA instance to maximize objective function in Equation 8, as follows. 𝐴 defines the set of agents in the connected set. 𝑋 defines the set of decision variables in three subsets (𝑥 𝑖 𝑗 's, 𝑦 𝑖 𝑗 's and 𝑧 𝑖 𝑗 's): 𝑥 𝑖 𝑗 ∈ 𝑋 is a binary variable that takes 0 as a value if vehicle 𝑣 𝑖 serves the request 𝑟 𝑗 ; 𝑦 𝑖 𝑗 is a binary variable that takes 1 only if the request 𝑟 𝑗 is the first request to be served by 𝑣 𝑖 . Finally, 𝑧 𝑖 𝑗 is an integer variable that defines at what time a request 𝑟 𝑗 is visited by 𝑣 𝑖 . 𝐷 defines the domains of variables: binary {0, 1} for 𝑥 𝑖 𝑗 's and 𝑦 𝑖 𝑗 's, and a set of time ranges domains defining the time-window range [𝑙 𝑗 , 𝑢 𝑗 ] for each 𝑧 𝑖 𝑗 . 𝐶 defines the set of constraints, which consists of hard constraints (capacity, Spatio-temporal availability, and time-windows) and soft constraints defining the cost and utility of the allocation decision (used to calculate the value of the objective function).

DCOP algorithms are varied, and the choice between them is dependent on the objective of the solution and the context of the problem. The run-time characteristics of the DCOP algorithm (executiontime, number/size of messages, and memory requirement per agent) is an essential factor when dealing with on-line dynamic problems. Considering the characteristics of our very problem, we chose to implement local search algorithms to solve AV-OLRA, namely MGM [START_REF] Pearce | Quality Guarantees on K-Optimal Solutions for Distributed Constraint Optimization Problems[END_REF] and DSA [START_REF] Zhang | Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks[END_REF].

Auction-based Coordination

The difference from the previous behavior is that the agents are competitive so that they follow market-based protocols to achieve agreements. Auctions are very common in everyday situations and provide a general conceptual basis for understanding resource allocation problems within sets of self-interested agents [START_REF] Shoham | Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations[END_REF]. Here we present our previous work ORNInA [START_REF] Daoud | ORNInA: A decentralized, auction-based multi-agent coordination in ODT systems[END_REF] as an example of an auctionbased coordination mechanism (𝐴𝑀 = 𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝑠) to coordinate in a Peer-to-Peer manner (𝐴𝐶 = 𝑆) the decentralized scheduling decisions of fleets of autonomous vehicles (𝐷𝐴 = 𝐷). This mechanism is proposed to perform in dynamic settings, between vehicle agents that belong to a connected set in which they can receive and send direct or broadcast messages. Agents interested in some request initiate first-price auctions for this request, and the winner adds it to its schedule. The winner determination is completely decentralized process. To improve the scheduling efficiency in dynamic settings, agents are allowed to exchange their scheduled requests at run-time, with additional auction rounds to decide if this exchange increase the value of the objective function within the connected set. Agents communicate with each other by direct and broadcast messages to share information or coordinate their decisions. 

EXPERIMENTAL EVALUATION

In this section, we present the experimental results of instantiating the AV-OLRA model with the multi-agent model described in Section 4, supporting the different types of coordination mechanisms of Section 5. The model is implemented as a multi-agent system with a discrete-time transport simulator.

Experimental Setting. We use a unique urban infrastructure map for all our experiments. For a district located between (45.4325,4.3782) and (45.437800,4.387877), more than 1400 edges have been extracted from Open Street Map (OSM) 1 and post-processed by Plateforme Territoire2 to produce a graph of 71 edges. The passenger requests are generated randomly with pick-up and delivery locations belonging to a specific set of locations called sources. 40 locations uniformly distributed through the map were selected for being demand emission sources. When vehicles have to directly exchange messages, we consider they communicate via DSRC3 with a realistic communication range of 250 meters. Vehicles are also able to communicate by transitivity to any other vehicle in their connected set. The number of generated requests and the number of vehicles are parameters of the simulation. All scenarios were 1000cycle long, and at each time cycle, 0 or 1 request is generated. We will evaluate the performance of five coordination mechanisms: Selfish, Dispatching, Auction-based, Cooperative with DSA (variant A, 𝑝 = 0.5) [START_REF] Zhang | Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks[END_REF], and Cooperative with MGM-2 [START_REF] Pearce | Quality Guarantees on K-Optimal Solutions for Distributed Constraint Optimization Problems[END_REF]. These benchmarks are picked and implemented to be proof of concept for the genericity of our model. We chose the local search MGM-2 and DSA as examples of DCOP algorithms that require linear memory space. Once modeled, DCOP instances can be passed to any DCOP local search or inference algorithm. The difference here is in the performance, infrastructure requirements, and completeness of the chosen benchmarks. The Java-based multi-agent system and simulator have been executed on an octa-core Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, with 32GB DDR4 RAM. DCOP algorithms have been implemented using the FRODO library [START_REF] Léauté | FRODO 2.0: An Open-Source Framework for Distributed Constraint Optimization[END_REF].

Quality of the Solutions. indicator value aggregated over 1000 cycles of simulations. These two figures show how the quality of the solution evolves with increasing fleet size. We can notice the increase in QoS and QoB with the increasing number of vehicles in the fleet until reaching a threshold of repletion, after which it is not possible to improve the quality by adding more vehicles.

The values obtained by the Passive behavior represent somehow an upper-bound for the objective function (QoB) as the central dispatcher calculates for each instance the optimal solution (locally optimal considering the context of the connected set). The performances of the four other mechanisms vary between the indicators. So, while the auction-based coordination performs better than the DCOP search algorithms in QoB, it is outperformed by both of them in terms of QoS.

The Selfish mechanism is very efficient in terms of time to make decisions. The reason is that it does not require many computations to select the closest request. The drawback here is the ignorance of what lies ahead of the taken decisions and the fact that the conflicts in decisions of different vehicles (e.g., two vehicles are going to pick the same passenger) are not resolved until a very late stage, which reduces the QoB. With a low number of vehicles, the connected sets are small and, as a consequence, the amount of shared information is reduced.

The performance of the Cooperative, Auction and the centralized Dispatching mechanisms is highly dependant on the amount of information so that there are no quality discrepancies between the four approaches. With higher fleet sizes, more information is shared in the connected sets. Additionally, vehicles switch from one connected set to another more frequently. The cooperative and auction approaches perform almost similarly and acheive reasonable values of QoS. To achieve the same values with the Selfish behavior, more vehicles in the fleet are required.

Communication Load. Table 1 shows values of the indicators related to communication obtained by simulating a scenario with ten vehicles over 1000 cycles with different behaviors. Here the second and third columns report the maximum and average size of exchanged messages (in bytes) representing the MsgSize indicator. The fourth column reports the MsgCount indicator in terms of the average number of messages received by an agent per simulation cycle.

Even with Selfish behavior, agents exchange information messages about the new requests announced. New types of messages are used in the Dispatching mechanism: the query and response messages exchanged between the vehicles and the central dispatcher. Query messages are simply the whole context of the connected set of vehicles that ask the dispatcher to build their schedules. Response messages are sent from the dispatcher to the individual vehicles and contain each individual's potential schedule. These messages can be large, depending on the size of the sub-problem. Bid and answer messages used by the Auction-based coordination mechanism are light-weight, so that the values of the MsgSize indicator stay close to the no-coordination one, while the MsgSize value becomes polynomial in the number of agents in the connected set and number of their known requests. In the two Cooperative coordination mechanisms (DSA and MGM-2), agents in a connected set instantiate a DCOP framework between each other each time they need to decide on a schedule update. Achieving a solution by one of these algorithms requires the exchange of a large number of messages, both of these algorithms are not complete, meaning that they continue their trials to improve the solution until reaching the timeout or local optimum. This will lead to more message exchange. On the other hand, the size of messages exchanged by these two approaches is very small compared to the other approaches. 1 reports also the rescheduling frequency by considering the average interval between two simulation cycles in which vehicles update their schedules. The higher this value is, the more stable the vehicle schedules. In dynamic settings, having stable schedules for a long time means that no new requests are inserted, affecting the QoS. On the other hand, when vehicle schedules change frequently, vehicles may change their destination and oscillate for a while before performing a successful trip, which could decrease QoB. In our scenarios, Cooperative coordination provides very stable and good quality schedules at the expense of a higher communication load. If stability is not a constraint, but communication is limited, Auction is a very good candidate.

Stability of Schedules. Table

CONCLUSION AND FUTURE DIRECTIONS

This paper proposes a model for a resource allocation problem encountered in the management of autonomous vehicle fleets. Our model is well suited to the ODT domain, where fleets respond to passenger demands in dynamic online environments. Our model can handle different types of constraints and allow different approaches to find solutions and coordinate vehicles. We have implemented a multi-agent system that delivers this model in which agents can communicate with each other via radio channels using peer-to-peer messages. The communication model supports direct, broadcast, and transitive message transmission and is based on the concept of connected sets. We aimed to provide a generic model; the implemented MAS offers genericity on both communication and coordination dimensions. On the one hand, the limited communication range defines an attribute for the problem that affects the level of connectivity and thus bounds the achievable centralization. On the other hand, being dependant on allocation process, the choice of AV's planning sub-behavior defines the coordination mechanism that affects the dynamic spatial-temporal context of the problem instances.

To experiment and assess this generic model, we instantiated several coordination mechanisms and we briefly compare them according to functional and technical indicators. Relying on DCOP or auctions to coordinate decentralized decisions provides reasonable quality allocations compared to optimal one-shot allocation and non-coordinated taxis. DCOP-based allocation strategies do not change vehicle schedules too frequently but still induce more communication than the auction-based strategy.

A limitation of our communication model is the phenomena of spatially obscure demands. Those are requests announced far from vehicles and could remain unknown to any connected set for a while until a vehicle passes close to their sources, so they may not be met within their time-window constraints. However, in this work, we assumed very dynamic scenarios in the spatial and temporal dimensions so that no such situation would occur in any of our experimental scenarios.

We plan to explore the direction of defining further constraints on vehicle motion to achieve more connectivity between vehicles or to ensure that each emission source is located within the communication space of at least one vehicle. We plan also to analyze in-depth the relationship between stability, completeness, and feasibility of the solutions in the future. To do so, we need to implement more sustained approaches of different types and systematically compare performance, quality, feasibility, stability, and technical issues for these approaches' practical application.
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Table 1 :

 1 Communication cost and statistics for different coordination mechanisms for scenarios with ten vehicles

		max	avg msg per	comm. reschedule
	Coordination msg size msg size	agent	load	rate
	Selfish	140	88	6	2.21 MB	2.0
	Dispatching	3500	168	21	11.2 MB	3.0
	Auction	140	112	53	37.7 MB	1.5
	MGM-2	210	25	5040 297.6 MB	12.0
	DSA	236	20	5015	75.1 MB	13.0
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Vehicle-to-vehicle communication via Dedicated Short-Range Communication (DSRC) provides low latency, fast network connectivity within a communication range up to 300 meters.