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Introduction

Indeed these deterministic models have failed to replicate real world problems exhibiting randomness. However they are very useful to depict processes exhibiting power-law, fading memory to power-law, passage from fading memory to power-law [START_REF] Atangana | New fractional derivatives with non-local and non-singular kernel, Theory and Application to Heat Transfer Model[END_REF][START_REF] Caputo | On the notion of fractional derivative and applications to the hysteresis phenomena[END_REF][START_REF] Atangana | Extension of rate of change concept: From local to nonlocal operators with applications[END_REF][START_REF] Atangana | New concept in calculus: Piecewise di¤erential and integral operators[END_REF]. They are also useful to depict memory processes. Stochastic di¤erential equations have been introduced to deal with processes exhibiting randomness. They have been used in many real world problems with great success [START_REF] Ababneh | A new four-dimensional chaotic attractor[END_REF][START_REF] Atangana | Fractional derivatives with no-index law property: application to chaos and statistics[END_REF][START_REF] Faranda | Stochastic chaos in a turbulent swirling ‡ow[END_REF][START_REF] Kosmidis | Stochastic Chaos in a neuronal model[END_REF][START_REF] Canavier | Chaotic versus stochastic dynamics: A critical look at the evidence for nonlinear sequence dependent structure in dopamine neurons[END_REF][START_REF] Toker | A simple method for detecting chaos in nature[END_REF][START_REF] Cunli | Stochastic chaos in a Du¢ ng oscillator and its control[END_REF]. However there exist in nature processes that exhibit passage from power-law to fading memory, or even from memoriless to power-law, indeed such processes cannot be replicated using either stochastic models or deterministic models. Very recently Atangana and Seda introduced new concepts called piecewise di¤erentiation and integration, where a derivative or an integral is de…ned as a piecewise within a given interval [START_REF] Atangana | New concept in calculus: Piecewise di¤erential and integral operators[END_REF]. Such a concept is indeed a new mathematical weapon to model complex real world problems exhibiting complex cross-over behaviors. The new type of modeling will be able to handle many complex problems. For example, we observe a very strange way of spread exhibiting by , where in some cases, the spread shows a sign of deterministic within a given period of time then later 1 it shows sign of stochastic randomness. A clear indication of complex cross-over. In this paper, we aim at modeling behaviors of real world exhibiting cross-over from deterministic to stochastic or vice versa.

2 Modeling cross-over from deterministic to stochastic and vice versa

In this section, we discuss di¤erent possible scenarios that could possibly occur in nature.

Case 1. Assume a real world problem exhibiting cross-over from memoriless process to randomness with no steady state. A general Cauchy problem associated to this is given as 8 > > < > > :

dy(t)
dt = f (t; y (t)) , 0 t t 1 y (0) = y 0 dy (t) = f (t; y (t)) dt + y (t) dB (t) , t 1 t T y (t 1 ) = y 1 [START_REF] Atangana | New fractional derivatives with non-local and non-singular kernel, Theory and Application to Heat Transfer Model[END_REF] where and B (t) ; are density of randomness and environmental noise respectively. Case 2. Assuming that a real world problem exhibits cross-over from power-law to stochastic processes, then the Cauchy problem associated to this problem can be de…ned as 8 > > < > > :

C 0 D t y (t) = f (t; y (t)) , 0 t t 1 y (0) = y 0 dy (t) = f (t; y (t)) dt + y (t) dB (t) , t 1 t T y (t 1 ) = y 1

where 0 < 1: Case 3. Assuming that a real world problem exhibits cross-over from fading memory to stochastic processes, then the general Cauchy problem associated to this real world problem can be de…ned as 8 > > < > > :

CF 0 D t y (t) = f (t; y (t)) , 0 t t 1 y (0) = y 0 dy (t) = f (t; y (t)) dt + y (t) dB (t) , t 1 t T y (t 1 ) = y 1

where 0 < 1: Case 4. Assuming that a complex real world problem is exhibiting cross-over from Mittag-Le-er process to stochastic processes, then the general Cauchy problem associated to such problem is de…ned as 8 > > < > > :

ABC 0 D t y (t) = f (t; y (t)) , 0 t t 1 y (0) = y 0 dy (t) = f (t; y (t)) dt + y (t) dB (t) , t 1 t T y (t 1 ) = y 1

where 0 < 1: In the stochastic part, the classical derivative can be replaced by global derivative to capture more complex behaviors. To accommodate readers that are not use to fractional calculus, we present the following de…nitions

C 0 D t y (t) = 1 (1 ) Z t 0 y0 ( ) (t ) d : (5) 
where 0 < 1:

CF 0 D t y (t) = M ( ) 1 Z t 0 y0 ( ) exp 1 (t ) d : (6) 
where 0 < 1; M (0) = M (1) and M ( ) is de…ned as normalized function. The space within which such is de…ned is well presented in [??]

ABC 0 D t y (t) = AB ( ) 1 
Z t 0 y0 ( ) E 1 (t ) d : (7) 
where 0 < 1; AB (0) = AB (1) and AB ( ) = 1 + ( ) : Finally a global derivative of a function f with respect to a function g where g is positive continuously increasing function is de…ned as

D g f (t) = lim t!t1 f (t) f (t 1 ) g (t) g (t 1 ) : (8) 
If f and g are di¤erentiable with g0 (t) 6 = 0; then

D g f (t) = f 0 (t) g0 (t) : (9) 
Case 5. Assuming that a real world problem exhibits random walk processes from [0; t 1 ], then later the process follows changes within region in [t 1 ; T ]. A mathematical model associate to this will be 8 > > < > > :

dy (t) = f (t; y (t)) dt + y (t) dB (t) , 0 t t 1 y (0) = y 0 D g y (t) = f (t; y (t)) , t 1 t T y (t 1 ) = y 1 : (10) 
where D g can be fractional also.

Analysis of deterministic-stochastic models

In this section, we present a discussion regarding numerical solution of each de…ned deterministicstochastic model. For each suggested deterministic-stochastic model, the analysis of existence and uniqueness of solutions can be performed piece-wisely according to each interval. A proper space of the function can be chosen and a suitable methodology for proving existence and uniqueness of such a model can be performed within each interval. This will not be the object of discussion in our paper, however some examples will be considered later and the existence and uniqueness of their solutions will be presented accordingly. In this section, our focus will be to provide a numerical solution to each model using the Newton polynomial interpolation formula [START_REF] Atangana | New numerical scheme with Newton polynomial: Theory, Methods and Applications[END_REF].

Numerical scheme for Case 1

We consider the following problem to present numerical scheme 8 > > < > > :

dy(t) dt = f (t; y (t)) , 0 t t 1 y (0) = y 0 dy (t) = f (t; y (t)) dt + y (t) dB (t) , t 1 t T y (t 1 ) = y 1 : (11) 
The above is converted to

y (t) = ( y (0) + R t1 0 f ( ; y) d y (t 1 ) + R t t1 f ( ; y ( )) d + R t t1 y ( ) dB ( ) (12) 
or

y (t n+1 ) = ( y (0) + R t1 0 f ( ; y) d y (t 1 ) + R t t1 f ( ; y ( )) d + R t t1 y ( ) B0 ( ) d : (13) 
At t = t n+1 , we write

y (t n+1 ) = ( y (0) + R t1 0 f ( ; y) d y (t 1 ) + R tn+1 t1 f ( ; y ( )) d + R tn+1 t1 y ( ) B0 ( ) d (14) 
and

y (t n+1 ) = ( y (0) + P i k=0 R t k+1 t k f ( ; y) d y (t 1 ) + P n k=i+1 R t k+1 t k f ( ; y ( )) d + P n k=i+1 R t k+1 t k y ( ) B0 ( ) d : (15) 
We approximate f (t; y) within [t k ; t k+1 ] when 0 t t 1 using the Newton interpolation polynomial 

f (t; y) = P k (t) ' f (t k 1 ; y (t k 1 )) + f (t k 1 ; y (t k 1 )) f (t k 2 ; y (t k 2 )) t (t t k 2 ) (16) + f (t k ; y (t k )) 2f (t k 1 ; y (t k 1 )) + f (t k 2 ; y (t k 2 )) 2 ( t)

Numerical scheme for Case 2

We deal with the following problem where …rst part is with Caputo fractional derivative and second part is stochastic. Such model is given by 8 > > < > > :

C 0 D t y (t) = f (t; y (t)) , 0 t t 1 y (0) = y 0 dy (t) = f (t; y (t)) dt + y (t) dB (t) , t 1 t T y (t 1 ) = y 1 : (18) 
The above is converted to

y (t) = ( 1 ( ) R t1 0 f ( ; y) (t ) 1 d y (t 1 ) + R t t1 f ( ; y ( )) d + R t t1 y ( ) B0 ( ) d : (19) 
At t = t n+1 , we write

y (t n+1 ) = ( 1 ( ) R t1 0 f ( ; y) (t ) 1 d y (t 1 ) + R tn+1 t1 f ( ; y ( )) d + R tn+1 t1 y ( ) B0 ( ) d (20) 
and

y (t n+1 ) = ( 1 ( ) P i k=0 R t k+1 t k f ( ; y) (t n+1 ) 1 d y (t 1 ) + P n k=i+1 R t k+1 t k f ( ; y ( )) d + P n k=i+1 R t k+1 t k y ( ) B0 ( ) d : (21) 
Replacing f (t; y) by its Newton polynomial , we can approximate f (t; y) within [t k ; t k+1 ] as follows 

y (t n+1 ) = 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : 8 > > > < > > > : ( t) 1 ( +1) P i k=2 f t k 2 ; y k 2 + ( t) 1 ( +2) P i k=2 f t k 1 ; y k 1 f t k 2 ; y k 2 + ( t) 1 2 ( +3) P i k=2 f t k ; y k 2f t k 1 ; y k 1 +f t k 2 ; y k 2 9 > > > = > > > ;
where the …rst part is Caputo-Fabrizio fractional derivative and second part is stochastic. Such problem can be integrated as

y (t) = ( 1 M ( ) f (t; y) + M ( ) R t1 0 f ( ; y) d y (t 1 ) + R t t1 f ( ; y ( )) d + R t t1 y ( ) dB ( ) (24) 
or

y (t) = ( 1 M ( ) f (t; y) + M ( ) R t1 0 f ( ; y) d y (t 1 ) + R t t1 f ( ; y ( )) d + R t t1 y ( ) B0 ( ) d (25) 
At t = t n+1 , we write

y (t n+1 ) = ( 1 M ( ) f (t; y) + M ( ) R t1 0 f ( ; y) d y (t 1 ) + R tn+1 t1 f ( ; y ( )) d + R tn+1 t1 y ( ) B0 ( ) d (26) 
and

y (t n+1 ) = ( 1 M ( ) f (t n ; y n ) + M ( ) P i k=0 R t k+1 t k f ( ; y) d y (t 1 ) + P n k=i+1 R t k+1 t k f ( ; y ( )) d + P n k=i+1 R t k+1 t k y ( ) B0 ( ) d : (27) 
We can approximate f (t; y) within [t k ; t k+1 ] as follows

y (t n+1 ) = 8 > > > > > > > > < > > > > > > > > : 1 M ( ) f (t n ; y n ) + M ( ) P i k=2 5 12 f t k 2 ; y k 2 t 4 3 f t k 1 ; y k 1 t + 23 12 f t k ; y k t 2 6 6 6 6 4 y (t 1 ) + P n k=i+3 5 12 f t k 2 ; y k 2 t 4 3 f t k 1 ; y k 1 t + 23 12 f t k ; y k t + P n k=i+3 8 < : 5 12 (B (t k 1 ) B (t k 2 )) y k 2 4 3 (B (t k ) B (t k 1 )) y k 1 + 23 12 (B (t k+1 ) B (t k )) y k 9 = ; : (28) 

Numerical scheme for Case 4

To obtain numerical scheme for following problem with piecewise derivative, we consider the following problem 8 > > < > > :

ABC 0 D t y (t) = f (t; y (t)) , 0 t t 1 y (0) = y 0 dy (t) = f (t; y (t)) dt + y (t) dB (t) , t 1 t T y (t 1 ) = y 1 : (29) 
The above problem can be converted as

y (t) = ( 1 AB( ) f (t; y) + AB( ) ( ) R t1 0 f ( ; y) (t ) 1 d y (t 1 ) + R t t1 f ( ; y ( )) d + R t t1 y ( ) B0 ( ) d : (30) 
At t = t n+1 , we write

y (t n+1 ) = ( 1 AB( ) f (t; y) + AB( ) ( ) R t1 0 f ( ; y) (t ) 1 d y (t 1 ) + R tn+1 t1 f ( ; y ( )) d + R tn+1 t1 y ( ) B0 ( ) d (31) 
and

y (t n+1 ) = ( 1 AB( ) f (t n ; y n ) + AB( ) ( ) P i k=0 R t k+1 t k f ( ; y) (t n+1 ) 1 d y (t 1 ) + P n k=i+1 R t k+1 t k f ( ; y ( )) d + P n k=i+1 R t k+1 t k y ( ) B0 ( ) d : (32) 
Replacing f (t; y) by its Newton polynomial, we can get the following scheme

y (t n+1 ) = 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : 8 > > > < > > > : 1 AB( ) f (t n ; y n ) + AB( ) ( t) 1 ( +1) P i k=2 f t k 2 ; y k 2 + AB( ) ( t) 1 ( +2) P i k=2 f t k 1 ; y k 1 f t k 2 ; y k 2 + AB( ) ( t) 1 2 ( +3) P i k=2 f t k ; y k 2f t k 1 ; y k 1 +f t k 2 ; y k 2 9 > > > = > > > ; 2 6 6 6 6 4 y (t 1 ) + P n k=i+3 5 12 f t k 2 ; y k 2 t 4 3 f t k 1 ; y k 1 t + 23 12 f t k ; y k t + P n k=i+3 8 < : 5 12 (B (t k 1 ) B (t k 2 )) y k 2 4 3 (B (t k ) B (t k 1 )) y k 1 + 23 12 (B (t k+1 ) B (t k )) y k 9 = ; : (33) 

Numerical scheme for Case 5

In this paper, we consider the following problem with piecewise derivative 8 > > < > > :

dy (t) = f (t; y (t)) dt + y (t) dB (t) , 0 t t 1 y (0) = y 0 D g y (t) = f (t; y (t)) , t 1 t T y (t 1 ) = y 1 (34) 
which is transformed into

y (t) = ( y (0) + R t1 0 f ( ; y ( )) d + R t1 0 y ( ) dB ( ) y (t 1 ) + R t t1 f ( ; y ( )) dg ( ) (35) 
or

y (t) = ( y (0) + R t1 0 f ( ; y ( )) d + R t1 0 y ( ) B0 ( ) d y (t 1 ) + R t t1 f ( ; y ( )) g0 ( ) d : (36) 
At t = t n+1 , we write

y (t n+1 ) = ( y (0) + R t1 0 f ( ; y ( )) d + R t1 0 y ( ) B0 ( ) d y (t 1 ) + R tn+1 t1 f ( ; y) g0 ( ) d (37) 
and

y (t n+1 ) = ( y (0) + P i k=0 R t k+1 t k f ( ; y ( )) d + P i k=0 R t k+1 t k y ( ) B0 ( ) d y (t 1 ) + P n k=i+1 R t k+1 t k f ( ; y ( )) g0 ( ) d : (38) 
The function f (t; y) can be approximated as follows 

y (t n+1 ) = 8 > > > > > > < > > > > > > : 2 4 y ( 
dx dt = y + (x) z + I dy dt = (x) y dz dt = r [s (x x R ) z] x (0) = x 0 ; y (0) = y 0 ; z (0) = z 0 if 0 t 12 (40) 8 > > < > > : dx = (y + (x) z + I) dt + 1 xdB 1 (t) dy = ( (x) y) dt + 2 ydB 2 (t) dz = (r [s (x x R ) z]) dt + 3 zdB 3 (t) x (12) = x 12 ; y (12) = y 12 ; z (12) = z 12 if 12 t 25: (41) 
Here (x) = ax 3 + bx 2 ; (x) = c dx 2 :

We de…ne the norm k'k 1 = sup t2D' j' (t)j, we consider a Banach space. We present here the existence and uniqueness of the solution piecewisely. However to achieve this, we verify the lineargrowth and Lipschitz condition properties. We also assume that 8t 2 [0; 12], there exists 3 positive constant M 1 ; M 2 and M 3 < 1 such that kxk 1 < M 1 ; kyk 1 < M 2 and kzk 1 < M 3 .

> <

> :

x = f 1 (x; y; z; t) y = f 2 (x; y; z; t) z = f 3 (x; y; z; t) if 0 t 12: (42) 
8i = 1; 2; 3; we …rst verify that

jf i (x; t)j 2 < k i jx i j 2 + 1 (43) 
and

f i x 1 ; t f i x 2 ; t 2 < k i x 1 x 2 2 : (44)
For proof, we consider the function f 1 (x; y; z; t)

jf 1 (x; y; z; t)j 2 = y + bx 2 ax 3 z + I 2 (45) 4 jyj 2 + 4 bx 2 ax 3 2 + 4 jzj 2 + 4I 2 4 sup t2[0;12] y 2 + bx ax 2 2 jxj 2 + sup t2[0;12] z 2 + I 2 ! 4 y 2 1 + bx ax 2 1 jxj 2 + z 2 1 + I 2 (46) 4 y 2 1 + z 2 1 + I 2 1 + bx ax 2 1 ky 2 k 1 + kz 2 k 1 + I 2 jxj 2 ! under the condition that kbx ax 2 k 1 ky 2 k 1 +kz 2 k 1 +I 2 < 1, then jf 1 (x; y; z; t)j 2 k 1 1 + jxj 2 :
Using same routine,

jf 2 (x; y; z; t)j 2 = c dx 2 y 2 (47) 3c 2 + 3d 2 x 2 2 + 3 jyj 2 3 c 2 + d 2 sup t2[0;12] x 4 + y 2 ! 3 c 2 + d 2 x 4 1 + y 2 (48) 3 c 2 + d 2 x 4 1 1 + 1 c 2 + d 2 kx 4 k 1 jyj 2 under the condition that 1 c 2 +d 2 kx 4 k 1 < 1, then jf 2 (x; y; z; t)j 2 k 2 1 + jyj 2 :
For the function F 3 ;

jf 3 (x; y; z; t)j 2 = jr [s (x x R ) z]j 2 2r 2 s 2 jx x R j 2 + 2r 2 jzj 2 2 r 2 s 2 sup t2[0;12] jx x R j 2 + jzj 2 ! 2r 2 s 2 kx x R k 2 1 + jzj 2 (49) 2r 2 s 2 kx x R k 2 1 1 + 1 s 2 kx x R k 2 1 jzj 2 !
under the condition that

1 s 2 k(x x R ) 2 k 1 < 1, then jf 3 (x; y; z; t)j 2 k 3 1 + jzj 2 :
Therefore the condition of linear growth is veri…ed if

max ( bx ax 2 1 ky 2 k 1 + kz 2 k 1 + I 2 ; 1 c 2 + d 2 kx 4 k 1 ; 1 
s 2 kx x R k 2 1 
)

< 1: (50) 
4.1 Numerical scheme for stochastic-deterministic model of Hindmarsh-

Rose model

We consider the Hindmarsh-Rose model in piecewise where the …rst part is classical and the secnd part is stochastic such that the stochastic-deterministic model of Hindmarsh-Rose model [START_REF] Hindmarsh | A model of neuronal bursting using three coupled …rst order di¤erential equations[END_REF] is given as 8 > > < > > :

dx dt = y ax 3 + bx 2 z + I dy dt = c dx 2 y dz dt = rs (x x R ) rz x (0) = x 0 ; y (0) = y 0 ; z (0) = z 0 if 0 t t 1 (51) 8 > > < > > : dx = y ax 3 + bx 2 z + I dt + 1 xdB 1 (t) dy = c dx 2 y dt + 2 ydB 2 (t) dz = (rs (x x R ) rz) dt + 3 zdB 3 (t) x (t 1 ) = x 1 ; y (t 1 ) = y 1 ; z (t 1 ) = z 1 if t 1 t T: (52) 
Using the numerical scheme presented in Case1, the numerical solution of the stochastic-deterministic Hindmarsh-rose model is given as follows: 

x (t n+1 ) = 8 > > > > > > > > > > > > < > > > > > > > > > > > > : x 0 + P i k=2 8 < : 5 12 y k 2 ax 3k 6 + bx 2k 4 z k 2 + I t 4 3 y k 1 ax 3k 3 + bx 2k 2 z k 1 + I t + 23 12 y k ax 3k + bx 2k z k + I t 9 
5 12 (B 1 (t k 1 ) B 1 (t k 2 )) 1 x k 2 4 3 (B 1 (t k ) B 1 (t k 1 )) 1 x k 1 + 23 12 (B 1 (t k+1 ) B 1 (t k )) 1 x k 9 = ; 3 7 7 7 7 7 7 5 
, if t 1 t T :

(53) 

y (t n+1 ) = 8 > > > > > > > > > > > > < > > > > > > > > > > > > : y 0 + P i k=2 8 
z (t n+1 ) = 8 > > > > > > > > > > > > < > > > > > > > > > > > > : z 0 + P i k=2 8 < : 5 12 rs x k 2 x R rz k 2 t 4 3 rs x k 1 x R rz k 1 t + 23 12 rs x k x R rz k t 9 = ; ; if 0 t t 1 2 6 6 6 6 6 6 4 
z 1 + P n k=i+3 8 < : 5 12 rs x k 2 x R rz k 2 t 4 3 rs x k 1 x R rz k 1 t + 23 12 rs x k x R rz k t 9 = ; + P n k=i+3 8 < : 5 12 (B 3 (t k 1 ) B 3 (t k 2 )) 3 z k 2 4 3 (B 3 (t k ) B 3 (t k 1 )) 3 z k 1 + 23 12 (B 3 (t k+1 ) B 3 (t k )) 3 z k 9 
dx = y ax 3 + bx 2 z + I dt + 1 xdB 1 (t) dy = c dx 2 y dt + 2 ydB 2 (t) dz = (rs (x x R ) rz) dt + 3 zdB 3 (t) x (t 1 ) = x 1 ; y (t 1 ) = y 1 ; z (t 1 ) = z 1 if t 1 t T (57) 
where the …rst part is classical and the second part is stochastic.Here initial data is taken as

x (0) = 0:1; y (0) = 0:1; z (0) = 0:1: (58) 
In Figure 1, the numerical simulations are depicted with the parameters a = 1; b = 3; c = 1; d = 5; s = 4; x R = 8=5; r = 3 ; I = 6: :

C 0 D t x = y ax 3 + bx 2 z + I C 0 D t y = c dx 2 y C 0 D t z = rs (x x R ) rz if 0 t t 1 (59) 8 < 
:

dx = y ax 3 + bx 2 z + I dt + 1 xdB 1 (t) dy = c dx 2 y dt + 2 ydB 2 (t) dz = (rs (x x R ) rz) dt + 3 zdB 3 (t) if t 1 t T:
The numerical solution of such model is given by 

x (t n+1 ) = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : 8 > > > > > > < > > > > > > : ( t) 1 ( +1) P i k=2 y k 2 ax 3k 6 + bx 2k 4 z k 2 + I + ( t) 1 ( +2) P i k=2 y k 1 ax 3k 3 + bx 2k 2 z k 1 + I y k 2 ax 3k 6 + bx 2k 4 z k 2 + I + ( t) 1 2 ( +3) P i k=2 2 4 y k 2 ax 3k 6 + bx 2k 4 z k 2 + I 2 y k 1 ax 3k 3 + bx 2k 2 z k 1 + I + y k ax 3k + bx 2k z k + I 3 5 9 > > > > > > = > > > > > > ; ; if 0 t
5 12 (B 1 (t k 1 ) B 1 (t k 2 )) 1 x k 2 4 3 (B 1 (t k ) B 1 (t k 1 )) 1 x k 1 + 23 12 (B 1 (t k+1 ) B 1 (t k )) 1 x k 9 = ; , if t 1 t T : (60) 
y (t n+1 ) = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : 8 > > > > > > < > > > > > > : ( t) 1 ( +1) P i k=2 c dx 2k 4 y k 2 + ( t) 1 ( +2) P i k=2 c dx 2k 2 y k 1 c dx 2k 4 y k 2 + ( t) 1 2 ( +3) P i k=2 2 4 c dx 2k 4 y k 2 2 c dx 2k 2 y k 1 + c dx 2k y k 3 5 9 > > > > > > = > > > > > > ; ; if 0 t
z (t n+1 ) = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : 8 > > > > > > < > > > > > > : ( t) 1 ( +1) P i k=2 rs x k 2 x R rz k 2 + ( t) 1 ( +2) P i k=2 rs x k 2 x R rz k 2 rs x k 1 x R rz k 1 + ( t) 1 2 ( +3) P i k=2 2 4 rs x k 2 x R rz k 2 2 rs x k 1 x R rz k 1 + rs x k x R rz k 3 5 9 > > > > > > = > > > > > > ; ; if t t 1 2 6 6 6 6 6 6 4 x 1 + P n k=i+3 8 < : 5 12 rs x k 2 x R rz k 2 t 4 3 rs x k 1 x R rz k 1 t + 23 12 rs x k x R rz k t 9 = ; + P n k=i+3 8 < : 5 12 (B 3 (t k 1 ) B 3 (t k 2 )) 3 z k 2 4 3 (B 3 (t k ) B 3 (t k 1 )) 3 z k 1 + 23 12 (B 3 (t k+1 ) B 3 (t k )) 3 z k 9 = ; 3 7 7 7 7 7 7 (61) 
, if t 1 t T : (62) 5 

Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model

We present the numerical simulations for the Hindmarsh-Rose model in piecewise 8 < :

C 0 D t x = y ax 3 + bx 2 z + I C 0 D t y = c dx 2 y C 0 D t z = rs (x x R ) rz if 0 t t 1 (63) 8 < 
:

dx = y ax 3 + bx 2 z + I dt + 1 xdB 1 (t) dy = c dx 2 y dt + 2 ydB 2 (t) dz = (rs (x x R ) rz) dt + 3 zdB 3 (t) if t 1 t T:
where initial data is considered as

x (0) = 0:1; y (0) = 0:1; z (0) = 0:1: (64)
In Figure 2 We consider the Hindmarsh-Rose model where the …rst part is Caputo-Fabrizio derivative and the second part is stochastic as follows 8 <

:

CF 0 D t x = y ax 3 + bx 2 z + I CF 0 D t y = c dx 2 y CF 0 D t z = rs (x x R ) rz if 0 t t 1 (65) 8 < 
:

dx = y ax 3 + bx 2 z + I dt + 1 xdB 1 (t) dy = c dx 2 y dt + 2 ydB 2 (t) dz = (rs (x x R ) rz) dt + 3 zdB 3 (t) if t 1 t T: (66) 
Using the numerical scheme presented in Case 3, the numerical scheme for stochastic-deterministic Hindmarsh-rose model is given as follows: ;

x (t n+1 ) = 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > :
+ P n k=i+3 8 < : 5 12 (B 1 (t k 1 ) B 1 (t k 2 )) 1 x k 2 4 3 (B 1 (t k ) B 1 (t k 1 )) 1 x k 1 + 23 12 (B 1 (t k+1 ) B 1 (t k )) 1 x k 9 = ; 3 7 7 7 7 7 7 5 
; if t 1 t T :

(67) 

y (t n+1 ) = 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : 1 M ( ) c
5 12 (B 2 (t k 1 ) B 2 (t k 2 )) 2 y k 2 4 3 (B 2 (t k ) B 2 (t k 1 )) 2 y k 1 + 23 12 (B 2 (t k+1 ) B 2 (t k )) 2 y k 9 = ; 3 7 7 7 7 7 7 5 
; if t 1 t T :

z (t n+1 ) = 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : 1 M ( ) (rs (x n x R ) rz n ) + M ( ) P i k=2 8 < : 5 12 rs x k 2 x R rz k 2 t 4 3 rs x k 1 x R rz k 1 t + 23 12 rs x k x R rz k t 9 = ; ; if 0 t t 1 2 6 6 6 6 6 6 4 z 1 + P n k=i+3 8 < : 5 12 rs x k 2 x R rz k 2 t 4 3 rs x k 1 x R rz k 1 t + 23 12 rs x k x R rz k t 9 = ; + P n k=i+3 8 < : 5 12 (B 3 (t k 1 ) B 3 (t k 2 )) 3 z k 2 4 3 (B 3 (t k ) B 3 (t k 1 )) 3 z k 1 + 23 12 (B 3 (t k+1 ) B 3 (t k )) 3 z k 9 = ; 3 7 7 7 7 7 (68) 
; if t 1 t T : (69)

Numerical scheme for stochastic-deterministic model of Hindmarsh-Rose model

In this section, we present the numerical scheme for Hindmarsh-Rose model with piecewise derivative 8 < :

ABC 0 D t x = y ax 3 + bx 2 z + I ABC 0 D t y = c dx 2 y ABC 0 D t z = rs (x x R ) rz if 0 t t 1 (72) 8 < 
:

dx = y ax 3 + bx 2 z + I dt + 1 xdB 1 (t) dy = c dx 2 y dt + 2 ydB 2 (t) dz = (rs (x x R ) rz) dt + 3 zdB 3 (t) if t 1 t T:
Stochastic-deterministic Hindmarsh-Rose model can be solved by the following scheme

x (t n+1 ) = 8 > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > : 8 > > > > > > > > > < > > > > > > > > > : 1 AB( ) y n ax 3n + bx 2n z n + I + AB( ) ( t) 1 ( +1) P i k=2 y k 2 ax 3k 6 + bx 2k 4 z k 2 + I + AB( ) ( t) 1 ( +2) P i k=2 y k 1 ax 3k 3 + bx 2k 2 z k 1 + I y k 2 ax 3k 6 + bx 2k 4 z k 2 + I + AB( ) ( t) 1 2 ( +3) P i k=2 2 4 y k 2 ax 3k 6 + bx 2k 4 z k 2 + I 2 y k 1 ax 3k 3 + bx 2k 2 z k 1 + I + y k ax 3k + bx 2k z k + I 3 5 9 > > > > > > > > > = > > > > > > > > > ; ; if 0 t t 1 2 6 6 6 6 6 6 4 
x 1 + P n k=i+3 8 < :

5 12 y k 2 ax 3k 6 + bx 2k 4 z k 2 + I t 4 3 y k 1 ax 3k 3 + bx 2k 2 z k 1 + I t + 23 12 y k ax 3k + bx 2k z k + I t 9 = ; + P n k=i+3 8 < : 5 12 (B 1 (t k 1 ) B 1 (t k 2 )) 1 x k 2 4 3 (B 1 (t k ) B 1 (t k 1 )) 1 x k 1 + 23 12 (B 1 (t k+1 ) B 1 (t k )) 1 x k 9 = ; 3 7 7 7 7 7 7 5 
, if t 1 t T :

(73) 

y (t n+1 ) = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : 8 > > > > > > < > > > > > > : 1 AB( ) c dx 2n y n + AB( ) ( t) 1 ( +1) P i k=2 c dx 2k 4 y k 2 + AB( ) ( t) 1 ( +2) P i k=2 c dx 2k 2 y k 1 c dx 2k 4 y k 2 + AB( ) ( t) 1 2 ( +3) P i k=2 2 4 c dx 2k 4 y k 2 2 c dx 2k 2 y k 1 + c dx 2k y k 3 5 9 > > > > > > = > > > > > > ; ; if 0 t
dx = y ax 3 + bx 2 z + I dt + 1 xdB 1 (t) dy = c dx 2 y dt + 2 ydB 2 (t) dz = (rs (x x R ) rz) dt + 3 zdB 3 (t) x (0) = x 0 ; y (0) = y 0 ; z (0) = z 0 if 0 t t 1 (78) 8 > > < > > : D g x = y ax 3 + bx 2 z + I D g y = c dx 2 y D g z = (rs (x x R ) rz) x (t 1 ) = x 1 ; y (t 1 ) = y 1 ; z (t 1 ) = z 1 if t 1 t T: (79) 
Using the numerical scheme presented in Case 5, we can have the following scheme for the stochasticdeterministic Hindmarsh-Rose model 

x (t n+1 ) = 8 > > > > > > > > > > > > < > > > > > > > > > > > > :

Numerical simulation for stochastic-deterministic 4D Sinusoidally Driven Lorenz system model

We present the numerical solution for 4D sinusoidally Driven Lorenz model [START_REF] Chunyan | A Sinusoidally Driven Lorenz System and Circuit Implementation[END_REF] in piecewise where the …rst part is considered with classical and the second part is stochastic. Such model is represented by 8 > > < > > : 

In Figure 9, the numerical simulations for the considered system are performed with the parameters a = 10; b = 30; d = 8=3; c = 17; w = 0:5: In Figure 14, we present the numerical simulations for stochastic-deterministic Bouali system for the parameters a = 3; = 2:2; b = 1; = 1:51: 

where where the …rst part is Caputo and the second part is stochastic. Initial conditions are taken as

x (0) = 1; y (0) = 1; z (0) = 0:02:

In Figure 15, the numerical simulations are depicted for the parameters a = 3; = 2:2; b = 1; = 0:001: 

if 0 t t 1 (108) 8 < 
:

D g x = ax (1 y) z D g y = y 1 x 2 D g z = x if t 1 t T: (109) 
such that g (t) = t: Also initial conditions are as follows

x (0) = 1; y (0) = 1; z (0) = 0:02:

In Figure 18, the numerical simulations are presented for the parameters a = 3; = 2:2; b = 1; = 0:001: 

Conclusion

Using the concept of piecewise di¤erentiation and integration suggested by Atangana and Seda recently, we suggested new classes of nonlinear ordinary di¤erential equations. These new classes are called piece-wise deterministic stochastic equations. We suggested …ve classes, of course more classes can be obtained depending on how the piece-wise di¤erential and integral operators are de…ned with given intervals. We informed that, of each class presented, a suitable method to prove existence and uniqueness of piecewise solution can be performed in suitable spaces. However, we also informed that such discussion was not presented in general in our paper. Nevertheless, we considered a few chaotic models and extended each one of the …ve classes suggested, for some we presented conditions under which existence and unique solutions are obtained. General numerical solutions using the Newton polynomial interpolation were obtained. Illustrative examples are presented together with simulations. The obtained solutions leave us no chose to conclude that, this approach is the future of modelling complex real world problems.
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 1 Figure 1. Numerical visualization of Hindmarsh-Rose model for = 1; 1 = 0:01; 2 = 0:015; 3 = 0:012:

  , the numerical simulations are provided with the parameters a = 1; b = 3; c = 1; d = 5; s = 4; x R = 8=5; r = 10 3 ; I = 6:
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 2 Figure 2. Numerical visualization of Hindmarsh-Rose model for = 1; 1 = 0:01; 2 = 0:015; 3 = 0:012:
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 4 Figure 4. Numerical visualization of Hindmarsh-Rose model for = 1; 1 = 0:01; 2 = 0:015; 3 = 0:012:

8 where

 8 g (t) = t and initial data is considered as x (0) = 0:1; y (0) = 0:1; z (0) = 0:1:(85)In Figure5, the numerical simulations are depicted with the parameters a = 1; b = 3; c = 1; d = 5; s = 4; x R = 8=5; r = 10 3 ; I = 6:
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 5 Figure 5. Numerical visualization of Hindmarsh-Rose model for = 1; 1 = 0:01; 2 = 0:015; 3 = 0:012:

  dx = ( a (x y c sin u)) dt + 1 xdB 1 (t) dy = (bx xz y) dt + 2 ydB 2 (t) dz = (xy dz) dt+ 3 zdB 3 (t) du = wdt + 4 udB 4 (t) if t 1 t Twhere initial data is considered asx (0) = 0:1; y (0) = 0:1; z (0) = 0:1; u (0) = 0:1:(87)For Case 1, the numerical simulations are performed in Figure6. Here the parameters are chosen as a = 10; b = 30; d = 8=3; c = 17; w = 0:5:
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 6 Figure 6. Numerical visualization of 4D Sinusoidally Driven Lorenz system for = 1; 1 = 0:012; 2 = 0:013; 3 = 0:015; 4 = 0:014:
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 7 Figure 7. Numerical visualization of 4D Sinusoidally Driven Lorenz system for = 1; 1 = 0:012; 2 = 0:013; 3 = 0:015; 4 = 0:014:
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 80001 Figure 8. Numerical visualization of 4D Sinusoidally Driven Lorenz system for = 1; 1 = 0:012; 2 = 0:013; 3 = 0:015; 4 = 0:014:
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 9 Figure 9. Numerical visualization of 4D Sinusoidally Driven Lorenz system for = 1; 1 = 0:012; 2 = 0:013; 3 = 0:015; 4 = 0:014:

D

  g x = a (x y c sin u) D g y = bx xz y D g z = xy dz D g u = w if t 1 t T: such that g (t) = t: Here initial conditions are as follows x (0) = 0:1; y (0) = 0:1; z (0) = 0:1; u (0) = 0:1: (95) In Figure 10, the numerical simulations are depicted for the considered problem where the parameters are chosen as a = 10; b = 30; d = 8=3; c = 17; w = 0:5:
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 10 Figure 10. Numerical visualization of 4D Sinusoidally Driven Lorenz system for = 1; 1 = 0:012; 2 = 0:013; 3 = 0:015; 4 = 0:014:
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 12 Figure 12. Numerical visualization of Bouali system for = 1; 1 = 0:02; 2 = 0:022; 3 = 0:025:
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 13 Figure 13. Numerical visualization of Bouali system for = 1; 1 = 0:02; 2 = 0:022; 3 = 0:025:
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 1420 Figure 14. Numerical visualization of Bouali system for = 1; 1 = 0:02; 2 = 0:022; 3 = 0:025:
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 17 Figure 17. Numerical visualization of Bouali system for = 1; 1 = 0:02; 2 = 0:022; 3 = 0:025:

Figure 18 .

 18 Figure 18. Numerical visualization of Bouali system for = 1; 1 = 0:02; 2 = 0:022; 3 = 0:025:

  (t k ) B 2 (t k 1 )) 2 y k 1 + 23 12 (B 2 (t k+1 ) B 2 (t k )) 2 y k

	< : 8 < : 5 k=i+3 P n k=i+3 y 1 + + P n 8 < : 12 (B 2 (t k 1 ) B 2 (t k 2 )) 2 y k 2 5 t 9 = 12 c dx 2k 4 y k 2 4 3 c dx 2k 2 y k 1 t + 23 12 c dx 2k y k t ; 5 12 c dx 2k 4 y k 2 t 4 3 c dx 2k 2 y k 1 t + 23 12 c dx 2k y k t 9 = ; 4 3 (B 2 9 ; if 0 t t 1 3 = ; 7 7 7 7 5 7 , if t 1 t T 7	:	(54)

  dx 2n y n

	2 6 6 6 6 6 6 4	+ M ( ) y 1 + P n P i k=2 k=i+3 8 8 < : < : 8 < P n + k=i+3 :	5 12 c dx 2k 4 y k 2 4 3 c dx 2k 2 y k 1 + 23 12 c dx 2k y k 5 12 c dx 2k 4 y k 2 4 3 c dx 2k 2 y k 1 + 23 12 c dx 2k y k	t	t t t t t	9 = ; 9 = ;	; if 0 t t 1

  + 1 xdB 1 (t) dy = by 1 x 2 dt + 2 ydB 2 (t) dz = xdt + 3 zdB 3 (t)

				t t 1	(99)
	8 < :	dx = (ax (1 y)	z) dt if t 1	t T:

Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model

In this subsection, we consider stochastic-deterministic the Hindmarsh-Rose model where initial data is considered as

x (0) = 0:1; y (0) = 0:1; z (0) = 0:1: (71)

In Figure 3 

:

where the …rst part is with Mittag-Le-er kernel and the second part is stochastic. Initial data is considered as

In Figure 4, the numerical simulations are depicted with the parameters a = 1; b = 3; c = 1; d = 5; s = 4; x R = 8=5; r = 10 3 ; I = 6:

:

;

,if 0 t t 1

x 1 + P n k=i+3 8 < : ;

; if 0 t t 1 

Numerical simulation for stochastic-deterministic model of Hindmarsh-Rose model

In this subsection, we provide the numerical simulations for the following Hindmarsh-Rose model 8 > > < > > :

6 Applications for stochastic-deterministic model of Bouali system In this section, we present applications of stochastic-deterministic Bouali system for all cases.

Numerical simulation for stochastic-deterministic model of Bouali system

We consider the Bouali model [START_REF] Bouali | A 3D Strange Attractor with a Distinctive Silhouette. The Butter ‡y E¤ect Revisited[END_REF] in piecewise where the …rst part is classical and the second part is stochastic as follows 8 <

:

:

where initial conditions are taken as

In Figure 11 and 12, the numerical simulations are depicted for the parameters a = 3; = 2:2; b = 1; = 0:001: We consider the Bouali model with piecewise derivative 8 < :

:

Initial conditions are given by x (0) = 1; y (0) = 1; z (0) = 0:02

In Figure 16, the numerical simulations are provided for Bouali system where the parameters are taken as a = 3; = 2:2; b = 1; = 0:001: 

Here the …rst part is Atangana-Baleanu fractional derivative and the second part is stochastic. Also initial conditions are taken as

x (0) = 1; y (0) = 1; z (0) = 0:02:

In Figure 17, we provide simulations for Bouali system with the parameters a = 3; = 2:2; b = 1; = 0:001: