Hubert Schaetzel 
  
Convexity in the lower half of the critical band and Riemann hypothesis proof

Keywords: 

   

Convexity in the lower half of the critical band and

Riemann hypothesis proof

Indeed, the mathematical literature abounds in clues and evidence in favour of Riemann's hypothesis [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF]. One of these is the strict adherence to the hypothesis of billions of zeroes obtained by numerical evaluation. Limiting yourself to the accounting of the first zeros, regardless of their number, however, does not give any general property which enables to deduct for sure a rule for those coming next. Therefore, we are expanding the study by looking at all the points of the critical strip and in particular the bottom half of that band. The results brought to light in this way being general apply to the zeros themselves.

Our investigation is based on one among the analytical extensions of Riemann's series, the Dirichlet Eta function. It establishes the existence of a lower boundary for an indicative function of (positive) convexity deduced from it, resulting in the impossibility of symmetrical Riemann zeros on either side of the critical line.

Addressing a wide audience, many graphic illustrations are given here to make the thread of ideas as accessible and clear as possible. Despite all these additions, the article remains relatively short. Can its content then be worth a million of some other one ?

2.Analytic continuations.

Let us have s = a+i.b some complex number. The parameters a, b and s are taken in the same context throughout this presentation. The Riemann Zeta function is defined for Re(s) > 1 by the entire function :

∞ ζ(s) = ∑ 1 (1) m s m = 1
The function diverges roughly in the form of an exponentially growing sinusoid for Re(s) < 1 for a given value of the parameter a, the real part of s, and the zeros of this function, called here (non-trivial) zeros of Riemann, correspond to numbers s such as the middle axis of this sinusoid aligns asymptotically with the axis y = 0.

Graphic 1 ζ(s) = C0+i.S0, s = 1/2+i. 14,347251 Note that it is impossible to find precisely the zeros of this function by exploiting only this remark.

Riemann's Zeta function, however, admits, for Re(s) > 0, an analytical continuation based on Dirichlet's entire function Eta η(s). η(s) = (1-2 1-s ).ζ(s) [START_REF] Báez-Duarte | Fast proof of functional equation for ζ(s)[END_REF] This equality shows that the zeros of Dirichlet's Eta function are the union of zeros of 1-2 where k describes the relative integers Z. These zeros, with constant real value (a = 1), are genuine Siamese brothers of Riemann zeros as we showed in another article (see reference [ [START_REF]The Siamese brothers of the Riemann zeroes[END_REF]). The formers are inseparable from the latter and allow us to anticipate the behaviour of Riemann's zeros. They are the trivial image of the veracity of Riemann's hypothesis. Unsurprisingly, we will find them again the upcoming numerical illustrations and elsewhere in this text.

Let us now introduce the functional equation (see reference [START_REF] Báez-Duarte | Fast proof of functional equation for ζ(s)[END_REF]) :

ζ(s) = 2 s .π s-1 .sin(π.s/2).Γ(1-s).ζ(1-s) [START_REF]Database of L-functions, modular forms, and related objects[END_REF] This further analytical continuation introduces, due to the sinus, additional zeros -2n, called trivial zeros, for any natural (thus positive) integer that are absent in previous functions. This last continuation is essential to our argument because we can state the following theorem :

Theorem 1

The non-trivial Riemann zeros are symmetrical to the axis s = 1/2 in the critical band.

Proof

Let us have ξ(s) = (1/2).s.(1-s).π -s/2 .Γ(s/2).ζ(s). We get (see reference [3]) immediately ξ(s) = ξ(1-s). Hence the theorem.

Theorem 2

If the set of all Riemann's zeroes such as 0 < a < 1/2 is empty, then Riemann's zeros are all on the 1/2 axis.

Proof

This is a trivial consequence of theorem 1.

In 1896, Hadamard and La Vallée-Poussin3] independently proved that no zero could be on the Re(s) = 1 line, and therefore that all non-trivial zeros should be in the interior of the critical band 0 < Re(s) < 1. For this reason, we have chosen previously to write 0 < a < 1/2 instead of 0 ≤ a < 1/2, although this second way doesn't in any way hinder us here, quite the contrary, since it allows us to confirm the work of the authors cited simply by examining case a = 0 (which is actually done in this article).

3.Explicit equations of the Dirichlet Eta function and more expressions.

Let us have Ln(x) the Napierian logarithm of x. The Eta function writes as : ∞

η(s) = ∑ (-1) m-1 (6) m s m = 1 We thus get : ∞ ∞ η(s) = ∑ (-1) m-1 .m -a .cos(b.Ln(m))+i. ∑ (-1) m-1 .m -a .sin(b.Ln(m)) (7) m = 1 m = 1
The search for η(s) zeros is therefore tantamount to solving the two equations : is less than the -1 value, for 0 ≤ a ≤ 1/2, near the origin to abscissas smaller than that of the first Riemann zero (and the first Dirichlet zero).

∞ ∑ (-1) m-1 .m -a .
It should also be noted that because of the symmetry of the functional equation, we only look at the b ≥ 0 values, the arguments being in any way identical to b ≤ 0 case.

4.Numerical illustrations.

The reader will refer to Appendix 1 for the conditions to ensure the consistency and accuracy of numerical assessments. All illustrations are given with an interval between points equal to Δb = 1/10 when not otherwise specified.

The study concerns the critical half-band 0 ≤ a ≤ 1/2. However, as Riemann's zeros, at least for those known, are all on the critical line a = 1/2, the highlighted expressions are necessarily at their climax and therefore the most prominent on this critical line. Thus, the reader will not be surprised if some calculations focus solely on this line. On a parallel line < 1/2 of the critical band, the situation is similar but rapidly with a (very) smaller magnitude.

The content of this paragraph 4, called as "illustrations", as well as Appendix 8, contains a set of relationships that are sufficient to show the evidence of the hypothesis. This evidence is overwhelming, the zeros and the neighbourhoods of these zeroes offering only a paroxysm. However, the proof of these relations, for the current paragraph except for the indispensable part 4.2, would surely be a real "tour de force" and is not undertaken here. Hence the obvious need for paragraph 5 that will follow it.

Order linked to parameter a.

A statement almost similar to theorem 4 is to say that the points of the A close-up view of graphic 3 appears below and shows the gradual rearrangement of the order of curves related to the a parameter. This rearrangement does not occur at a given abscissa as the previous view might suggest, but progressively on a wider range. p 6/46

Graphic 4

The existence of a single extremum a 0 , for given b, is not trivial, as counter-examples, with 2, 3 or more reversals, can be built for a finite sum of the ∑ b k .m -ak type. The aim here is to show that for the studied R2(a,b) function, this is never the case.

Staggering of the sums of squares SCk(a,b).

We We get immediately :

Theorem 5
We have almost everywhere :

SC k+1 (a,b) > SC k (a,b) (20) Note 1: 
The curves are given with our standard step Δb = 1/10. The downwards peaks are not necessarily fully formed here. The terminology "almost everywhere" is not that of the probability theory. The term only means very often, thus without a strict notion of density, as the study is not completed at this stage.

To improve accuracy, two parameters are to be taken into account:

-The number of terms of the truncation -The step Δb

In the graphs below, at the peaks' levels, Δb is taken here equal to 1/10000. For SC0, at Riemann's zeros level, both peaks take on lower and lower values (since the theoretical limit here is 0). For SC1, the peak progresses to lower values between truncation with 10,000 terms up to 50,000 terms. This progression then stops. The minimum value statements are 0.00097147 for 10000 terms, 0.00053732 for 50000 terms, 0.00058222 for 150000 terms, nothing in fact prohibiting a higher value in the final instance when accuracy increases. . The C0 and S0 functions are non-zero since they are not placed at a Riemann zero. We then have at the peak of SC1, the ordinate difference between SC1 and SC0 equal to

C1 2 +S1 2 -(C0 2 +S0 2 ) ≈ (C0.S1/S0) 2 +S1 2 -(C0 2 +S0 2 ) = ((S1/S0) 2 -1).(C0 2 +S0 2 )
, and in the same way,

C1 2 +S1 2 -(C0 2 +S0 2 ) ≈ (C1 2 +(C1.S0/C0) 2 -(C0 2 +S0 2 ) = ((C1/C0) 2 -1).(C0 2 +S0 2
). These expressions, as sums of continuous functions, are continuous. Thus, for the difference C1 2 +S1 2 -(C0 2 +S0 2 ) to become negative, it must first be able to go to zero. The coordinate point (a,b peak ) being intermediate between two Riemann zeros, we have C0 2 +S0 2 ≠ 0. This means that the nullity of C1 2 +S1 2 -(C0 2 +S0 2 ) results in the joint nullity of (C1/C0) 2 -1 and(S1/S0) 2 -1, or simultaneously C1 → C0 and S1 → S0 near the abscissa of the peak. However, C0 is by no means C1, nor S0 compares to S1 and the ratio of their numerical values does not converge due to small, near-random values of C0, S0, C1 and S1. Small values of C0 and S0 are directly linked to small value of the difference C1 2 +S1 2 -(C0 2 +S0 2 ), creating an increasing oscillation (and therefore a divergence). At the limit SC1 → SC0, the oscillation tends towards infinity making equality impossible.

We give the example for the peak near to b peak ≈ 7005.08168, the phenomenon of oscillations being reproducible with any other example. We do have C1 2 +S1 2 -(C0 2 +S0 2 ) → 0 (see graphic 12). But (C1/C0) 2 -1 ≈ (S1/S0) 2 -1 ≈ 58 (which is a first handicap) as long as we take a truncation between 800 and 2300 terms, case where C1 2 +S1 2 -(C0 2 +S0 2 ) does not yet p 9/46 converge towards 0. When this convergence finally begins with the sufficient number of terms (here above 2500), the ratios C1/C0 and S1/S0 enter an unstable phase due to the low values of C0, S0, C1 and S1 (graphics 13 and 14) oscillating around the previous value. This oscillation remains regardless of the number of terms, and therefore to infinity, that is up to the effective value of C1 2 +S1 2 -(C0 2 +S0 2 ). We have for 0 ≤ a ≤ 1/2 and k > 0 :

Graphic 12

SC k (a,b) > 0 ( 22 
)
Proof This is immediately due to theorem 6.

Note :

The SC0 ordinate at the intermediate abscissa b peak is, a priori, statistically lower as two Riemann zeros are closer. We return to this point in paragraph 4.7.

Minimal value of R2(a,b).

A large amount of calculations are required to determine the statistical laws to which the term R2(a,b) responds and the trends that emerge from it. In order to cover a wide field of abscissas b, it is therefore necessary to investigate by choosing an interval between input data b (and sometimes a) as large as possible while avoiding losing some of the desired values. This main constraint, and others more diffuse, may eventually be the source of a failure. The latest graphic shows that the increase in b has no real impact on the order of the distributions of the R2(1/2, b) values and in particular on its minimum value. The last curve of the legend, where b is in the 100001 to 100100 value range, is simply intermediate to the other distributions. We go back to the shape of the latter graphic with increased precision in the following paragraph.

Random surveys of R2(a,b).

We start with surveys for a = 1/2. We are talking about random surveys although b is taken with constant spacing 1. Indeed, the value that R2(a,b) versus b, for given parameter a, is not predictable: Riemann's zeroes have b r imaginary abscissas that we can call random and the value of R2(a,b) for constant b spacing will be at a random distance of the nearby b r therefore having seemingly random R2(a,b). The same is true of minimums and maximums of R2(a,b) or any other choice. Taking b with random or constant distances thus amounts to the same if we want to statistically analyse the distribution of R2(a,b) given some parameter a.

We then have the following incomplete table :

p 13/46 These values are then sorted in ascending order, with the reference axis becoming a mere index. The curves that are representative of the distributions of values obtained in this way are :

Graphic 26 x graphic = i a = 1/2, b ∈ [0, 29999]
The shape curves in the central part are the same for the three sorted data choices. It would be the same for any other random choice of abscissas provided that the selected sample has sufficient elements. This random choice may be a Δb spacing different from 1. The graphic below provides a close-up view for the part we are particularly interested in, that is when R2(a,b) < 0. The curves show up in descending order of a values as one would expect. Here, for a = 0.55, we still have R2(a,b) > -1, but this is no longer the case for a = 0.6 (which is without any prejudice for our study). We can question ourselves about the particular shape of the previous overall profile. In part, the origin of the profile is probably in the differences of successive zeroes. Below we give the profile of these differences for the first 10,000 of them (after increasing sorting of the differences) and the next 10,000. The profile of the inverse 1/Δbr seems even closer to that of the graphic 30. All that is missing is the ripple in the inter-median parts.

Graphic 32 a = 0 to 1, x ∈ [500, 750] The reader will therefore not be surprised to see later on the term Δbr within the denominator of certain evaluations. It is as if the rise towards the high values r peak of R2(a,b) requires a spring force acting from under ordinate 0. Indeed, the higher a peak is, the higher the negative values r low surrounding it.

Graphic38 however shows "high" negative values on both sides that do not necessarily cause a high (positive) spike when their forces are already affected in nearby peaks. Thus, if we represent r peak as a function of r M , where r peak is the value of a given peak, r M the average between the two lower values on either side, we necessarily get a "parasitic" branch. This is what is shown in the graphics (39) and (40) below.

The reader will note that these two graphics (which are the same data except a logarithmic scale for the y-axis in the second The "parasitic" branch is the one extending horizontally. It does not provide any additional useful information to that provided by the ascending branch since it is linked to it. The downside is that it can give the illusion that the abscissa rM is not bounded when what determines it is actually the evolution of the ascending branch. In paragraph 4.7, we specify the criterion by which the mix of horizontal and ascending branches take an overriding character.

The illustration based on graphics 39 and 40 leads also to an important remark. Step Δb = 1/100 remains too wide to get a good accuracy of the actual values of the peaks r peak . It is imperative to do a point-by-point study. We thus provide in Appendix 3 Table 7 the complete data of the graphics below (which are again the same data with simply a logarithmic scale for the y-axis in the second chart).

Graphic 41 r peak function of r M Main branch

Graphic 42 r peak function of r M Main branch (r M < -0,1)

The points on the first graphic show an increasingly rapid divergence beyond abscissa rM ≈ -0.35. The second graphic shows that this increase is over-exponential. The data near the origin are more erratic because of the combination of the ascending and horizontal branches within graphic (39).

The interpolation function used here is :

r peak ≈ 1,4 -5 (24) (0,5+r M ) 2,1
The adjustment parameters are very approximate (except 0.5 which is certainly near effective value). We incline for an exponent with denominator equal to 2, but our data to date indicates the adjustment proposed here. For lack of better, we let it that way.

The important point is that this approximation function diverges at r M = -0.5 which means a bumper value impossible to exceed (as soon as -0.5 instead of -1) because of the continuity of R2(a,b) demonstrated in paragraph 5.1. This then confirms theorem 4.

Note:

The term r M is an average of 2 terms. Nothing prevents one of them from being smaller than -0.5. p 18/46

Relationship between Riemann zeros spacings and R2(a,b).

A random search for high-amplitude peaks of R2(a,b) would require enormous computational resources without the existence of a sufficiently simple tracking. Fortunately, there is a link between the gap of two consecutive Riemann zeros and the height of the intermediate peak, a link that then makes the search quite easy thanks to the database referenced in [START_REF]Database of L-functions, modular forms, and related objects[END_REF].

As it turns on, a peak is generally all the more ample as the gap between two consecutive Riemann zeros (at abscissas noted zero_R-and zero_R+) is smaller. We have the following approximate relationship, where br is the peak abscissa, Δbr the gap between two Riemann's zeroes. The reader will find the numerical elements in Appendix 5 : r pic ≈ 5 (25) Δbr 2 .br 1/4 According to this relationship, the amplitude of the peak tends towards infinity when the gap tends towards zero. These cases are necessarily more and more common for very high-value abscissas since the average difference between zeros is asymptotically in 2π/Ln(abs_zeroR). The presence of the logarithm, however, makes it difficult to find many cases with very high values here. In particular there is no r peak > 10000 for the first 500,000 Riemann zeroes.

The first graph below represents the numerical results and evaluation by an interpolation formula without taking into account the abscissa of the peak br (br 1/4 term at denominator obliterated). In the second, this additional factor is introduced.

Graphic 43 r peak function of Δbr (cf. Appendix 5, Table 8) Graphic 44 r peak function of br and Δbr (cf. Appendix 5, Table 8)

The reader will find in Appendix 8 a more comprehensive study of the r peak approximation's functions enabling a better picture of the actual value of these extremums.

Much more essential to our point is then the relationship between r M as defined above and the gap Δbr between two consecutive Riemann zeroes.

Graphic 45 r M function of Δbr (cf. Appendix 5, Table 9) Graphic 46 r M function of Δbr (cf. Appendix 5, Table 8)

The approximate relationship (among other possibilities) is now :

p 19/46 r M ≈ -(1/2).exp(-5Δbr) ( 26 
)
The alignment of the points clearly stalls for a gap between Riemann zeroes larger than Δb r = 1/2 (and therefore apparently regardless of the abscissas of these zeroes). Based on this approximate critical value, as the data in Appendix 5 seems to show, the order of abscissas abs_r low (abscissa b of r M before the peak), abs_zero_R-(abscissa of Riemann's zero before the peak), abs_peak (abscissa of the peak), abs_zero_R+ (abscissa of the Riemann zero after the peak), abs_r high (abscissa of r M after the peak), is no longer respected (which is perfectly possible since the cancellation of R2(a,b) does not correspond to the cancellation of (C0(a,b))²+(S0(a,b))².

Below the critical value of the gap, the points align perfectly here, the only selection criterion having been to take the gap Δb r among the first 100,000 zeroes such as Δb r is closest by higher value of 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.45, (for the construction of graphic 45), a selection that gives only an almost uniform spacing in abscissa but in no way any predisposition on the value of the ordinate. We have also added to the chart the lower Δb r gap solution that exists among Riemann's first 500,000 zeroes.

It should be noted that the value of the abscissa abs_peak does not intervene in the proposed formula (unlike the relationship involving r peak ). Close to the origin (Δb r < 0.05), the relationship 26 is quasi-linear by developing exp(x) to the first order and clearly tends (cf. graphic 46) towards the limit r M =-1/2. With all the indicators on green, it is time to get back to something else.

5.Back to the theorems and proofs.

Continuity of R2(a,b).

Theorem 8

The R2(a,b) function is continuous in interval 0 ≤ a ≤ 1/2.

Proof

It suffices to prove that the R2(a,b), i.e. its denominator SC1(a,b) = (C1(a,b)) 2 +(S1(a,b)) 2 does not cancel. This is theorem 7.

Let us note that the function is also continuous outside the indicated interval.

Calculation of the partial derivative linked to R2(a,b).

Writing convention.

In From relation (18), we get : 

R2 = C0.C2+S0.S2 C1 2 +S1 2 It follows using identity (u/v)' = (u'.v-u.v')/v 2 : ∂aR2 = (C1 2 +S1 2 +2C0.C2+2S0.S2).(C1.C2+S1.S2)+(C1 2 +S1 2 ).(C0.C3+S0.S3) (28) (C1 2 +S1 2 ) 2 ∂bR2 = (C1

Note :

The two previous partial derivatives are continuous due to the fact that (C1(a,b)) 2 +(S1(a,b)) 2 doesn't cancel (see again theorems 7 and 8).

Geodesics of R2(a,b).

We adopt the word "geodesic" out of sheer convenience. These are more specifically the local extrema of the R2(a,b) function.

Theorem 9

The local maximum value of R2(a,b) is related to the minimums' paths in the vicinity of this peak.

Proof

The extremums of R2(a,b) are determined by the cancellation of the two partial derivatives ∂aR2 and ∂bR2. This means using relations (28) and (29) :

(C1 2 +S1 2 +2C0.C2+2S0.S2).(C1.C2+S1.S2)+(C1 2 +S1 2 ).(C0.C3+S0.S3) = 0 (C1 2 +S1 2 +2C0.C2+2S0.S2).(C1.S2-S1.C2)+(C1 2 +S1 2 ).(S0.C3-C0.S3) = 0 Thus (C1.C2+S1.S2).(S0.C3-C0.S3) = (C1.S2-S1.C2).(C0.C3+S0.S3) ( 30 
)
This equation is common to local minimums and maximums, hence the link.

Note 1.

The common equation explains the link between a peak of R2(a,b) and the two minima on either side of that peak observed in the illustrations in the previous paragraph. In fact, what produces the value of the peak is not only the two values on p 21/46 either side, where the parameter a is set in advance, but the entire minimum geodesic "surrounding" that peak. However, the average of the two values examined above is already, when the peak has a significant value above 1, a good representation of the said neighbourhood and thus allows to anticipate the peak value.

Note 2.

The minimums on both sides must have comparable values for the approximation equation to be useful. When this is the case, for a high-value peak, the configuration of the minima (in dark blue) is cross-shaped as in graphic 47, while the altitude isopleths tend vertically as shown by the example of graphic 48.

Graphic 47 a = 0,4 to 0,6 b ∈ [17143.66, 17143.96] Δb = 0.006

Graphic 48

When the minimums values are dissimilar, the two wings of the minimums are instead oriented in the opposite direction on the side of the extremum with value close to -0.5 and generally horizontal on the side of the other minimum. The altitude isopleths tend horizontally. The graphics that illustrate this point are numbered 49 and 50. This explains the "parasitic" branch.

In addition, the peak is only its initial draft at a = 0.5 and continues to increase on the side of a > 0.5 (pink line below). The uncompromising reader will object that an equation such as the relationship 30 can be found not only for geodesics but for any value one wishes to affix to R2 (a,b) and therefore proves nothing. We are not saying the contrary for the first part of this argument. Indeed, no point escapes the equations of the whole set of points. What we are saying here is that there is enough information in the minimums to determine the rest and the argument raised is sufficient as the basis for the evidence.

The impossibility of R2(a,b) = -1.

Theorem 10

The minimal value of R2(a,b) is -1 excluded.

Proof Some illustrations will also be needed here for the sake of clarity of presentation.

From relation (18), we get by definition R2 = (C0.C2+S0.S2)/(C1 2 +S1 2 ), so that also (C0.C2+S0.S2) = R2.(C1 2 +S1 2 ). Relation (29) becomes then :

∂bR2 = (1+2R2).(C1.S2-S1.C2)+(S0.C3-C0.S3) (31) (C1 2 +S1 2 )
We seek the values for which the R2 expression is minimal when b varies, thus those such that ∂bR2 = 0, meaning also R2 = (1/2).(S0.C3-C0.S3)/(C1.S2-S1.C2)-1. Solutions are hence those for which we have simultaneously : ) is obvious. This makes it possible to visualize in an obvious or even garish way, the minimum abscissa when simultaneous equalities are obtained. We see that the dots are concentrated, for the part below the abscissa R2x = 0, in a triangle R2y = -1/2, R2x = 0, R2y = 1/2+2.R2x (green frame). The low point of this triangle is well -1/2. A few points are slightly outside this triangle, but this does not affect our conclusion. One finds them mostly above the triangle near the 0 --abscissa. -1,48644 -1,09573 -0,94321 -1,07924 -0,99159 -0,995 -1,00367 -1,00449 3 -1,98609 -0,03799 -0,7605 -0,5338 -0,6039 -0,60031 -0,59258 -0,59259 3,5 -0,68545 0,022304 0,090951 -0,06263 -0,03853 -0,04072 -0,04684 -0,04599 4 0,892506 0,011444 0,568647 0,527649 0,556349 0,556195 0,559474 0,559301 4,5 0,936602 0,806794 0,902373 0,88496 0,88363 0,880682 0,879466 0,87945 8,5 0,570413 0,548674 0,577347 0,579683 0,574039 0,575494 0,575958 0,576033 9 0,412599 0,405027 0,400975 0,404862 0,407771 0,407947 0,408194 0,408146 p 34/46 n b 10 30 100 200 500 1000 10000 30000 9,5 0,444887 0,421798 0,404804 0,4112 0,417511 0,416348 0,415433 0,415489 10 0,584259 0,648408 0,607762 0,607423 0,597503 0,598429 0,599839 0,599811 10,5 0,806697 0,968425 0,936422 0,918462 0,920861 0,921329 0,919697 0,919642 11 1,145472 0,444616 0,366165 0,456156 0,425299 0,431911 0,436701 0,435334 0,435271 14 0,067268 0,002344 0,027503 0,026967 0,026939 0,02624 0,026498 0,026525 14,5 0,280177 0,105767 0,155764 0,141745 0,144891 0,143578 0,14431 0,14433 15 0,920883 0,650266 0,713763 0,739415 0,729604 0,728874 0,727859 0,727941 The relative error on the actual value of the R2(a,b) peaks has not been specified so far. These peaks values correspond to situations where C1²+S1² tends towards 0 at the denominator of the ratio R2(a,b). As this is obtained here using a truncation of Dirichlet's Eta function, the inaccuracy increases as the abscissa b increases. The impact is all the greater if C1²+S1² is smaller. Therefore, we conducted some calculations with a truncation up to 200000 terms (and for the production of the tables below we even extended the investigation to 300,000 terms). However, some results for peaks remain very large. We do however draw the reader's attention to the fact that this is not critical for all the arguments and the conclusion given to the article.

R2x = C0.C2+S0.S2 (32) 
Graphic
The graphics below thus give, for simple information, some data relating to these valuation uncertainties. When the number of terms is insufficient, the value obtained is totally false (see Appendix 1 For practical reasons of quick data manipulation, we used an Excel spreadsheet. The case to the smallest gap between Riemann's zeros among the first 500,000 of them is given below and at the first line of the two previous tables. The extent of the discrepancies depending on the truncation chosen is obvious. Note that in our numerical reports in the main text, we used the truncation to 200000 terms.

Graphic 93

Comparison of these data to those obtained with the Pari gp tool shows that the discrepancies are not due to the inaccuracy of the Excel spreadsheet. They are mainly related to truncations. In fact, the trust limit, say to 10%, manifests itself already around a peak of values between 100 and 200. That is to say that at 1000 or 10000, we are almost at the limit of any kind of reliable appreciation. This does not call into question the nature of the formulas proposed in the text for the peaks of values but the reader must remain vigilant on this point (which was recalled in our conclusion). It should be noted, however, that for R2(a,b) minimums, miscalculations are generally without any incidence (except again for borderline cases, see example below).

The reader will be able to do some tests thanks to underneath programming in Pari gp. He will be able to appreciate for himself the differences of evaluation with Excel spreadsheet as well as the sometimes staggering effect of the truncation.

In particular, it can use for the comparison the data in appendix 5(with large discrepancies here or there). 

  1) m-1 .m -a .sin(b.Ln(m)) ,b) = ∑ (-1) m-1 .m -a .cos(b.Ln(m)) ,b) = ∑ (-1) m-1 .m -a .sin(b.Ln(m)) (11) m = 1 Then the cancellation of η(s) is equivalent to the following cancellation : (C0(a,b)) 2 +(S0(a,b)) 2 = 0 (12) Let us have D0(a,b) = (1/2).(C0(a,b)) 2 +(S0(a,b)If the partial second derivative of D0(a,b), versus parameter a, is strictly positive for 0 ≤ a ≤ 1/2, then Riemann's hypothesis is true. Proof Let us have some given b. Let us place ourselves at a 0 = 1/2. By our hypothesis, the second partial derivative versus a is strictly positive in a 0 -ε, ε > 0. The D0(a,b) function, positive or null as a sum of squares, is then convex (and therefore the first partial derivative is of constant sign). It necessarily increases on the constant b line when a decreased from a 0 = -1/2 to a = 0. The expression D0(a,b) can then be null only for a 0 = 1/2. We note the expressions of successive partial derivatives of C0(a,b) and S0(a,b) versus a as follows: ∞ Ck(a,b) = ∑ (-1) m-1+k .(Ln(m)) k .m -a .cos(b.Ln(m)) ,b) = ∑ (-1) m-1+k .(Ln(m)) k .m -a .sin(b.Ln(m)) (15) m = 1 This allows us to write successive partial derivatives, versus a, of D0(a,b) as follows: D1(a,b) = C0(a,b).C1(a,b)+S0(a,b).S1(a,b) (16) and D2(a,b) = C0(a,b).C2(a,b)+S0(a,b).S2(a,b)+(C1(a,b)) 2 +(S1(a,b)) 2 (17) Our objective is to prove that D2(a,b) > 0 for 0 ≤ a ≤ 1/2. There is a trivially positive part to D2(a,b) that is P2(a,b) = (C1(a,b)) 2 +(S1(a,b)) 2 . It ought to be compared to the complementary part Q(a,b) = C0(a,b).C2(a,b)+S0(a,b).S2(a,b). As long as Q(a,b) is positive, everything is fine. If Q(a,b) is negative and we have |Q (a,b)| < P(a,b), then the D2(a,b) expression remains positive and Riemann's hypothesis stems from it. It is therefore wise to examine the evolution within the lower critical band of the ratio : R2(a,b) = C0(a,b).C2(a,b)+S0(a,b).S2(a,b) (18) (C1(a,b)) 2 +(S1(a,b)) 2 From this argument results the following theorem equivalent to theorem 3 : Theorem 4 If R2(a,b) > -1 for 0 ≤ a ≤ 1/2, b any given real number, then Riemann hypothesis is true. Note This is a sufficient (and not necessary) condition : A contradictory b (giving R2(a,b) ≤ -1) only excludes the desired result in that value b and its immediate vicinity. We will see below that, indeed, there are b values such as the expression R2(a,b) p 5/46

  curves 2.D0(a,b) = (C0(a,b)) 2 +(S0(a,b)) 2 , b fixed, are arranged in a given order (strictly increasing or strictly decreasing) on either side of a unique a = a 0 , possibly outside of the 0 ≤ a ≤ 1/2 interval. The graphs below represent this evolution in a small area of values b ∈ [0.24]. In addition to the main ripples, secondary ripples are observed in the vicinity of the origin, especially for a close to 0, but these fade quickly and disappear as soon as b > 10. The values of parameter a are given in the caption and vary from 0 to 1/2.

  abscissa b = 4, the numerator of R2(a,b), that is Q(a,b) = C0(a,b).C2(a,b)+S0(a,b).S2(a,b), is such that Q(a,b) > -ε where 0 ≤ ε is small in front of 1. The minimums at bd1 = 2π/Ln(2) ≈ 9,06472 and b d2 = 4π/Ln(2) ≈ 18,12944 correspond to the first two Dirichlet zeros. The minimum at br1 ≈ 14,134725 corresponds to Riemann's first zero and the one at br2 ≈ 21,02204 to Riemann's second zero.

  compare the functions based on sums of Ck(a,b) and Sk(a,b) squares, the latter being defined from relationships (14) and (15) : SCk(a,b) = (Ck(a,b)) 2 +(Sk(a,b)) 2 (19) The graphics representations clearly show that, above b ≈ 20, the SC k+1 (a,b) curves are above the SC k (a,b) curves in relatively nesting positions.

  Nevertheless, one can see clearly the peak of SC1(a,b) at the level of Riemann's zero corresponding to b ≈ 5010,9331981. The nesting does not prevent in any way to have, close to the Riemann zeros, very small values for SC k (a,b), whatever k > 0, and this especially for SC1(a,b) = (C1(a,b)) 2 +(S1(a,b)) 2 . This effectively allows us to find increasingly larger R2(a,b) values here or there, since SC1(a,b) is the denominator of that expression. Note 2:

6

 6 the attraction that constitutes two narrow peaks for SC k (a=1/2,b) on the expression SC k+1 (a=1/2,b) in the hereby k = 0 case. As two peaks create a peak above them, the phenomenon may occur frequently only up to the SC1(1/2,b) level. An imposing peak for SC2(1/2,b) is certainly rare, requiring 3 very close Riemann zeros. A significant spike is undoubtedly exceptional when k > 2. Theorem We have SC k+1 (a,b) > SC k (a,b) (21) Proof The numerical study clearly shows that the inequality is true except possibly near the peaks' positions and moreover the critical case to examine is that of the relative position of SC0(a,b) and SC1(a,b), higher k cases being even more obvious. So, let us place ourselves at a peak for SC1(a,b peak ). The expression SC0(a,b peak ) presents at this abscissa a partial derivative, versus b, close to 0. It can be written, with the notations of paragraph 5.2, ∂b((C0(a,b)) 2 +(S0(a,b)) 2 ) = 2(C0(a,b).S1(a,b)-S0(a,b).C1(a,b)) with value to take at b = b peak . Hence the approximate equality C0(a,b peak ).S1(a,b peak ) ≈ S0(a,b peak ).C1(a,b peak ). Let us simplify the entries by failing to repeat the coordinates (a,b peak )

  Truncation to 10000, a = 1/2, bpeak ≈ 7005,08168 Absence of oscillations after m = 2500 for C1 2 +S1 2 -(C0 2 +S0 2 ) Graphic 13 Truncation to 10000, a = 1/2, bpeak ≈ 7005,08168 Presence of oscillations after m = 2500 of C1/C0 Graphic 14 Truncation to 10000, a = 1/2, bpeak ≈ 7005,08168 Presence of oscillations after m = 2500 of S1/S0 Theorem 7

  The evaluations of the minimum R2(a,b), which correspond throughout this numeric search, to those of R2(1/2,b), are thus presented in the light of this provision. p 10/46 Ratings are made at intervals Δb = 1/10 when R2(a,b) > 1/2 and intervals (1/10).(0.5+R2(a,b p )) when R(a,b) < 1/2 (and b p is the previous b value) in order to calculate this minimum with better accuracy when it comes to be near R2(a,b) = -0.5. However, it cannot be ruled out having both R2(a,b-ε) > 1/2, R2(a,b) < 0 and ε << 1/10 and the best minimum is then likely to be missing in the data reading routine. The graphic below illustrates Min(R2(a = 1/2,b) for b ∈ [100k, 100(k+1)[, k = 0 to 199. Except for the first interval (k = 0), R2(a = 1/2,b) is always here superior to -1/2. It should be noted that the -1 limit would be sufficient for our argument to still prevail. Graphic 15 a = 1/2, b ∈ [100k, 100(k+1)[, k = 0 to 199 The graphic below represents the same Min(R2(a = 1/2,b)) data, but sorting it by increasing values. The statistic of the points obeys here approximately to (1/8).asin(2/π).asin(x)-11/40. What is interesting about the previous formula is that the data fits the distribution of a bounded function. Herein -0,471349541 ≈ (1/8).asin((2/π).asin(-1))-11/40 ≤ (1/8).asin((2/π).asin(x))-11/4 ≤ (1/8).asin((2/π).asin(1))-11/40 ≈ -0,078650459 which is well within the bounded interval [-1/2,0]. Graphic 16 x graphic = 2x-1 a = 1/2, b ∈ [100k, 100(k+1)[, k = 0 to 199 This result is not universal in the sense that, for a wider range of k values, the coefficients of the formula would probably not apply. Indeed, the density of Riemann's zeros (and thus intermediate candidates for a minimum of R2(a = 1/2,b)) increases asymptotically towards infinity in a fixed interval (and thus Min(R2(1/2,b)) tends probably systematically towards -1/2 when k → +∞ in a fixed size interval. Conjecture : Let us have b ∈ [100k, 100(k+1)[, k some positive integer. If k → +∞, the sorted distribution of Min(R2(1/2,b)) responds approximately to : (1/2+m).asin((2/π).asin(x))+m (23) where m → -1/2 + . In the previous example, we have m ≈ -0.275 (yet already slightly below the average value (-1/2+0)/2 = -0,25 and thus starting the deviation towards -1/2). p 11/46 4.4 Current value of R2(a,b). We represent the R2(a,b) ratio based on the parameter a for given b. The view below shows the evolution starting from a = 1/2 (background of the image) with alternating of downwards peaks and upwards peaks. At a = 1/2, the ordinate is null for Riemann and Dirichlet zeroes. The condition of cancellation of C0(a,b).C2(a,b)+S0(a,b).S2(a,b) is more general and may occur without the presence of these two types of zeros. The fifth peak upwards is less marked. It corresponds to the vicinity of the 166th Dirichlet zero (166*2π/Ln(2) ≈ 1504,743567). Graphic 17 a = [0, 1/2], b ∈ [1500, 1510] In the graphics that follow, the b values are taken in ℕ for 100 consecutive values. Some b values may be close to the imaginary values of Riemann or Dirichlet zeroes. The range of b values is given in the legend. The min and max values shown are those of R2(a,b) at a = 1/2. These are of course neither the absolute minimums nor the absolute maximums if b ∈ ℜ.

  Graphic 18 b = 14 to 100 min ≈ -0,065923, max ≈ 2,582495 Graphic 19 b = 101 to 200 min ≈ -0,099971, max ≈ 2,369678 Graphic 20 b = 201 to 300 min ≈ -0,052810, max ≈ 3,189581 Graphic 21 b = 1001 to 1100 min ≈ -0,038373, max ≈ 2,256107 p 12/46 Graphic 22 b = 10001 to 10100 min ≈ -0,240193, max ≈ 2,979909 Graphic 23 b = 100001 to 100100 min ≈ -0,128374, max ≈ 3,027709 There is some chaos in the variations of R2(a,b) when a > 1/2, but the trend towards the asymptotic value R2(a → -∞,b) → 1 is quickly activated on the side a ≤ 1/2, hence the obvious interest in choosing this side of the critical band. The graphics below give the values of R2(a = 1/2, b) of the previous series of b numbers. The first graphic is for b in ascending order. The second graphic are the same values where R2(a,b) are sorted in ascending order (the x axis becoming arbitrary).

  Below are the R2(a,b) results for a smaller range of values (b ∈ [500, 750]) and a smaller spacing (Δb = 1/100). The curve's shape for a = 1/2 (in yellow) is the same. Again, the x-axis is not really b since the values of R2(a,b) have been taken up in ascending order. p 14/46 Graphic 27 a = 0 to 1, x ∈ [500, 750] Graphic 28 a = 0 to 1, x ∈ [500, 750] As the parameter a decreased progressively getting closer to 0, the set of R2(a,b) values get closer to the horizontal axis of ordinate 1.

  1, x ∈ [500, 750] Returning to the a = 1/2 case and for an interval Δb = 1/100, we compare the previous data (b ∈ [500, 750]) to that collected for b ∈ [3000, 3250], b ∈ [6000, 6250], b ∈ [9000, 9250], b ∈ [12000, 12250], b ∈ [15000, 15250]. The overall distribution profile is the same. For the R2(a,b) < 0 part, we see that the order of the curves is not related to the increasing order of the respective b domains. Graphic 30 a = 0 to 1, x ∈ [500, 750] Graphic 31 a = 0 to 1, x ∈ [500, 750] p 15/46 Note :

4. 6

 6 Relation between local minimum and maximum of R2(a,b). The R(a = 1/2, b) function changes from local minimum to local maximum when b increases. Here we are looking for a relationship between a maximum and the two minima that frame it. The graphic below gives a sample of the values taken by R2(1/2, b) for b ∈ [15000,15250]. The savvy reader may note, although this is not very visible, that a (positive) peak also corresponds to negative value spikes on either side of this peak. Graphic 33 a = 1/2, b ∈ [15000,15250] This is more visible by making some magnifications : p 16/46 Graphic 34 a = 1/2, b ∈ [15000,15030] Graphic 35 a = 1/2, b ∈ [15131,15134] Graphic 36 a = 1/2, b ∈ [15131,15134] Graphic 37 a = 1/2, b ∈ [15051,15056] Graphic 38 a = 1/2, b ∈ [15051,15056]

  graphic) were made by aggregating the data provided in intervals b ∈ [3000, 3250], [6000, 6250], [9000, 9250], [12000, 12500], [15000,15250] with a Δb = 1/100 step. p 17/46 Graphic 39 r peak function of r M Graphic 40 r peak function of r M

1 ∞

 1 this text, the functions are generally dependent on two variables a and b. The handling of the objects is simplified by writing F instead of F(a,b). The partial derivative of F, versus parameter a, ∂/∂a(F(a,b)) is simplified in ∂ a F. The same goes for b. In the text body, we defined the functions Ck(a,b) and S k (a,b). The non-recalled entries of parameters a and b are equivalent as well as the indexing k : Ck(a,b) = C k (a,b) = Ck = C k and Sk(a,b) = S k (a,b) = Sk = S k . Evaluation of the partial derivatives of Ck(a,b) and Sk(a,b). From relations (14) and (15), we get : ∞ Ck = ∑ (-1) m-1+k .(Ln(m)) k .m -a .cos(b.Ln(m)) m = 1 and ∞ Sk = ∑ (-1) m-1+k .(Ln(m)) k .m -a .sin(b.Ln(m)) m = 1 We deduct immediately ∞ ∂aCk = ∑ (-1) m+k .(Ln(m)) k+1 .m -a .cos(b.Ln(m)) m = 1 p 20/46 ∞ ∂aSk = ∑ (-1) m+k .(Ln(m)) k+1 .m -a .sin(b.Ln(m)) m = ∂bCk = ∑ (-1) m+k .(Ln(m)) k+1 .m -a .sin(b.Ln(m)) m = 1 and ∞ ∂bSk = ∑ (-1) m-1+k .(Ln(m)) k+1 .m -a .cos(b.Ln(m)) m = 1 In other words : ∂aCk = C k+1 ∂aSk = S k+1 ∂bCk = S k+1 ∂bSk = (-1).C k+1 (27) All of this functions, as sums (finite or infinite) of continuous functions are continuous. Evaluation of the partial derivatives of R2(a,b).

  Graphic 49 a = 0,4 to 0,6 b ∈ [17143.839, 17144.919] Δb = 0.03

  below are the same, the second being a close-up view of a particular area. They contain all the R2x(a,b) and R2y(a,b) points obtained for a 1/2, b = 0 to 20000 and Δb = 1/4, the actual solutions joining these points by continuity. The point (R2x, R2y) ≈ (-0.5122, -0.5121) for (a, b) = (1/2, 78974.87502) corresponding to the only example found where R2(a,b) < -1/2 is also reported on the graphic. The only solutions to retain are on the R2x = R2y axis of this graphic (the light blue dotted line), but the usefulness of spotting all the dots (R2x, R2y

  Graphic 51 a = 1/2, b ∈ ]0, 20000] and Δb = 0.25 Graphic 52 a = 1/2, b ∈ ]0, 20000] and Δb = 0.25 A frame that is a little closer to reality can be given by setting the line R2y = 1/2+2R2x (upper line in green) into R2y = 1/2+2R2x+(1/12).tan(π.(R2x+1/2)), which does not change in any way the hereby argument.

  76 a = 1/2, b = 0 to 15 The threshold R2(a=1/2,b) > -0,5 comes up around b ≈ 3,093. Graphic 77 a = 1/2, b = 3,093, n = 100 to 10000

  c0 = sum(i = 1, n, -((-1)^i)*(i^a)*cos(b*log(i))); c0 = c0-(1/2)*((-1)^(n+1))*(n^a)*cos(b*log(n)); c1 = sum(i = 1, n, ((-1)^i)*(i^a)*log(i)*cos(b*log(i))); c1 = c1+(1/2)*((-1)^(n+1))*(n^a)*log(n)*cos(b*log(n)); c2 = sum(i = 1, n, -((-1)^i)*(i^a)*log(i)*log(i)*cos(b*log(i))); c2 = c2-(1/2)*((-1)^(n+1))*(n^a)*log(n)*log(n)*cos(b*log(n)); s0 = sum(i = 1, n, -((-1)^i)*(i^a)*sin(b*log(i))); s0 = s0-(1/2)*((-1)^(n+1))*(n^a)*sin(b*log(n)); s1 = sum(i = 1, n, ((-1)^i)*(i^a)*log(i)*sin(b*log(i))); s1 = s1+(1/2)*((-1)^(n+1))*(n^a)*log(n)*sin(b*log(n)); s2 = sum(i = 1, n, -((-1)^i)*(i^a)*log(i)*log(i)*sin(b*log(i))); s2 = s2-(1/2)*((-1)^(n+1))*(n^a)*log(n)*log(n)*sin(b*log(n)); sc1 = c1*c1+s1*s1; sc2 = c0*c2+s0*s2; r2 = sc2/sc1; print(sc1); print(sc2); print(r2)}? {a = -1/2; b = 273193.69030; n =100000; print(r2)} -0.6079979154002085925962809496 ? {a = -1/2; b = 273193.69030; n =150000; print(r2)} -0.4306653442450081755297359181 ? {a = -1/2; b = 273193.69030; n =200000; print(r2)} -0.5242881867298555672993995911 ? {a = -1/2; b = 273193.69030; n =250000; print(r2)} -0.4901423955143870398944533785 ? {a = -1/2; b = 273193.69030; n =300000; print(r2)} -0.4802530518298030148178293952 ? {a = -1/2; b = 273193.69030; n =350000; print(r2)} -0.5016374185646876966336896655 ? {a = -1/2; b = 273193.69030; n =400000; print(r2)} -0.5012252435702006766568690699

  

  

  

  

  

Table 1

 1 

	b-k.10000	R2(1/2, 0≤b<9999) k = 0	R2(1/2, 10000≤b<19999) k = 1	R2(1/2, 20000≤b<29999) k = 2
	0	-1,08934023	-0,05235938	0,53967998
	1	-1,22982782	-0,24315523	0,37783264
	2	-1,23743739	0,92023095	1,18166428
	3	-0,59258188	-0,00324345	0,43683645
	4	0,55947377	-0,04446056	0,74667636
	5	1,59986671	2,38679934	0,75634964
	…	…	…	…
	9996	0,37124161	0,07314315	0,05305601
	9997	1,10427165	0,91778738	0,51817126
	9998	-0,02703119	-0,11687438	0,83313405
	9999	0,26809106	1,49868353	2,16119046

Table 2 i

 2 

		R2(1/2, 0≤b<9999)	R2(1/2, 10000≤b<19999) R2(1/2, 20000≤b<29999)
	0	-1,237437394	-0,367149358	-0,415532661
	1	-1,22982782	-0,336819688	-0,389586665
	2	-1,089340232	-0,319879054	-0,33263088
	3	-0,592581881	-0,314646353	-0,312157279
	4	-0,397025104	-0,30948643	-0,278252658
	5	-0,328179377	-0,296564394	-0,277975446
	…	…	…	…
	9996	6,708193646	10,45889767	10,78416477
	9997	7,164445983	11,20934744	13,13029216
	9998	10,87793755	12,42906401	13,19809132
	9999	11,3992441	21,28605665	16,7790967

Table 6

 6 

	b	n	10	30	100	200	500	1000	10000	30000
	0		-0,85956 -1,05385 -1,09105 -1,09244 -1,09119 -1,09031 -1,08934 -1,08928
	0,5	-1,28557 -1,23779 -1,15162 -1,13482 -1,13032 -1,13101 -1,13309 -1,13322
	1		-1,46522 -1,10872 -1,16395 -1,21415 -1,23549 -1,23499 -1,22983 -1,22988
	1,5	-0,74064 -1,09805 -1,39187 -1,33224 -1,28549 -1,28649 -1,29483 -1,29435
	2		-0,27214 -1,64351 -1,17701 -1,17433 -1,24905 -1,24678 -1,23744 -1,23738
	2,5								

Errors on the peak values of R2(a,b).

  

	rM	rM-	rM+	rM-Appendix 9 : rM+ rM-	rM+	rM-	rM+	rM-	rM+	rM-	rM+
	R2y	-0,5	-0,5	-0,6	-0,6	-0,7	-0,7	-0,8	-0,8	-0,9	-0,9	-1	-1
	Δb r						DSC(…)						
	0,60001	3,857	1,848	5,483	2,550	7,469	3,443	9,815	4,527	12,520	5,803	15,585	7,270
	0,65	1,233	46,381	1,656	66,588	2,225	90,507	2,941	118,136	3,804	149,476	4,813	184,527
	0,70002 8746,556 220,365 12594,147 317,202 17141,242 431,7 22387,840 563,850 28333,9 713,661 34979,5 881,129
	0,75001	51,062	6,245	73,308	8,908	99,632	12,113	130,033	15,860	164,512	20,150	203,069	24,982
	0,8	8,446	4,921	12,076	6,998	16,422	9,511	21,486	12,460	27,267	15,846	33,764	19,667
	0,85001	2,048	846,081	2,848	1218,370	3,861	1658,4	5,085	2166,2	6,522	2741,8	8,171	3385,1
	0,9	11,198	53,760	16,044	77,327	21,828	105,233	28,549	137,476	36,208	174,058	44,805	214,978
	0,95003	10,757	3651,7	15,455	5258,0	21,071	7156,5	27,604	9347,0	35,056	11829,7	43,426	14604,5
	1,00001 147,008	18,151	211,473	25,829	287,690	34,923	375,661	45,433	475,384	57,360	586,860	70,703
							Table 11						
							DSC(R2y)					
	rM	rM-	rM+	rM-	rM+	rM-	rM+	rM-	rM+	rM-	rM+	rM-	rM+
	R2y	-0,5	-0,5	-0,6	-0,6	-0,7	-0,7	-0,8	-0,8	-0,9	-0,9	-1	-1
	Δb r						DSC(…)						
	0,0057	1,053	0,995	2,937	1,842	7,503	4,388	14,752	8,633	24,683	14,577	37,297	22,220
	0,00864	1,131	0,994	2,887	1,411	6,670	2,849	12,481	5,308	20,320	8,788	30,188	13,288
	0,00956	1,148	0,995	2,805	1,344	6,284	2,602	11,584	4,769	18,706	7,845	27,649	11,831
	0,02584	1,106	0,991	1,869	1,379	3,332	2,335	5,494	3,857	8,357	5,945	11,921	8,601
	p 42/46												

20,466 71084,92200 71084,70208 71085,25209 71084,67160 10,179 71085,25223 276451,850 0,55001 138231,015 29126,46100 29126,08620 29126,68621 29126,11340 15,585 29126,72951 7,270 0,60001 11,427 57479,04785 57478,85675 57479,50675 57478,81015 4,813 57479,50135 184,527 0,65 94,670 61433,01420 61432,66409 61433,36411 61432,66359 34979,548 61433,36081 881,129 0,70002 17930,339 17205,93718 17205,58795 17206,33796 17205,58085 203,069 17206,31526 24,982 0,75001 114,025 67220,26660 67219,87721 67220,67721 67219,89461 33,764 67220,65411 19,667 0,8 26,715 61148,74032 61148,25912 61149,10913 61148,29712 8,171 61149,10746 3385,101 0,85001 1696,636 6612,49020 6612,00798 6612,90798 6612,02748 44,805 6612,91678 214,978 0,9 129,892 8875,69210 8875,17281 8876,12284 8875,18991 43,426 8876,12184 14604,454 0,95003 7323,940 1513,04176 1512,58976 1513,58977 1512,59584 586,860 1513,60217 70,703 1,00001 328,782

0,35 5,054 1,481 7,204 2,015 9,807 2,720 12,863 3,594 16,370 4,639 20,331 5,853 0,40003 1,952 7,957 2,706 11,383 3,663 15,491 4,822 20,281 6,184 25,752 7,749 31,905 0,45 4,462 3,504 6,344 4,962 8,627 6,748 11,313 8,862 14,401 11,302 17,891 14,070 0,50001 1,404 8,806 1,896 12,627 2,547 17,205 3,356 22,540 4,325 28,632 5,452 35,480 0,55001 2,541 69129,5 3,571 99538,5 4,849 135475,2 6,376 176939,6 8,153 223931,9 10,179 276451,9
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"Mathematics consists in proving the most obvious thing in the least obvious way." George Pólya.

Graphic 53

Previous graphics thus show that points cannot reach the -1 abscissa (remaining the fact that overruns of -1/2 are possible).

The population density such that |R2x-R2y| < s, s a given threshold, is relatively constant regardless of intervals b such as [10000k, 10000.(k+1)[, k = 0 to 19, chosen from our data collecting. This is the subject of the graphic (54). These results again show that the points will not reach the abscissa -1. What follows further confirms this point.

From relations (18) and (31), because ∂bR2 = 0, we get the two following equations to be solved : (C2).C0+(S2).S0-R2.(C1 2 +S1 2 ) = 0 (S3).C0-(C3).S0-(1+2R2).(C1.S2-S1.C2) = 0 So that :

Then

). ( The graphic below shows simultaneously, one on one, the evolution of R2 and Ln(DSCl). We recall that Ln(DSC1) = 0 is the target value right above the R2 minimums. The crossing of R2 and Ln(DSC1) curves at the approach of a low-R2 zone is at the level of ordinate 0 and Ln(DSC1) then quickly increases. Let us consider the intersections of the R2 and Ln(DSC1) curves. We call inner crossings those whose abscissas are between two Riemann's zeros and outer crossings the other two to the right and left (of graphic 60). The term Ln(DSC1) necessarily diverges according to the relationship 35 since C0²+S0² = 0 for any Riemann (and Dirichlet) zero. So, the inner crossings are trivially above ordinate 0. The outer crossings are also, a point that however seems difficult to establish. The easiest way is to assess the value of DSC1 at the points that matter to us, that is where R2 is minimum.

For this, we pick the data used to establish graphic 45 with the same selection criterion chosen at that time. The corresponding table is in Appendix 6 Table 10. Doing so, we get the graphics below : We recorded DSC1-the value of DSC1 for the r M -abscissa before the peak and DSC1+ the value for the r M + abscissa after the peak. We have also reported in the graphics the average DSC1 value of these two values, knowing that what really is important here is rather the minimum value of the two values DSC1-and DSC1+.

The alignment of the points fails (which then offers no useful information) for a gap between zeroes of Riemann higher than Δb r = 1/2 in exactly the same way we had found in the case of graphic 45.

However, the points interesting us, i.e. cases where the R2 ratio is likely to be close to the -1 value, are necessarily points sticking to the origin of the abscissas (extremely small Δbr). This area corresponds to the uprise of DSC1 well beyond the critical value DSC1 = 1. This upswing is due to the simple fact that the closer two Riemann zeros are, the more pronounced the corresponding peak is and the steeper the flanks of the peak, including until the abscissas of the minimums of R2. Thus, the abscissa of a minimum (rM-or rM+) of R2 is close to that of its corresponding zero, in other words, when Δbr → 0, then C0²+S0² → 0 at the abscissas rM-and rM+ also. But C0²+S0² → 0 is at the DSC1 denominator and no term in C0 or S0 is within the numerator for compensation. The term C1²+S1², and even more C2²+S2², will tend to 0 with many decades of delay as shown by the typical example of graphic 11, the number of decades increasing rapidly with the lowering of Δbr. The other terms do not tend in any way towards 0. The compensation remains effective in DSC0 because of the square of C1²+S1² in the DSC0 numerator, but it would take a power of at least 4 effected to C2²+S2² in DSC1 (plus 3 very close zeros at least) to obtain the said compensation. Thus, DSC1 necessarily diverges when Δbr → 0 and so in a very steep manner.

We extended the study to the intermediate value of R2y = -0.5 to -1 by 1/10 steps. Appendix 6 Table 11 gives the values corresponding to the underneath graphic. For R2y = -0.5, we collected points below DSC(X) = 1 which is of course expected and thus authorizes the existence of R2(a,b) < -0.5, of which we found a unique example (see appendix 5). The calibration thanks to the graphic below shows, at the same time, that the limit value is close to it. The existence of points such as R2(a,b) < -0.6 without being totally unthinkable (because the points represented here are only the image of a larger dot cloud if one uses more data) is certainly a quite rare event.
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The rise of the points obtained for the DSC1 expression near the origin (Δb r < ≈0,15) and their alignment besides that (Δb r < ≈0,35) is independent of the abscissas of the Riemann's zeroes (is dependent only on the gap between the said zeroes) completing this proof.

Note :

The reader will note that all the examples of this proof are built with a = 1/2. Indeed, the peak values are (for the part of the critical band a ≤ 1/2) on the critical line. The presentation of the numerical results is interesting only for this critical line, as the values of the extremums decline otherwise very quickly (for a < 1/2) not allowing to find additional solutions that can contradict our presentation in a relevant way.

Theorem 11

The asymptotic value of the R2(a,b) minimums is -1/2.

Proof

By the term "asymptotic," we mean the minimums of R2 (a,b) when b tends towards infinity (and the parameter a is fixed). Asymptotically, as we saw in the last part of the proof of the impossibility of R2 = -1, the terms C0 and S0 tend towards 0 much faster than all the terms of the Ck and Sk's type, k > 0. It immediately follows R2 → -1/2.

Note 1 :

This result reminds us that negative overruns of -0.5 are possible for intermediate situations. These will become more frequent when b increases. But, asymptotically, these overruns will also be more and more restricted to the immediate vicinity of -0.5 and therefore without the possibility of joining -1, thus confirming again theorem 10.10 Note 2 :

At the peak abscissa r peak , the expression C1.S2-S1.C2 necessarily takes values very close to 0, taking away this prerogative from the other two extremums.

The particular case b < br1

We examine the case where abscissa b is lower than that of the first Riemann zero and its development out from this area. The types of curves and choice of colours are the same as before. The reader can see that as soon as the blue curve crosses abscissa R2x = 0, it is trapped in the areas described above despite all the restlessness, to say the least, that reigns there.

6.Conclusion.

We studied a convexity condition to confirm Riemann's hypothesis. This condition is a sufficient condition, meaning a violation, apart from that of the one already cited, would not deny the hypothesis. The way the proof was handled makes it possible to calibrate the "distance" to a possible denial and shows a much to wide road from it. Several formulas, such as relationships ( 24), ( 25), ( 26), ( 35), (42) have been established implying geometric parameters links that impose the existence of the sole critical line for Riemann zeroes without any point departing from it. We used an approximate truncation method for assessing these parameters, with appendix 1 legitimizing it. It would be interesting, however, to find an alternative method similar to that used for the evaluation of Riemann's zeroes to determine the relationships, or points clouds, both much faster and with greater precision (see provision made in Appendix 9). The particular shape of the curves in graphic 26, the set of parameters leading to it and the relationship between them also deserve extra attention.

To whom will object that this is only a few calculations on a tiny part of the values that can take b, we recall that the bparameter is encapsulated in the cosine and sinus functions that can only take values between -1 to 1. The neighbourhoods of all values within this interval are reached thousands of times (for b < 20,000 for example) and the functions are continuous. Of course, not all possibilities are covered, but the sample is quite representative of the whole system of equations. In addition, if the examples are necessarily specific, the relationships and thus conclusions are general. This done and said, in a thousand years, when another eminent reader, that the one who reads us here, will wake up, his wish will be all the more satisfied. If not, we will tell him : " "Young man", in mathematics, you don't understand things, you get used to them". John Von Neumann. The particular look of these graphics can give the reader the impression that it is impossible to assess the value of expression to infinity. Indeed, leaps in values appear at abscissas that may seem random. What guarantee do we have here that a new jump will not arise somewhere asymptotically? To find out what is happening, it is necessary to trace the origin of these jumps. The sums we are talking about here are alternating sums. A jump comes from the fact that a given term is followed by a term of the same sign and this "many" times. This table explains the "chaos" near the origin of the abscissas.

The so found expression also allows to give approximately the rank n sufficient, versus some b, to have a good asymptotic evaluation despite the truncation. Typically, one can chose 2 times the abscissa of the last jump : The graphic below gives the example of b = 100. The reader will therefore note, that this simple previous calculation does not apply to "small" b values (b < 50) due to the presence of significant oscillations. These particular cases are discussed in Appendix 2.
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For the sake of accuracy, all the calculations were conducted with 10,000 terms except in the case of b > 100,000 for which we used 100,000 terms and even more when specified so.

When, on the contrary, we are interested in areas where the function studied is not subject to a jump but is close to a zero slope, the equation to be solved is (-1) m .cos Let us note that for the sinus, the expressions of the sought abscissas result in exactly the same.

Finally, in view of graphic73, and directly related to the fact of having an alternating sum, the accuracy of the evaluation is subject to oscillations. Thus, the sum ∑ is corrected by half of the last term (or equivalently the average of the sum at ranks n-1 and n is made). Eventually, when necessary, the average of several terms in even number is made (up to 100 terms when b > 100,000).

Appendix 2 : Case of low value abscissas b.

The range concerned here is before the occurrences of both the first Riemann zero and the first Dirichlet zero. This therefore has no bearing on the conclusions as to the Riemann hypothesis made in this text. However, it is studied for a simple reason : It is an exception to rule R2(a,b) ≥ -1 in a clear way.

We mentioned in the previous appendix the vigorous oscillations of functions studied for low b values. An example for b ≈ 1,569 (a = 1/2), is given below. As the reader can see, it is R2(a,b) that is subject to the greatest amplitudes. It should also be noted that the example given corresponds to the minimum value of R2(a=1/2,b).

The rule of the rank n ≈ 2/(exp(π/b)-1) for the truncation of the sums is no longer suitable (see also appendix 1). However, although strong oscillations are perpetuated beyond n equal to 100000 or even 1000000 (based on research not replicated here), a good approximation of the asymptotic value can be found using less than 1000 terms as shown in the data below simply by correcting the last term by half its value. In fact, our usual 10,000 terms are more than necessary. In fact, the k = 2 case, from previous studies, is constituting a kind of initial boundary case. We observe the effect of the increase in power affecting the Napierian logarithm of that starting expression. 
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Thus, just as R2 has a minimum (in the order of -1/2 when b > 5), the minimum of the R3 function seems to be likely around 0 (excluded in the figures below). The term Δbr is the gap between two Riemann's consecutive zeroes surrounding the peak r peak of R2(1/2,b). The height of the peak thus reacts in a certain way as the inverse of a radiation temperature in relation to the abscissa of the peak (Stefan-Boltzmann law type b peak ≈ α.(1/r peak ) 4 ) and as an energy for the atomic level Δbr (law type r peak ≈ β/Δbr²).

Graphic91, where Dirichlet's zero abscissas are represented by vertical lines, clearly shows that the error is amplified by the fact that the existence of these zeros is not taken into account at the moment. Modification below introduced by a second approximation function, and corresponding to graphic92, takes into account this point : taking into account the Riemann and Dirichlet zeros further from the peak. For our part, this does not seem to significantly lessen errors in a general application.

Besides, some relation like r peak ≈ 1+ 1 ∑( α i ) (44) (b peak ) 1/4 |b peak -abs_zeros| n i.e. without associating pairs of zeros, but simply taking into account all the differences between abscissas of the peak and those of the zeros (n being a power to adapt) seems doomed to failure.