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Soft cellular systems, such as foams or biological tissues, exhibit highly complex rheological prop-
erties, even in the quasistatic regime, that numerical modeling can help to apprehend. We present
a numerical implementation of quasistatic strain within the widely used cellular Potts model. The
accuracy of the method is tested by simulating the quasistatic strain 2D dry foams, both ordered
and disordered. The implementation of quasistatic strain in CPM allows the investigation of so-
phisticated interplays between stress-strain relationship and structural changes that take place in
cellular systems.

I. INTRODUCTION

Soft cellular systems, that encompass foams, emul-
sions and biological tissues, are constituted of highly
deformable – yet almost incompressible – units (bub-
bles, drops, cells), interacting through attractive adhe-
sive interactions and soft steric repulsions. Interface en-
ergy is key to the cohesion and the rigidity of these sys-
tems, sometimes constituted solely of fluids. Under small
strains, they behave elastically. Above a yield value, plas-
tic rearrangements (called T1 events) occur, conferring
to these systems a complex rheological behavior [1]. The
relationship between the macroscopic response and the
microscopic details, such as packing fraction and struc-
tural disorder, is still the subject of intense research ac-
tivity [2–4]. Even the simplest case of quasistatic-regime
– in which the structure is at mechanical equilibrium at
every time – is far from being fully understood, in partic-
ular in the shear banding phenomenon. Numerical tools
are proved to be extremely useful to investigate the re-
lationship between microscopic details and macroscopic
mechanical response [5–9]. The cellular Potts model
(CPM) is one of the standard numerical modeling of mul-
ticellular systems, with various applications ranging from
foam coarsening to collective behaviors of biological cells.
However, because of its lattice-based modeling technique,
it has been rarely used to investigate mechanical prop-
erties of cellular systems, except for a few exceptions
[10, 11].

In this paper, we present a rigorous implementation of
quasistatic strain within CPM, offering a versatile tool
to investigate interplay between mechanical properties
and other processes at work in cellular systems, such as
coarsening in foams, or cell division and cell death in bi-
ological tissues. The outline of the paper is as follows:
in Section II we introduce the cellular Potts model and
show how it can be conveniently extended to simulate
cellular systems under quasistatic strain. The method
is compared with other existing approach, and extension
to higher strain rates is discussed. In Section III we test
the proposed method by analyzing the shear strain of
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2D dry foams. For a regular hexagonal foam, the shear
modulus we obtained numerically agrees with the corre-
sponding theoretical expression [12, 13]. Yield strain is
also analyzed. For disordered foams, we study the effect
of disorder on the affinity of the displacement field and
the shear modulus magnitude, and compare our results
with those reported in literature.

II. MODELING QUASISTATIC STRAIN WITH
CPM

A. Cellular Potts Model

Cellular Potts model (CPM), also called the
Glazier–Graner–Hogeweg (GGH) model, is one of the
most accepted models of a multicellular system. It is
widely used for simulating cellular systems in various
fields of physics or biology, such as coarsening and me-
chanics of foams [10, 14], tissue morphogenesis [15], cell
sorting [16] and collective cell motion in epithelial tissues
[17, 18]. The CPM is a lattice-based model in which each
cell in the system is given a different label (cell ID), and
each lattice site k has a value σk taken from the list of cell
IDs. A given cell is then represented by the subset of lat-
tice sites that have its cell ID. A cell type τ(σ) can also be
defined for each cellular domain. The CPM makes no as-
sumption on the shape or the connectivity of the cellular
domains, these properties are direct consequences of the
energy terms. In particular, walls between adjacent cells
are allowed to fluctuate, and T1 events happen sponta-
neously. The CPM Hamiltonian H that characterizes 2D
soft cellular systems reads [16]:

H =
∑

neighboring
sites〈k,l〉

Jτ,τ ′ (1− δσk,σl
) +

B

2A0

∑
cells
i

(Ai −A0)
2
.

(1)
The first sum in Eq. (1) is carried over neighbouring
sites 〈k, l〉 and represents the boundary energy: each pair
of neighbours having unmatching indices determines a
boundary and contributes to the boundary energy. Here,
σk and σl are the site values of site k and l, respec-
tively. τ and τ ′ are abbreviations for τ(σk) and τ(σl).
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Jτ,τ ′ (= Jτ ′,τ ) is the energy per unit contact length be-
tween cell types τ and τ ′. The second sum in Eq. (1)
represents the compressive energy of the cells. B is the
effective 2D bulk modulus of a cell, Ai is the area of cell
i, and A0 the nominal area.

The state of the system is updated via a Monte Carlo
algorithm: a lattice site is first selected randomly. A tar-
get label is then randomly selected amongst this site’s
neighboring labels, and the update is accepted or dis-
carded following Metropolis-like rule which preserve the
connectivity of cellular domains [19]. The acceptance
probability in this Monte Carlo scheme requires a tem-
perature, which has to be chosen carefully. Setting the
temperature to a small value is analogous to perform-
ing an energy minimization, which is the usual choice to
study the structure of dry foams. Higher temperatures
will induce fluctuations in the boundaries between adja-
cent bubbles. Further increase of the temperature leads
to large topological rearrangements and is useful to model
biological systems, the simulation temperature reflecting
the cellular activity.

B. Adding quasistatic strain to CPM

A common way to introduce strain in numerical sim-
ulations is by changing the shape of the simulation box.
After proper equilibration, static properties of the ma-
terials can be measured directly for any given strain.
However, such method cannot be used in lattice-based
modeling techniques as CPM. Nevertheless, strain can be
applied by adding appropriate terms in the Hamiltonian.
This approach has been used by Jiang and Glazier to
simulate foams submitted to a time-dependent shear rate
[10]. In this study, shear is introduced by adding an en-
ergy contribution of the bubble boundaries, either in the
bulk or those in contact with the two edges of the sample
only, so that updates that move the wall in the direction
of the shear are more likely to be accepted. The energy
term added to the Hamiltonian is actually an energy gra-
dient, and is kept constant throughout the simulation. In
Monte Carlo, an energy gradient is analogous to a stress,
so that the simulations are actually performed by apply-
ing a constant stress to the foam. The same method has
been used by Raufaste et al. to simulate a foam flow
around an obstacle [11]. One great advantage of this
method is that it does not require to wait for mechanical
equilibration before incrementing the wall displacements.
However, this approach has also a few drawbacks. First,
when the strain energy term is applied on every bubble
boundary (bulk strain), it overdetermines the displace-
ment field. The case of a regular hexagonal foam is il-
lustrative in this respect: the method implies an affine
deformation of the bubble boundaries, which is not com-
patible with the Plateau’s laws [8]. As we will discuss
in Section III B, exact resolution of the deformation field
shows that only the midpoints of the films follow affine
displacement [12, 13]. Similarly in [11], the added energy

term sets the rheological behavior of the foam, resulting
in a plug flow of the foam in the channel. Second, when
the applied stress is larger than the yield value, the foam
deformation produces a stress that opposes the one ap-
plied by the energy term. As a consequence, the actual
shear rate of the simulation is not constant, but is the
difference between the applied stress and the stress pro-
duced by the foam as an elastic response. This makes
evaluating the actual shear strain quite difficult (in [10]
it is assumed that it is proportional to the number of
MCS).

We develop here an alternate method to simulate qua-
sistatic strain within CPM, while avoiding these draw-
backs. It first requires the Potts lattice to be non-periodic
in one direction, that we choose to be the y direction.
This non-periodicity effectively creates a foam encased
between two walls. To simulate a given strain created by
the movement of these walls, we impose the displacement
of the bubbles that touch the edges y = ±L/2, where L
is the size of the box in the y direction. This is done by
adding the following term to the Hamiltonian:

Hstrain =
∑
i

k

2
δi,e |ri − r?i |

2
, (2)

where ri is the position of the center of mass (c.m.)
of bubble i, and r?i its the target position. For in-
stance, to simulate a shear strain ε along the x direction,
r?i = ε yiex, where ex is the unit vector along the x axis.
The Kronecker delta δi,e in Eq. 2 is there to restrict the
application of the strain to the bubbles in contact with
the top and bottom edges of the box (symbolized with
index e). The displacement and deformation of the bub-
bles in the bulk result only from the minimization of the
total energy.

The constant k acts as a spring coefficient. Higher val-
ues will impose a stronger restraint on the position of the
c.m.. This value must be high enough so that the c.m.
of each bubble stays in the vicinity of its target position,
but not so high that it affects the shape of the bubbles.
It can be chosen empirically: starting from a low value,
the constant k can be increased until the average position
of each c.m. is close enough to its target value (typically
within a distance of 1 pixel). Alternatively, an estima-
tion of a proper value can be obtained by considering the
stress that these harmonic restraints apply on the bub-
bles. They create a potential energy gradient around the
c.m. of bubble i, which is equivalent to a force k (ri − r?i ).
This force is actually the shear stress that is applied to
the system in order to induce the shear strain. In the
elastic regime, this stress is proportional to the strain,
and depends only on the shear modulus. With an esti-
mation of the shear modulus, we can find the value of
k that will induce an average distance between the c.m.
and its target position of any arbitrary value, typically
chosen to be of the order of a pixel. With this method,
k will depend linearly on the imposed shear strain.

The methodology to simulate quasistatic strain is then
the following: starting from an unstrained foam, we
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slowly increase the applied strain ε over multiple sim-
ulations. The strain is kept constant over the course of
a given simulation, and the final configuration is used as
the starting point of the simulation at a higher strain.
The increments of ε must remain small in comparison
with `/L (where ` is the typical size of a bubble), es-
pecially at yield strain and above, to ensure that the
structure relaxes in accordance with a true quasistatic
regime, i.e.: the succession of T1 events that would oc-
cur in a real foam is reproduced accurately. When ε
is incremented, bubbles at the boundary translate to
their final positions over the course of just a few Monte
Carlo steps (MCS). However, proper equilibration over
the whole sample takes longer, and depends on both the
temperature and the system size. We check that equi-
librium is reached by monitoring the total energy, and
run each simulation until the energy fluctuates around a
steady value.

Ensemble averages and relevant quantities can be ob-
tained for each value of the strain. In particular, the
energy is used to extract the relevant information about
elastic modulus and yield strain. In the elastic regime,
the stress is proportional to the strain, so that the strain
energy varies quadratically with the strain, with a pref-
actor that depends only on the size of the system and the
effective elastic modulus. For instance, the energy of a
2D medium with surface area A under a shear strain ε is

E(ε)− E0 = AG
2
ε2, (3)

where E0 is the energy at zero strain, and G is the 2D
shear modulus. Yield strain is determined either by
tracking the drop of strain energy or counting the fre-
quency of T1 rearrangements.

C. Validity beyond quasistatic regime

In the quasistatic regime, viscous dissipation plays no
role, and typical timescale of T1 rearrangements [20] is
much smaller than timescale of strain. Although it is
tempting to simulate mechanics of cellular systems be-
yond quasistatic regime, it must be warned that CPM is a
Monte Carlo simulation technique, and as such the kinet-
ics of the relaxation process is determined by the Monte
Carlo updating rule. Therefore, the rheological behav-
ior in this regime will depend on the chosen updating
rule. CPM traditionally uses Metropolis-like algorithm,
because of its ability to mimic overdamped force-velocity
behavior [21].

III. QUASISTATIC SHEAR OF 2D FOAMS

A. Initial state preparation

We test our method and assess its performances by
simulating 2D foams under quasistatic shear strain. Al-

though liquid content can be readily incorporated in
CPM, we assume the dry foam limit in this study.
We first simulate regular hexagonal foams, for which
quasistatic shear deformation, shear modulus and yield
strain can be calculated analytically. We then extend our
study to polydisperse disordered foams, to check that our
method allows us to capture the effect of disorder, and
compare our results with those obtained in a previous
study [6] using Surface Evolver, another popular numer-
ical model for cellular systems [22].

For the regular hexagons, we use 100 bubbles on a 10
by 10 arrangement. Periodic boundaries are used along
the x direction, but not along the y direction, which ef-
fectively results in walls at the top and bottom of the
simulation box. The initial and target surface area of
the bubbles that lie at the boundaries are set to half of
the surface area A0 = 1000 pixels2 of the other bubbles.
This is done so that inter-bubble films meet with the
boundaries at 90◦ angles, which is expected for a foam
at rest. Special care is taken so that the aspect ratio of
the simulation box matches the aspect ratio of a regular
hexagonal lattice (2/

√
3).

The polydisperse foam is created from a random dis-
tribution of points in a square box. A Voronoi tessel-
lation is done on this array of points to generate the
starting configuration. Each bubble is given a random
target surface area A0, following a normal distribution
with an average of 1000 pixels2 and a standard deviation
of ∆A = 125 pixels2. The foam is then equilibrated in
consecutive stages: a temperature annealing is first per-
formed with a small compressibility. Lowering the com-
pressibility enhances topological rearrangements, result-
ing in faster and more thorough equilibration. In a sec-
ond stage, the compressibility is progressively increased
to a more realistic value. Finally, the foam is sheared
along the x axis in both directions up to a strain of 0.1.
This final step ensures that the shear loading that will
be performed in the following will not trigger many, if
any, T1 events. At the end of this equilibration proce-
dure, the standard deviation of the distribution of side
numbers per bubble is found to be ∆n = 0.48.

In all our simulations, we set J = 1 and B = 30. Note
that, as shearing is done at constant volume, the results
are not really affected by the compressibility of the cells.

B. Hexagonal foam

1. Displacement field and shear modulus

For a regular, hexagonal foam, the deformation, and
subsequently the elastic moduli can be calculated analyt-
ically [12, 13]: since the foam cells are spatially periodic,
for any deformation, the centers of the hexagonal cells
move affinely with the bulk. Cell symmetry implies that
the midpoints of each film also moves affinely. Further,
in any deformation, the films remain planar, in accor-
dance with Young and Laplace’s equations. Note that,
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as a consequence, the threefold junctions between films
do not move affinely. We define the non-affine component
of the displacement field as the actual displacement field
to which the affine displacement field is subtracted. Fig-
ure 1 shows the non-affine displacement field of both the
bubble centers and the film junctions that we obtained
numerically. In agreement with the theory, only bubble
centers follow the affine displacement field.

FIG. 1. Non-affine component of the displacement field of the
bubble centers (in red) and threefold junctions between films
(in blue) for a regular hexagonal foam under quasistatic shear
(image corresponds to strain value ε = 0.45).

The exact stress-strain relationship has been calculated
by Princen, yielding the following expression for the shear
modulus [12, 13]:

GPrincen =
2λ√
3lh

1√
ε2 + 4

, (4)

where λ is the line tension (so a film of length ` has
an energy of 2λ`) and lh is the length of the side of an
hexagon. Equation 4 gives the shear modulus for a foam
up to the yield point. For small strains, its expression
simplifies to:

GPrincen =
λ√
3lh

. (5)

Note that in CPM simulations, the line tension λ is
proportional to J : λ = zJ , where the prefactor z de-
pends on the range of interactions between lattice sites
[23, 24] Actually, the underlying lattice introduces some
anisotropy, so that z depends slightly on the orienta-
tion of the film. Increasing the neighbor order helps to
smooth out this anisotropy, but increases the computa-
tional cost. For this reason, we use fourth neighbour
order (corresponding to 20 neighbors per pixel) in our
simulations, which is a good compromise between cost
and accuracy. However, a residual anisotropy can still

have significant impact on the mechanical response of the
simulated foam, as films tend to be pinned in orientations
that minimize energy. This is especially pronounced for
the regular hexagonal foam, whose films have three pos-
sible orientations only. For disordered foams, anisotropy
of the line tension is somehow smoothed out by the wider
orientational distribution of the films.

FIG. 2. Dimensionless shear modulus Ghex/GPrincen of an
hexagonal foam as a function of the reduced temperature T/J .
The orange line represents the linear fit over the range T/J >
1.5.

Fortunately, the effect of lattice anisotropy can be
circumvented by increasing the simulation temperature,
that has for effect to induce sampling over more film
orientations. However, increasing the temperature also
tends to increase the overall energy of the system, mostly
because the fluctuating films are longer than at zero tem-
perature. Precisely, when fluctuations are small, the in-
crease in length of a film at temperature T is proportional
to its length at zero temperature: δ` = `T/2λa, where a
(a ∼ 1 pixel) is some cut-off length [24]. Therefore, one
must evaluate G at different temperature values and then
extrapolate its value at zero temperature to circumvent
anisotropy artefacts.

For a given simulation temperature, a series of sim-
ulations are performed at different shear strains. A
quadratic fit of E = f(ε) gives us the numerical value
of the shear modulus of the hexagonal foam Ghex. The
value of Ghex as a function of the reduced temperature
is reported on Fig. 2. For temperatures T/J ≤ 1.5, the
energy does not vary quadratically with the strain, be-
cause of the anisotropy of the underlying lattice, lead-
ing to inaccurate values of Ghex. For temperature range
T/J > 1.5 on the other hand, the quadratic fit converges
and the reported value Ghex varies linearly with the simu-
lation temperature. We adjust the value of the prefactor
z such that the intercept of the linear fit of Ghex is equal
to the theoretical value GPrincen (Eq. 5). We obtain
z = 10.50± 0.07, in very good agreement with other val-
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ues reported in literature [23–26], and hence confirming
the accuracy of the method.

2. Yield strain

(a) (b)

FIG. 3. Configurations right before and after the creation of
a shear band. The black line indicates the localization of the
shear band.

Unlike shear modulus, yield strain of a regular hexago-
nal foam changes with the orientation of strain. With our
chosen orientation (Fig. 1), the expected value is 2/

√
3

[12, 13]. Note that this theoretical value assumes that
the foam is homogeneous and invariant by translation in
both directions, so that at yield stain T1s occur simulta-
neously and uniformly in the hexagonal foam [12, 13].

As for the shear modulus, we study the evolution of
the yield strain with temperature and extrapolate to zero
temperature to circumvent any effect of the underlying
lattice anisotropy (Fig. 4). Extrapolation leads to a yield
strain value 0.74 at zero temperature, which is signifi-
cantly lower than the theoretical value. The cause of
this discrepancy is the presence of the walls: in our sim-
ulations, as well as in real foams, the presence of these
walls breaks the translational invariance in the y direc-
tion, because films meet the walls at right angles [8]. As a
consequence, films in the vicinity of the walls are smaller
than in the bulk, as this can be seen in Fig. 3, and
the structure then relaxes through a line of T1s in the
vicinity of one of the two walls at strain lower than the
theoretical yield value.

Because our system is periodic in the x direction, a
shear band does not create any topological defect, it just
changes the neighbouring of the bubbles that belong to
the two rows that slide with respect to each other. There-
fore, the configuration right after the shear banding is
still an hexagonal foam, but with a lower effective strain.
This strain is actually lowered by a fixed amount: for a
system of N rows of bubbles, a translation of 1 bubble to
the side changes the strain by an amount ∆ε = 2/N

√
3.

Fig. 5 shows the reduced strain energy as a function of
the shear strain, for a reduced temperature T/J = 2.26.
The abrupt drop in energy corresponds to a shear band.
The first curve on the graph is a quadratic fit of the sim-
ulation points below the yield strain of 0.51. The second

FIG. 4. Yield strain as a function of the reduced temperature.

curve corresponds to the same parabola, but offset to the
right by a quantity ∆ε = 2/9

√
3 (our simulation box con-

tains 10 rows, two of which are half rows). This second
curve has no fitting parameter, and shows that after a
shear band the system still has the same shear modulus.

FIG. 5. Reduced strain energy E(ε)/E0−1 as a function of the
shear strain ε (Eq. 3). The first orange curve is a quadratic
fit of the simulation points below the yield strain of 0.51. The
second curve is identical but offset to the right by a quantity
∆ε = 2/9

√
3.

C. Polydisperse foam

We now test our method with a polydisperse, disor-
dered foam. Structural disorder is known to affect the
mechanical properties of foams [6, 27], so it is important
to check that our method allows to detect the effect of
structural disorder on the mechanical response of a 2D
foam. As for the monodisperse case, we first plot the
non-affine component of the displacement field (see Fig.
6). In contrast with the regular case, both the bubble
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FIG. 6. Non-affine component of the displacement field of the
bubble centers (in red) and threefold junctions between films
(in blue) for the polydisperse foam under quasistatic shear
(image corresponds to strain value ε = 0.10).

centers and the threefold film junctions have a strong
non-affine component.

FIG. 7. Reduced strain energy E(ε)/E0 − 1 as a function of
the shear strain ε (Eq. 3). The orange curve is a quadratic
fit.

For the polydisperse foam, shearing was this time done
along both +x and −x directions, as shown on Fig. 7.
This setup improves the accuracy of the quadratic fit
used to obtain the shear modulus, and allows us to check
that there is no residual stress in the initial state

Once again, the shear modulus is measured at differ-
ent temperatures, and then its zero temperature value
is extrapolated from linear fit. For each temperature,
the temperature-dependent modulus Gpoly was obtained
from a quadratic fit of the energy. This modulus was then
divided by the shear modulus of the hexagonal foam Ghex
at same temperature and with same mean bubble area
(A0 = 1000 pixels2). Note that the ratio Gpoly/Ghex is

then independent of z. Fig. 8 shows that this normalized
modulus converges to a constant value as temperature
is increased. This plateau value is ∼ 89% of the value
found for perfect hexagons in our simulation. This value
is consistent with those obtained by Cox & Whittick [6]
with the Surface Evolver program [22], for foams with
similar values of ∆A/〈A〉 and ∆n/〈n〉.

h
e
x

FIG. 8. Shear modulus of the polydisperse foam, normalized
by the shear modulus of regular hexagonal foam with same
mean bubble area and at same temperature, as a function of
the reduced temperature T/J . The dashed red line represents
the average value from simulations with T/J > 1.5.

IV. CONCLUSION

Numerical simulations are valuable tools to investigate
the relationship between the mechanical response and
the microscopic details of a cellular material, such as a
foam or a biological tissue. The cellular Potts model is
a standard numerical modeling tool of multicellular sys-
tems, with various applications ranging from foam coars-
ening to collective behaviors of biological cells. We have
shown that quasistatic strain can easily be implemented
in CPM, and checked the accuracy of our method by
analyzing the shear strain of 2D foams. For ordered
foams, the shear modulus obtained numerically agrees
well with the theoretical expression, and bubble centers
follow affine displacement as expected. For disordered
foams, bubble centers do not follow affine displacement
and the shear modulus is found to be lower than for or-
dered foam with same average bubble area. We obtained
good agreement with Surface Evolver simulations, an-
other popular numerical model of multicellular systems.
Systematic characterization of the effect of disorder will
be investigated in a next study. More generally, the
implementation of quasistatic strain into CPM provides
a versatile numerical tool to investigate the interplay
between rheological behavior and additional structural
changes that take place in cellular systems.
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