N

HAL

open science

2-adic parity explorations of the 3n+1 problem.

Francis Laclé

» To cite this version:

‘ Francis Laclé. 2-adic parity explorations of the 3n+1 problem.. 2021. hal-03201180v2

HAL Id: hal-03201180
https://hal.science/hal-03201180v2

Preprint submitted on 25 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License


https://hal.science/hal-03201180v2
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Clockwise arc diagram of orbits from the parity Collatz function for no = 25 |

2-adic parity explorations of the 3n + 1 problem.

Francis Laclé

Oranjestad, Aruba

April 18, 2021

Abstract

Starting with a separate 2-adic reformulation of the Collatz function that maps parity
orbits, we show that the stopping time k of this reformulation can be alternatively
obtained with the help of some novel ideas as well as hybrid-algorithmic techniques.

TFigure can be zoomed in to read the label on each node when viewing with a PDF viewer.



Definition 1. Let n € N* be the input term and let t € N denote the index of a sequence
of n’s after iteratively applying the Collatz function ¢ : N* — N*, defined as the assignment

e ifng=0 (mod 2)
2
c(ng) ==

3ng+1 ifny =1 (mod 2)

Remark 1. Throughout this paper we will modify c(n;) and t. We have opted to retain
the same symbols for clarity purposes.

Definition 2. Let e stand for even and N = {2n : n € N*} = {2,4,6,...,2n} represent
the subset of even positive numbers.

Definition 3. Let o stand for odd and N, = {2n — 1 : n € N*} = {1,3,5,....2n — 1}
represent the subset of odd positive numbers.

Corollary 1. Given the 2-adic valuation of n where v is the largest possible integer such
that 2¥ divides elements of N, into positive integers, we find the outcome of this division
to be always odd, i.e. any outcome n € N,.

Corollary 2. Following Corollary[1) we can substitute v with the 2-adic valuation function
va(n) (OEIS A007814 [3]) defined as the sequence

v(n) = (0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4, ...) .

Remark 2. A primitive recursive N*-adic valuation function is given in Appendiz[3

Corollary 3. With Corollaries and@ successive orbits of &t in c(ny) given ny € Ne can
be mapped by reformulating the assignment when ny =0 (mod 2) as follows

nt
21/2(nt)

ifng =0 (mod 2)
c(nyg) ==
3ng+1 ifny =1 (mod 2)

Corollary 4. Any outcome of 3ny + 1 when ny =1 (mod 2) always equals an ny1 € Ne.

Proof. Let o be any odd integer. 3 - o results in another odd integer. Given the parity
present in the natural order of N, adding a 1 to this result will therefore always return an
element of N,. ]
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(14,7,11,17,26,13,20,5,8, 1, ...)
11 | (17,26,13,20,5,8,1,...)
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20,5,8,1,...)
23,35,53,80,5,8,1,...)
26,13,20,5,8,1,...)
29,44,11,17,26,13,20,5,8, 1, ...)
32,1,...)

35,53,80,5,8,1,...)

Table 1: Orbits of the first 12 integers in N, of ¢(n¢) as given in Corollary

Corollary 5. Following Corollary we can reformulate c¢(ny) by adding one division of 2
when ny =1 (mod 2) as

Tt . o
W Zf ny = 0 (mod 2)
c(ng) == S b1
5 ifngy =1 (mod 2)

thereby further accelerating the succession. Orbits of the first 12 odd integers are listed for
demonstration purposes in Table[]]

Given Corollary [5| will continue to explore the subset n; € N, starting at ¢t = 0.

Definition 4. Let s(n;) denote an expansion of % as follows

ng + 2(nt) +1

s(ng) = 5

Observe that after applying s(n;) we get an outcome ny1, which can be recursively added
to and into the expression W provided that n; =1 (mod 2) T

Remark 3. Throughout this paper we will modify both s(n;) and the distance between
increments of t. We have opted to retain the same symbols for clarity purposes.

"Working this out on brown paper results in a shape similar to an upside-down Cantor ternary tree.



Lemma 1. The parity of ny+1 can alter from ny after applying the operation s(ny) and this
alteration depends on whether the outcome nyy1 = s(ng) contains one or more factors of 2
given n; € N,,.

Proof. Let ng € N, be the initial input for s. We have

no + 2(ng) +1 3(ng) +1 3 1
s(no) = 0 (20) = (02) :§n0+§:n1

which can be restated as

1 _ 3(no)
ni—35 =73

2(n1) — 1 = 3(no) (multiply both sides by 2)

2(n1) = 3(np) + 1 (add 1 to both sides)

However, n; could or could not be even depending on the number of factors of 2 contained
[2]. To complete the proof of existence it is suffice to show one example of each case. For
the first case we consider ng = 11. This gives n; = 17, while for the second case we consider
no = 5, which gives ny = 16 that contains four factors of two, or v5(16) = 4, and we are
done. O

Lemma 2. Given N, there exists at least one initial value of ny where the outcome of more
than one recursive iteration of s(ny) results in another ny € Ne i.e. where va(ns) > 1 for a
particular ny.

Proof. Let ng € N, be the initial value of s(n;) and let n; be odd, we can insert s(ng) given
by n1 into s(n¢) to obtain

no + 2(ng) +1 no + 2(ng) + 1
0 (20) +2(0 (20) >+1

s(ny) = 5 =n2

which results in the dividend of s(n;) being even as n; is odd, simplified as

n0+2(no)+1 2(7’L0) +4(’n0)+2 1
D) + 5 + Sno+3(no)+3  Sno+2 9 5

S(nl): B) = 2 = 5 :Zno-&-zznz

which can be restated as

ng — 2= 9(20) (multiply both sides by 4)

4(n2) —5 =9(ng) (add 5 to both sides)
A(ny) = 9(no) + 5.



Similar to the result of Lemma [T we have that 9 multiplied by an odd integer is an odd
integer and an odd integer added with 5 gives an even integer, therefore if ng is odd then
4(ng) given s(ng) — s(n1) must be even.

Here no is even or odd following Lemma For example, ng = 7 gives ny = 17, while
no = 19 gives ng = 44 as vy(44) = 2.

We now solve for the third iteration. Let ns equal an odd integer after two iterations of
s(ng). We can insert ny in s(n;) to obtain

3no +3(no) + 2 510 +3(no) + 3
+2 +1
9 2
s(ng) = 9 -
simplified as
3n0+3(no) + 2 3(no) +6(no) +5
s(n)*2 2 tt 2 +17%n0+gn0+%7%”0+1¢9727n +19*n
2) = - - T8t
2 2 2 8 8

from which follows that

ng— 2 = @ (multiply both sides by 8)

8(n3) — 19 = 27(ng) (add 19 to both sides)
8(n3) = 27(np) + 19

As was the case with the previous two results we have that 27 multiplied by an odd integer
is an odd integer and an odd integer added with 19 gives an even integer, therefore ng must
be odd and 8(n3) must be even.

To complete the proof it is suffice to provide two examples of each case. As a first case we
have, ng = 15 gives ng = 53, while for the second case we have ng = 23 gives nz = 80 as
12(80) = 4. O

Theorem 1. The coefficients of recursive iterations of s(n) are uniquely defined for some
k, with k being the exponent having bases 2 and 3.

Proof. Let n; € N, denote iterative outcomes of s(n;) and let k£ € N be an iteration index
for subsequent outcomes. From Lemma |ljand Lemma [2| we have the following incremental



results up until £ =3
ng = ino+ 7
ny = 5no + %

ng = 3no + 3

Then by induction we claim

81 65
AT
for k = 4. Suppose that this is true, let
a z
ne = gn(] + 5

define all terms where a is the dividend of the first term, b be the divisor of both terms
respectively, and z be the dividend of the right term. Then, the claim is valid if we can
derive a correspondence with each equation for every k together with valid examples of
c¢(n¢). For a it is obvious that these are repeated multiplications of base 3, as such a = 3F.
For b it is similarly obvious that these are repeated multiplications of base 2, as such b = 2*,
giving

3F z
= 27’1%0 + 27
With z representing (0, 1,5, 19, ...,N) we claim this to be the enumeration of the dividends
of both terms up until £ — 1 for £ > 0. For 1 < k < 4 we have

ng

Hq=1=1+0 k=1
29=5=1+0+3+1 k=2
23=19=140+34+1+9+5 k=3

20=65=14+0+3+1+9+54+27+19 |k=4

with zg = 0. This can be rewritten as

20=0 |k=0
21 =1=3"+2 k=1
29=5=3"+20+3 4+ 2 |k =2
23=19=3"4204+3" + 21 + 3% + 2 k=3

24=65=3"+20+3' + 21 + 32+ 20+ 3+ 23 |k =4



and further expanded as

z0=0

21=1=3%4+0

20=5=3°4+0+3"+3°+0

23=19=3"4+04+3"+3°4+0+324+3°+0+3'+3°+0
20=65=3°4+0+3'+3°+0+32+3°+0+3'+3°4+0+33+3°4+0+3"+3°+0+32+3°+0+3t +3%°+0.

The number of times that 3° or 1 gets included in the enumerative series is always by an
additional factor of 2, and so we can simplify to

20 =0

n1=1=2"4+0

22=5=2"+0+3"+0

23=19=24+0+3"+0+3*+0+3"+0
24=65=24+0+3"+0+3*+0+3"+0+3*+0+3"+0+3*+0+3"+0.

Rearranging and cancelling the zeros we get
z=1=20
29 =5=21431
23 =19=2%+3 + 3! + 32
24 =05=2% 43"+ 3" + 3! +3! +3% 32 4 3%
which we claim to have a closed form defined as
z=a—b=3F_2F

Let us rewrite outcomes of z; as binomial integers, we have

z1=140
=243
z3=4+15
z4 = 8+ 57.

For each zj, we can expand it equally so the right term is equal to 3* while the left term is



equal to —2F such as
z1=(1-3)+(0+3)
z0=(2-6)+ (3+6)
zg = (4—12) + (15 4+ 12).

If this holds then the additional integers in z4 should equate 24 as the assertion here is
that every pair of additional integers contains a factor of 2F~1 times 3. Indeed

24 = (8 — 24) + (57 +24) = 65

as claimed.

We can now reformulate s(n;) explicitly. We assume values of n; € N, such that s(n;)
iterates in k + 1 steps with initial value £ = 0 up until an outcome that contains factors of
2neN" We have

3F(ng) 4+ 38— 2% 3F(ng) + 3F

ok ok -1

s(ng) =

up until
max{k : s(ny) =0 (mod 2)}.

As an example, let us evaluate s(ny,) for the ¢(n;) function given in Corollary [5| with ng = 31
to be the integer that returns an even integer after five consecutive iterations. We have

47 - 71 — 107 — 161 — 242

from which we can work out as

5(31 5_95  243(31) 4+ 243 — 32 243 — 32 44
3(315):3(3)+3 _ 3(31) +243 -3 :7533+ 3—3 :77 o,
25 32 32 32

[
Remark 4. [t follows from the definition of s(ny) that its domain can be expanded to
include all n € N* as initial values ng as s(ng) = ng.
Corollary 6. Following Corollary[5, we can make s(ny) part of c(n:) such that

UL
vz (nt)

ifng =0 (mod 2)
c(ng) =
s(nek) ifngp =1 (mod 2)

The following orbits of initial values of ngj = 1 till ngj, = 12 for n € N* with presets k = 0
are listed for demonstration purposes in Table[3.



no | (c(n ))neN* max{k : s(ny ) =0 (mod 2)}
1] (1,2,1,...) (1,0,...)

2 | (1,.. 0,...)

3 | (3,5, 8 1,..) (2,0,...)

4 | (1,...) (0, ...)

5 ] (5,8,1,..) (1,0,...)

6 | (3,5,81,...) (2,0,...)

7 | (7,11,17,26,13,20,5,8,1, ...) (3,2,2,0,...)
8 | (1,..) (0,...)

9 | (9,17,7,11,17,26,13,20,5,8,1,...) | (5,2,2,0,...)
10 | (5,8,1,...) (1,0, ...)

11 | (11,17,26,13,20,5,8,1,...) (2,2,2,0,...)
12 | (3,5,8,1,...) (2,0,...)

Table 2: Orbits of ¢(n¢) for initial values of ng = 1 till ng = 12 for n € N*.

Theorem 2. From Theoreml we derive a substitution for k of s(n) where the number of
k-iterations required to reach an n € N, from n = 0 is the 2-adic valuation function vo(n)
with an offset of 1, i.e. k =wva(n+1).

Proof. Let ng be an n; € N*. We have s(ng) = ng as all £ = 0 exponents result in 1 with
an even dividend and a divisor of one. Consider ng = 1 and k = 1, evaluated as
3()+3-2  3(1)+1

2 2

8(11) =

Observe that 3(12¢ is the expression given in the equivalence relation of Corollary (4| for
cases where n = 1 (mod 2). Let us denote this expression in terms of even and odd
variables e and o, and the dividend and divisor as superscript dd and dr respectively. From
the rules of modular arithmetic we have

o+ o

Outcomes of ng = 1 (mod 2) for e > 1 result in a 22:1 that returns an integer when

edd — drif edr > 1 or

edd > edrif edd = 2P (edm) for p > 0.



Let us now consider the case of n € N.. We have

o o(e)+0 e+o

edr e e

Outcomes of ng = 0 (mod 2) are therefore rational and will never return an integer, except
for the odd case when we have 20 or 1 as the divisor.

For the odd case ng = 1 recall that

3(1)+3-2 3(1)+1 4

1 p—
s(h) 2 2 2

continuing the iteration for £k = 2 we have

9 +9-4 _9(1)+5 14

1 =
s(12) 4 1 4

edd
edr

While both iterations produce we observe that solely the first iteration, s(1;), satisfies
the constraint e? = 27(e?") thereby returning the even integer 2. We further observe that
e of s(13) contains one less a factor of two than ", namely a factor of 2! against a factor

of 22.

Let us consider the subsequent case of ng = 3, of which by definition of s(ny) has a
maximum of 0 < k < 2. We have

5(31) = 2 2 2
and 93)+9—4 9(B3)+5 32
+9- +
B =" = T
and finally

27(3) +27—-8  27(3)+19 100
8 N 8 8

The above shows that e of s(31) contains a factor of 2! against 2' resulting in the odd
integer 5. Continuing the iteration we have s(32) which contains a factor of 2° against a
factor of 22, satisfying the e = 2P(e9") constraint. Finally, we have s(33) which does not
satisfy the constraint as it contains a factor of 22 against a factor of 23. Similarly for s(5;)
s(7x) we have

s5(33) =

3(5)+3-2 _3(5)+1 _ 16

s(1) = 2 2 2

and
27(7T) +27—8  27(7)+19 208
5(7a) = 8 -8 T s

10



Due to the general rational relation between the edd and e, an ny, € N, will result when the
rational constraint e? = 2P(e?") is satisfied. To summarise we have for the four examples

max{k = 1for s(1;) € N.} when s(1) %ﬁ
5

max{k = 2for s(3;) € N.} when s(3)

(1x)
(3x)
(5%)
(7k)

2
22

21

max{k = 1for s(5;) € N.} when s(5;)
max{k = 3for s(7;) € N} when s(7;) = g—i.
From the above we observe that each maximum of k& is in fact the 2-adic valuation of
no + 1 € N, from nyg.
Recall our formulation of s(ng) from Theorem

3% (no) +3" =28  3%(ng) +3%

ok a ok !

s(ng) =
through the negative exponents rule we get
s(ng) = 27 <3k(n0) 3k 2’“) = 2773k (ng) + 27k3F — 1

expressing the above formulation as a rational gives

38 ng 1 38 2k
s =or T P T

We take the first step of k-iterations starting at s(7p) as the example to further derive the
proof. Evaluating the dividend for each k gives

3(71)+3-2=22 (divided by 2 gives the odd integer 11)
9(7)+9—-4=068 (divided by 4 gives the odd integer 17)
27(7) + 27— 19 = 208 (divided by 8 gives the even integer 26)

We can expand each outcome of k as follows

13,7, 1.3 _1_3 7,3 1_21,3 '1_24 2_22_11
21T T2 i 1T 2 it T I T e I T TS T T

1,97, 1,9 1 _9 7,9 1 _6,9 1 __72_ 4__68__34_17

7S T Wl Tl St Uil S Sl Sl Wl W Sl Bl Ml Sl Ml M

L2 v, 1. 20 1 _2r 7,27 1_18 , 27 1 __ 216 8 _ 208 __ 104 _ 52 _ 26
81T 178 1T 18178 17 '8 8 17 "8 8~ 8 T 4 T 271

11



From the above expansion it can be observed on an elementary level that each k-iteration
adds factors of three to the first two left terms, starting with a multiplication

3k )
followed by an addition
3k -ng + 3k

and a subtraction of —2* for the right dividend term, to finally culminate with a division
by 2%. From this it follows that multiples of 3 with odd numbers result in odd numbers
as 0o(o) = o. Then, adding these multiples with powers of 3 result in even numbers as

0(0) + 0 = e. When we consider the formulation of s(ny) without —3—: = —1 we get
3% (ng) + 3%
2k
which is equivalent to
3k (no+1)
2k

This implies that
Fo+3k=3".(0+1)

If 0 is odd then (o + 1) must be even. If (0 + 1) is even then it must contain at least one
factor of 2. Ilustrated with natural numbers 7 and 8 as

7T=2-2-2-1
8§=2-2-2
This leaves us with the following two simplified formulations of s(n )

Fp+1) -2 3F(ny+1)
2k -2k

s(ng ) = —1|n €N,

and observe for s(7j) the following

s(fo)=§-1=24%==2-2-2-1€N,
(M) =% -5 =452 =3.2.2-1€N,
s(Ta) = —§ = 221 =3.3.2-1€N,
s(Ty) =% —g =252+ =33-3-1¢cN

For the case of s(7;) we thus have k = 3 as it takes three k-iterations to factor out all 2’s
from 7 + 1 such that the outcome is again an even integer. More specifically, a subtraction

12



by —g—k in s(73) where its outcome returns an even integer. What remains as a constant

term for every k is —g—z. This subtraction retains s(n; ) to have an even outcome up until
the same number of factors of 2’s have been iteratively added as the initial (n; + 1), such
that divisions by 2* can factor out enough of the even 2’s to return back to an outcome in
the form of o — 1 = e, thus ending the iterative process of s(n ). This process coincides
with the outcome of v5(7 + 1) = 3 as 23 = 8 = 7+ 1. Hence, through this equivalence we
can look ahead at the number of k-iterations needed for n;o € N, to reach an n;; € N,
defined as
k= I/Q(TL =+ 1)

O]

With the demonstration in Theorem 1| and consequently Theorem [2] we exhibit the recur-
sive divisions by factors of two and multiplications by factors of three in elementary form,
using s(7;x) as the exemplar, while highlighting noteworthy terms in bold. We have, with
initial values t =0 and k=0

s(Top) =3 —1=2221=2.2.2-1

s(To)) =% —3=%=4=22%2=3.2.2-1

N S S T S P
$(Tog) =280 — 8 =208 104 52 _ 26 _ 3333228 _3.3.3_1
2 _ 13 _ 33321 2-2(2-2-2271)72 _o@2.2.2-1)—1
sB)=F - 3= =7 ="002=32.2.2-1) -1
%:¥: 3(2'2-22—1)—1 _ 3(2-2~22)—2—2 :3(22)_1_1

=5 =00 = (32) -1

s(hay) =W - 2=10=8_03202_ (3.3
e o

1=t-2-2

f==1

with 1 entering the trivial cycle

ToNIN

13



ni

ns

ng

ng | n1 = s(ng) | n2 = S | 3= s(ng) | na = Sy | 5= s(ng) | ng = Soan) | 6= s(ns) | n7 = Sva(ne)
1 2 1 2 1 2 1 2 1
2 2 1 2 1 2 1 2 1
3 8 1 2 1 2 1 2 1
4 4 1 2 1 2 1 2 1
5 8 1 2 1 2 1 2 1
6 6 3 8 1 2 1 2 1
7 26 13 20 5 8 1 2 1
8 8 1 2 1 2 1 2 1
9 14 7 26 13 20 5 8 1
10 10 5 8 1 2 1 2 1
11 26 13 20 5 8 1 2 1
12 12 3 8 1 1 2 1

Table 3: Outcomes of the parity function ¢(n¢) as defined in Corollary for1<mg <12 AN1<t<7.

Corollary 7. Following previous theorems together with Corollary[6, the 2-adic valuation
property for n € N* can be added to s(ny ) such that k becomes a function of va(ny + 1)
giving us the reformulation

32 (n¢+1) (nO) + 3V2(nt+1)

3v2(net 1) (ng 4 1
s(ng) = _ (no+1)

B 1 - 21/2(TL,5+].) B 1

2V2(nt+l)

Combining the above with effectively reformulates c(ny) as a parity assignment of

n
ua(nt)
(even-)odd-even-odd and so forth orbits ¥V ny € N*, defined as

L ifng =0 (mod 2)
ova(nt)

c(ny) =
s(ng)  ifng=1 (mod 2)

demonstrated in Table[3 for the following 12 outcomes of initial values of ng = 1 till ng = 12
for ng € N*.

Corollary 8. We follow Corollary [] with one approach to describe the stopping time t
from ng up until ny|c(ny) =1 as a summation series that stems from the parity-alternating
formulation of c(ny). Let t be the iteration index after every operation on n, we have

-

where p € N*. A 2-factor of k is included as each iteration of k is an even-multiple of

va(no) +2(va(no 1 +1)) +- - +ra(ny) ifne # 2P
va(no) ifng = 2P

14



%. Substituting i for va(ng) and k for vo(ny + 1), we can simplify to

{ Qo4 2k 44y ifng £ 2P

10 if ng = 2P

Considering Theorem [4 where s(n;) returns an n € N. we note that the above ends with
an odd number of terms. 16 examples are shown in Appendiz[3 for illustration purposes.

Definition 5. We introduce the clockwise arc diagram A as a visual aid that illustrates
a couple of orbital properties of c(ng) from Corollary @ through conjectures @ and @
The horizontal graph in the centre represents the number line n € N*. Arcs on the top
represent increments of ng — nyy1 from left to right by s(nt). Arcs on the bottom represent
decrements of ny — nyi1 from right to left by St t. A few examples are illustrated in

2ua(
Figures |1 and |4 1.

Remark 5. In terms of graph theory, we can restate the main conjecture as follows. Up
until reaching a vertex ny = 1 for a particular t € T with the exception of np = 1, a
Hamiltonian or Eulerian path exists in AV n € N*,

Conjecture 1. The summation of incremental differences minus the summation of decre-
mental differences is equal to ng — 1V N*.

ng

Let inc(ni—1) = s(ng—1) —mu—1 | t > 0 and let dec(ny) = ny — 2D | t > 0 while iterating
c(ng). Through Figures [q and [] we can visualise the difference between inc(ni—1) and
dec(n¢) to be

t| TEN, t| TeN,
Z dec(n;) | — Z inc(ny—1) | =np—1, Vng e N
t=0 t=1

which can be interpreted as the incremental step from 1 to ng when a particular ng-orbit
converges back to 1.

Conjecture 2. Following conjecture[1] it can also be conjectured that

t| TeN. t| TEN,
Z dec(ny) | > Z inc(ny—1) | Vno e N*
t=0 t=1

when a particular ng-orbit converges back to 1.

Through A we can visually validate orbits of ¢(n;) as defined in Corollary [7| alternating
from +N* — —N* or vice versa from —N* — +N*. The following single-step iteration of
initial values of ng = 1 till ng = 12 for n € N* are listed for demonstration purposes in
Table @l

TSource code for drawing the clock-wise arc diagrams can be found at https://github.com/flacle/.
TFigures can be zoomed in to read the label on each node when viewing with a PDF viewer.

15
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(a) nq = 26 is its supremum element.

®

(b) m3 = 26 is its supremum element.

Figure 1: A for the parity ¢(n:) function of orbits ng = 7 and ng = 9.

L

(a) np = 80 is its supremum element.

@

(b) ng = 152 is its supremum element.

Figure 2: A for the parity c¢(n¢) function for orbits ng = 15 and no = 39.



(a) n1 = 2 is its supremum element and the trivial cycle exemplar.

(b) ng = 8 is its supremum element.

Figure 3: A for the parity ¢(n;) function of orbits ng = 1 and ng = 6.

(a) n1 = 26 is its supremum element.

(b) np = 20 is its supremum element.

Figure 4: A for the parity c¢(n¢) function for orbits ng = 17 and no = 20.
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Table 4: Alternating operations executed by c(n¢) as defined in Corollary for initial values of ng = 1 till ng = 12.

Theorem 3. We can a reformulate c(n;) without the classical piecewise notation through
the inclusion of divergent subsequences.

Proof. We perceive regularities within pairs of ng tuples that are equally distanced from
one another, listed in Table {4} For example (1,2), (5,6), (9,10), and so on. For the first
example we perceive an increase of 41 followed by a decrease of —1. For the second we have
+3 followed by —3, similarly for ng = 9 we have +5 and —5 and so on, with a distance
of 2!, Suppose that the same rationale can be applied for pairs where vo(ng + 1) > 1.
Then, distances between pairs should also exhibit regularities. Indeed, this will be proved
by construction to inherit z = 3¥ — 2¥ as defined in Theorem

First, let the ng terms V ng € N* be expanded, illustrated for initial values of ng = 1 till
ng = 26 in Table 5] and forming the sequence

n = (2,1,8,1,8,3,26,1,14,5,26,3,20,7,80, 1,26,9, 44, 5,32, 11, 80, 3, 38, 13)

for ng = 1 till ng = 26. This can be further expanded to highlight the recursion within each
expression as shown in Table [l Continuing this approach, expressions are reformulated
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nog | ng +n nog | No +n1
1 ]1+1 14 1 14-7
2 12-1 15 | 154+ 15+ 50
3 [3+3+2 |16 ]16—-15
4 14-3 17 | 17+9
5 [543 18 1 18 =9
6 [ 6—3 19 1 19+15+10
T 7T+7+12 |20 | 20—15
8 | 87 21 | 21+11
9 [945 22 122-11
10 | 10 -5 23 | 23+21+36
11 | 114946 | 24 | 24 —21
12 112 -9 25 | 25413
13 |13+ 7 26 | 26 — 13

Table 5: Expanded ng terms. For example, 74+ 19=14+7=74+ 7+ 12.

ng | ng +nq ng | no + N1

1 [1+1 14 | 14-7

2 12-1 15| 154+15-1+50-1
3 134+43-1+2-1 |16 |16—15-1

4 [4-3-1 17 |1 17+9

5 | 5+3 181 18-9

6 | 6—3 19 1194+3-5+2-5

7T 7T+7-14+12-1120|20-3-5

8 | 8—-T7-1 21 | 21411

9 1945 22 | 22—-11

10| 10-5 23 | 234+7-34+12-3
11 11+3-3+2-3(24|24—-7-3

12 112-3-3 25 | 25+413

13 | 13+ 7 26 | 26 — 13

Table 6: Demonstration of recurrence within each expression.
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ng | ng +mn ng | no +mn

L j1+@2-1)- 143 —-2'=(2'-1))-1 |14|14-1-7

2 [2-1-1 15| 154 (28 —1) - 14 (3* =2t — (22 —1)) - 1
303+(22-1)-14(32-22—-(22-1))-1 |16|16—15-1

4 14-3-1 17 | 174 (21 =1)-94 (3" —2' — (2! = 1)) -9
5 (5+(2t-1)-3+(3'—2'—-(2'-1))-3 |18 |18—9

6 |6-1-3 19 | 194 (22 1) -54 (32 —-22— (22 —1)) -5
77T+ (23-1)-14(33-23—-(22-1))-1 |20|20-3-5

8 | 8-7-1 21 | 214 (2" —1)-114 (3" 2! — (2! —1)) - 11
9 |9+ (2t-1)-5+(3'—2"—-(2t-1))-5 |22 |22—-11

10 10-1-5 23 [ 23+ (22 —1)-3+ (3% -2°— (2 1)) -3
11 [ 114 (22-1)-3+(32—-22—-(22-1))-3 | 24 [ 24—7-3

12 112-3-3 25 |25+ (2" —1)-13+ (3" —2' — (2" - 1)) - 13
13134 (2'—1)- 74+ (3" =21 —(2'-1))-7 |26 | 2613

Table 7: Reformulation as expressions that contain power operations for every ng € N.

with power operations such as

343-1+42-1=3+(22-1)-1+(32-22-3)-1=3+(22-1)- 1+ (32 -22— (22 -1)) - 1
TH+7-1+12-1=74(22-1) 14 (33-22-7) - 1=74+(22—-1)- 1+ (33 —-23 - (25 -1)) - 1
15415-1450-1=15+ (21 —-1) -1+ (3" =2 —15) - 1 =154+ (2 —1) - 1+ (3' -2 - (21 - 1)) - 1

and so on, listed in Table [7] for every ng € N, up until ng = 26. We further observe that a
similar approach can be derived for each For ng € N, subsequence giving

2—(2'-1)-1,
4—(22-1)-1,
8§—(2°-1)-1,

and so on. Table [8] combines both approaches, completing the expansion for ng € N* up
until ng = 26.

As such, s(n¢) from Theorem applies an expansion of two terms during increments and an
expansion of one term during decrements. Given this expanded form we can symbolically
derive a separate piecewise function for iterates of ¢(n;) namely

—d- (2P -1) ifn,=0 (mod 2)

F(nt,p,d):{+d'(2p_1)+d‘(3p_2p_(2P—1)) ifn,=1 (mod 2)
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ng | ng +mn ng | no +mn

L [1+(20=1)- 143" =2t —(2'=1))-1 |14 | 14— (21 -1)-7

2 [2-(2'-1)-1 15| 154 (28 —1) - 14 (3* =2t — (22 —1)) - 1
33+(22-1)-14+(32—-22—-(22—-1))-1 |16 | 16— (2*—1)-1

4 {4-(22-1)-1 17 | 174 (21 =1)-94 (3" —2' — (2! = 1)) -9
5 05+(2' -1)-34+ (3 —2"—-(2'-1))-3 | 18| 18— (2'=1)-9

6 |6-(2'—1)-3 19 | 194 (22 1) -54 (32 —-22— (22 —1)) -5
77T+ (28-1) 14 (33 -29—-(2°—1))-1 |20|20—(22—1)-5

8 | 8—(2°—-1)-1 21 | 214 (2" —1)-114 (3" 2! — (2! —1)) - 11
9 |9+ -1)-54+ (3 —-2"—(2'-1))-5 | 22| 22— (2'-1)-11

10 10— (2 —1)-5 23 [ 23+ (22 —1)-3+ (3% -2°— (2 1)) -3
11 [ 114 (22-1)-34+(32—-22—-(22-1))-3 | 24 | 24— (2 —1)-3

12 | 12— (22-1)-3 25 |25+ (2" —1)-13+ (3" —2' — (2" - 1)) - 13
13134 (2'—1)- 743 2" —(2'-1))-7 |26 | 26— (2' —1)-13

Table 8: Combination of both approaches ng € N*.

where p > 0 denotes power and d > 0 the divergence index for F', i.e. the first occurrence
of an increment of d in n starting at 1. The additional 2? — 1 | n; = 1 (mod 2) can be
factored out to obtain

F(ng,p,d)=(ne=1)d- (3P —2°) = (ny =0)d- (2P = 1) (mod 2)

that emphasises a modular symmetry between increments and decrements from the parity-
alternating formulation of ¢(n;). As an example, the orbit for n, = 7 converges to 1 as
follows

7+ F(7,3,1) + F(26,1,13) + F(13,1,7) + F(20,2,5) + F(5,1,3) + F(8,3,1) = 1.

Table [J] shows divergence subsequences for 1 < p < 4 for n € N* up until n = 26, while
Figure [5| combines subsequences into one chart up until n = 100 for illustration purposes.

Suppose F'(n4,p,d) can be merged back into the metric space of ¢(n;), then it should be
possible to make both p and d functions of n;. For p we observe that it satisfies the sequence

(1,1,2,2,1,1,3,3,1,1,2,2,1,1,4,4, ...) .
which is OEIS A050603 [4] . For p as a function of n; we thus obtain

p(ng) = va(ng + 1) + 1o(ny) = o(n? +ny) = vo (g + (i = 1)) (mod 2)

TAlso OEIS A136480 [5] minus one.
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n | F(n,1,n) | F(n,2,n) | F(n,3,n) | F(n,4,n)
1 1 5 19 65
2 -2 —6 —14 —-30
3 3 15 o7 195
4 —4 —12 —28 —60
) ) 25 95 325
6 —6 —18 —42 -90
7 7 35 133 455
8 -8 —24 —56 —120
9 9 45 171 585
10 —10 -30 —70 —150
11 11 55 209 715
12 —12 —36 -84 —180
13 13 65 247 845
14 —14 —42 -98 —210
15 15 75 285 975
16 —16 —48 —112 —240
17 17 85 323 1105
18 —18 —54 —126 —270
19 19 95 361 1235
20 —20 —60 —140 —300
21 21 105 399 1365
22 —22 —66 —154 —330
23 23 115 437 1495
24 —23 —72 —168 —360
25 25 125 475 1625
26 —26 —78 —182 -390

Table 9: Divergent subsequences for powers 1 < p < 4 for n € N* up until n = 26.
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Figure 5: Chart showing the metric spaces of 1 < p <4 for 1 < n < 100.

for the exponential p-terms of F' where p(n;) = p(n; + 1) for all consecutive pairs of
(ng,ny +1) € N*|n, € Ny, A ny +1 € Ne. As proven in Theorem [2) the equivalence
k = va(ny + 1) within s(n. ) is the lookahead power when n; € N, while vo(n;) is the
power that denotes the maximum number of factors of two contained in every n; € N, as
such p(n;) combines both powers for all n; € N*, equating the sequence above.

For the divergence index d, we also define a function that satisfies the following sequence
(1,1,1,1,3,3,1,1,5,5,3,3,7,7,1,1, ...)

for n; € N*. We observe this to be similar to the “change point” sequence as given in OEIS
A163575 [6] albeit obtained with the ceiling instead of the flooring function. This yields
the following

dr(nt):[ ny w ne+ (g =1)

) | = T gptnn) (mod 2)

where [ denotes the ceiling variety. Following Corollary [5, d(n;) | ns € N, is sty that
nt—i-l

is equivalent to c¢(n;) | ny € N.. While for n, € N, it is Jrotn that is equivalent to the

denominator in s(n;) from Theorem [2| and the equivalence

3u2(m+1)(nt> 4 gr2(ne+1) 3V2(nt+1)(nt + 1)

ua(ng+1) ua(ni+1)

23



Both p(n;) and dl (n;) exhibit cycles for occurrences due to Corollary For p(n:) its cycles
are of equal 2-adic valuation distances, where the metric is defined as the following function

D(n) = n + 27+

that would reach the same subsequence of p(n), mapping a metric to the next occurrence
of a subsequence, i.e. to a proceeding pair (n,n + 1) equal with respect to p(n). Thus
arriving at the next pair that contains the same 2-adic valuation outcome as the current
pair. E.g.

D(7) =23, D(9) = 13, D(11) = 19
p(7) =3, p(23) =3, p(9) =1, p(13) = 1, p(11) = 2, p(19) =2
for natural odd numbers, or
D(8) = 24, D(10) = 14, D(12) = 20
p(8) =3, p(24) =3, p(10) =1, p(14) = 1, p(12) = 2,p(20) = 2

for natural even numbers. For dl(n;) we designate it the label of a divergence index as it
embeds a counter for D(n) with a fixed metric of 2 starting at 1, i.e. for the first encounter
of a pair in the sequence of p(n). E.g.

p(1)=1,p(5)=1p(9) =1, p(13) =1
dl(1) =1, dl(5) =3, dl(9) =5, dl(13) =7

at the onset of 2! — 1, or
p(3) =2, p(11) =2, p(19) = 2, p(27) =2
d'(3)=1,dl(11) =3, dl(19) =5, dl(27) =7
at the onset of 22 — 1.
Finally, we can combine and simplify it all together with n;, which gives
c1(ng) = ny + (ng = 1) dl (ny) (3P<nt> . 2P<"t>) — (ny = 0)dl (ny) (2P<nt> - 1) (mod 2)
that embeds orbitals V n; € N*. E.g., for ng = 7 we have the iterations

c1 (c1 (e1 (e1 (a1 (e1(7)))))) =1

6 times
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Figure 6: Subsequences 1 < p(n¢) <5 of F contained within ¢(n¢) for 1 < ny < 100.

Figure [6] shows divergence subsequences F'(ny, p,d) when mapped back into ¢ (n;) together
with an identity sequence n; = n; (1-slope). Figure [7| shows the same result but excluding
the addition term n; that is given in ¢q(n¢), thereby isolating iterative operations, and
including a constant sequence n; = 0 (0-slope).

Remark 6. Subscript 1 applied on c(n;) as ci1(ni) denotes single-step iterations in the
parity-alternating formulation of c(n:), also seen in A. E.g., ¢1(7) = 26 followed by
01(26) =13.

Corollary 9. Given ci(n;) where ny—1 € N, and ny € N, for t > 0, we illustrate the em-
bedding of seemingly continuous 2-adic subspaces that exclude 0, or Zx\0 in Table where
rows represent 3p(ne-1) _ 2p(”f*1), columns represent d(ny—1) € Ny, and each cell the 2-adic
valuation of odd operations within c1(n) namely vy (nt_1 + d(ni—1) (31’(’”—1) — 21’(’”—1))).
Followed by Table that lists the same results but without the vy operation. Both tables
are limited to p(ni—1) < 17 and d(ni—1) < 33 for illustrative purposes.

Lemma 3. Through Corollary[9 we derive a reformulation of the orbit-transforming func-
tion c1(n¢) as defined in Theorem@ with a correspondence to Corollary @

Proof. Let us first consider ¢1(n;) ¥V ny € N,. Table [11]illustrates ever-expanding ”jumps”
within N*. To illustrate this further, indices are listed in Table for 1 <n < 32 and for
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gplu—1) _op(m—1) | 1| 3|5 7|91 |13|15|17]19|21]23|25|27]29|31]33
3l — 2! 13121512131 ][2]|1|4|1]2]1
32— 22 3121|4121 |3 |1]2|1|5|1|2|1]3
33— 23 1412131219121 |3[1]2]1
34— 21 4121|312 |1|5|1]2|1]3|1|2]|1]4
3> — 25 1312141213121 |5|1]2]1
36 96 3121512131214 |1]2]|1]|3
37— 27 151|213 |1 |2]1]|4|1]|2|1[3]1]2]1
38— 28 5112131214121 |3|1]2]|1]|6
39— 29 1031|216 |1 |21 |3 |1]|2|1[4]1]2]1
310 _ 910 3112141213121 |7|1]|2|1]|3
3l gl 1412131215 |1]2|1[3]1]2]1
312 _ol2 411213121812 |13 |1]2]|1]4
313 _ 913 10312141213 |1]2|1]|6]1]2]1
34 _old 3/1]2f1{6|1|2|1|3]1|2 1|4 |1]2|1]|3
315 _gl5 1/6|1|2(1] 3|1 2|14 |1]|2|1[3]1]2]1
316 _ 216 6|12 |1|{3|1|2|1|4]1]|2]1|3|1]|]2]|1]|5
317 — 217 131|215 1|21 3|1 ]2|1|4|1]2]1

Table 10: Outcomes of vo (nH +d(ng_1) <3P<nt—1> - 2P<nt—1>)) for 1 < p(ng—1) < 17 and 1 < d(ny—1) < 33.

gplne—) _ gplni—1) 3 5 7 9 11 13 15 17 19 | 21 23 25 27 29 31 | 33
8 14 20 26 32 38 44 50 56 62 68 74 80
26 44 62 80 98 116 134 188 206 221 212
80 134 188 212 206 350 101 366 620 674 728
212 101 566 728 890 1052 1214 1700 1862 2024 2186
728 1214 1700 2156 2672 3158 3614 5102 5588 6074 6560
2156 3644 5102 6560 8018 9476 10934 15308 16766 18224 19682
2156 6560 10934 15308 19682 24056 25430 32804 15926 50300 54674 59018
6560 19682 32501 15926 59018 72170 85292 95414 111536 124658 137780 150902 164024 177146 190268
372" 19682 59048 95414 137780 177146 216512 255878 205244 334610 76 413342 452708 492074 531440 570806
310210 59048 177146 205244 | 413342 531440 649538 767636 885734 1003832 1121930 1240028 1358126 1476224 1712420
3T o1 177146 531440 734 1240028 | 1594322 1945616 2302910 2657204 3011498 3 3720086 4074380 4428674 5137262 5491556
317 217 531440 1594322 57204 | 3720086 | 4752068 6908732 7971614 9034496 100973 11160260 | 12223142 | 13286024 15411788 | 16474670
30 21 1594322 | 4782968 | 7971614 | 11160260 | 14348906 20726195 | 23014544 | 27103490 | 30292136 | 33480782 | 36669428 | 39858074 | 43046720 | 46235366 | 49424012
31T o1 4782068 | 14348006 | 23014844 _| 33480782_| 43046720 62178596 | 71744534 | 81310472 | 90876410 | 100442348 | 110008286 | 119574224 | 129140162_| 138706100 | 148272038
315 — 218 14348906 | 43046720 | 71744534 129140162 186535790 | 215233604 272629232 | 301327046 | 330024860 | 358722674 | 387420488 | 416118302 | 444816116
310 21 13046720 | 120140162 | 2 1 387420188 | 473513930 | 559607372 | G45700814_| 731794256 | 817887695 | 903981140 | 990074582 | 1076168021 | 1162261466 | 1248354908 | 1334448350
317 — 21" 120140162 | 387420488 | 645700814 | 903081140 | 1162261466 | 1420541792 | 1678522118 | 1937102444 | 2195382770 | 2453663096 | 2711943422 | 2070223748 | 3228504074 | 3436784400 | 3745064726 | 4003345052

Table 11: Outcomes of ny—1 + d(n¢—1) (3“"“1) — 217("’5*1)) for 1 < p(ni—1) <17 and 1 < d(n¢—1) < 33. Equal

colours emphasise the distance expansions that take place on Zso from lower powers p(ni—1).
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Figure 7: Subsequences 1 < p(n¢) < 5 of F' contained within ¢(n¢) but now without the addition term n¢, or
(n=1)dl(n) (37 — 2¢(W)) — (n = 0) dl(n) (2?(* —1) (mod 2).
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Table 12: Indices per power expressed in c1(n¢)|nt € Ny for 1 < p < 3, illustrating ever-expanding ”jumps” in N*.
g g7

the exponential order of 1 < p < 3. Suppose that the expansion holds V n; € N, then
there should be a correspondence with s(n;) following previous conclusions brought forth
in this paper. For p = 1 we have

1—-52,2—8,3—14,4—20,5— 26,6 — 32, ...
with a metric of 6 starting at table column 2. For p = 2 we have
1—38,2—26, ..

with a metric of 18 starting at table column 8, and finally we have p = 3 with a metric of
54 starting at table column 26. For p = 1 we observe that the metric of 6 can be applied
on N* with 3(3° - n) — 1jn € N,. For example 3(3°-1) — 1 =2, 3(3°-3) — 1 = 8, and so
on. For p = 2 we similarly can apply the metric of 18 on N* with 3(3' - n) — 1|n € N,. For
example 3(3' - 1) —1 =8, 3(3°-3) — 1 = 26, and so on. Considering the increase in power
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to p = 3 we expect 3(3%n) — 1| n € N, to hold. This is true because
33%n) —1=3n—-1=3n—-1|neN,.

Considering that the range of df(n;) is equal to {2n — 1 : n € N}, we can substitute n and
p with their functional counterparts to obtain

3*Mdl(n) —1|n eN,.

For cases n € N, of ¢;(n;) we derive this to be dl(n) as follows. From ¢;(n;) as defined in
Theorem [3| we have the following expression

n—dl(n) (2p(") — 1)

for which we can flatten to obtain

n (gp(n) — 1) n (2V2(n) — 1) ova(n)yy _ n

O A 2 R )

e vz (n) ova(n)

resulting in df (ny)|n; € Ne as a function of —™— that corresponds with Corollary Both

oo (ng)
equations can now be combined with an addition operator to obtain

cr(ng) := (ng = 1)d (n)3P™) — (ny = 1) + (ng = 0)dl (ny)  (mod 2)

To complete the proof we demonstrate the correspondence with s(n;) from Corollary m for
nt € N,. Flattening out gives

g qua(nitl) _ 1 — 3V2(nt+1)(nt +1)
9ua(ni+1) ua(ni+1)

—1=s(m)| m €N,
as claimed. O
Corollary 10. The deriwation of ¢i from Lemmal[3 can be compacted further.

Proof. Considering sequence
n = (2,1,8,1,8,3,26,1,14,5,26,3,20,7,80,1,...)
resulting from ¢ (ng), we have for n, € N,
dl (ng)3P() — 1 = dl (n,)3v2(re)tva(ntl) _q
Further considering that 3"2(") =1 |ny € N, and gra(netl) — 1 | ny € Ne, then
c1(ng) == dl (ng)372 D) — (n, =1)  (mod 2)

for the parity-alternating formulation of ¢ in single-step iterations. O
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Lemma 4. Given Lemma @ and Corollary we can derive cy(ny) by wrapping and
embedding the second iteration within c1(ny).

Proof. If ny € N, then ¢1(ng) = n1 € Ne. Vice versa, if ng € N then ¢1(ng) = n1 € N,.
As such, to iterate in double-steps we can wrap dl(n;) | ni—1 € N, and, following Lemma
embed df (n;) within itself and within p(n;) when n;_; € N,. This yields

[
co(ng) :=(ny = 1) d{ (d{(nt)?)pl("t) - 1>+(nt =0) d{ (d{ (nt)> 3P i) _(n, = 0)  (mod 2)

that results for example in ng = 7 — ny = 13 crossing over 26, or ng = 6 — ny = 8 crossing
under 3 through double-step iterations.

Remark 7. Subscript 2 applied as co(ny) denotes double-step iterations in the parity-
alternating formulation of c¢(ng), also seen in A. For example, co(7) = 13 followed by

c2(13) = 5. Similarly, subscript 1 applied on d and p as pi(n:) and d{(nt), denote the
power variant of the original definition p(n;) and the divergent index variant of the original

definition dl (ny) respectively.

Let
(= 0)d] (di(n0)) 3" (400+1) _ (1, =0)  (mod 2)

define the operation c2(ng) = na | na € Ne. First, we define a function for vy (d{ (ng) + 1)
as

= vy (ng + 272(M0)) — py(202(M))
= vy(ny + 22)) — 1y (ny)

where the last two right-hand expressions follow from an identity extension for Q as given
in [I] (p. 2), and forming the sequence OEIS A089309 [7]

(1,1,2,1,1,2,3,1,1,1,2,2,1,3,4,1,...)..

Intuitively, we recognise po as the 2-adic valuation of n from N, — N,V n € N*. Further-
more, pa(n) = pi(n) | n € N, because

vs(n+1)—0=wv2(n+1)+0.
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For d} d((nt we can define the function d[(nt as
1 {41 2

dy(ne) = d} (d} (ne))

and reformulate the embedding by first flattening, followed by a formulation for n; € N,
then by n; € N, to finally combine both simplifications. To start, let

d(ne) = df (af(ne))
_d ne+ (ng = 1)
T T\ gua(ne)+ra(ng+1)

nt+ (ne = 1) ng + (ng = 1) =1
oua(nt)+ve(ne+1) n gua(nt)tva(ne+1) —

= V2< TLt+(ntEl) )+V2< nt-‘,-(ntEl) 1) V2< ’I’Lt+(nt51) >+V2( nt+(nt51) 1)
2 2

ova(ng)tra(ne+1) ova(ng)+va(ne+1) + oua(nt)+va(ne+1) ova(ng)+va(ne+1) +

(mod 2). For the case of n; € N, we can cancel out all 0’s and obtain

Uz
2 (ne) 1

Tt + ng
9" <2vz (ne) “) 9" (2vz(m> “)

that through the identity given in py(n¢) can be simplified to

g+ 25(00)
21/2 (nt +2v2 (ng) )

forming the sequence
(1,1,1,1,3,1,1,1,5,3,3,1,7,1,1,1,...)..
Similarly, for the case of n; € N,, we can cancel out all 0’s and obtain

ng + 1
ra(ne+1) 1

ng + 1 T ng + 1
2V2<2V2(nt+1)+1 2V2 21’2(nt+1)+1

ng + 1 4 2v2(netD)
gva(ne+14272(ne+ D)

which is simplified to

that forms the sequence

(1,1,1,3,1,1,1,5,3,3,1,7,1,1,1,9, ...)..
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Combining both together we arrive at

ng+(ng =1) + gv2(ne+(ne=1))
gv2 (nt+(nt51)+21/2(nt+(nt51)))

dg(nt) — (mod 2)

that forms the sequence
(1,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,...).
For the case of ca(ng) = n2 | n2 € N, we have
(ne =1)d! (d{(nt):sm(m) - 1) = (ne=1)d! (s(ne)) (mod 2).

Flattening this out gives
3”2(nt+1) (nt + 1)
gua(ne+1)

(3”2(”t+1)(nt +1) )
12 -1
2

-1

2u2(nt+1)
that through the negative exponentiation rule and ps(n;) identity we can expand as

3V2(nt+1)2_l/2(nt+1)_l/2 (31/2(nt+1)(nt+1)_21’2(’ﬂt+1))+y2(2V2<7’Lt+1>) (nt + 1)

_271;2(31’2(%-*-1) (nt+1)72u2("t+1))+y2(2”2(nt+1))

(2V2(nt+1))

Because 272 = 2v2(m+1) we can simplify to

3V2(nt+1) (nt + 1) 1

V2 (3V2<"t+1)(nt+1)72’/2("t+1)) V2 (3V2<"t+1>(nt+1)72”2(’”t+1))71/2(nt+]_)
and finally combine to obtain

3u2(nt+1) (nt + 1) o 2V2(nt+1)

21/2(3”2("t+1)(nt+1)—2"2("t+1)) ’
Adding it all together we arrive at

Sllg(nri»l) (nt + 1) _ 21/2(nt+1)
el = =) ( 21/2(3"2(nt+1>(nt+1)f2vz("t+1)) +ne =0) <d£(nt)3p2(nt) B 1) (mod 2)

which gives the following sequence as its result

ca(ng) = (1,2,1,2,1,8,13,2,7,8,13,8,5,26,5,2,...) .
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no | As sequences given ca(ny) | no | Aa sequences given ca(ny)
1|6 |l e—ne—-e—-0-20

2 | B 5 |o—=2o—-06

3 | oe—=6 16 | & =6

4 16=6 17|l o> —>0 -6

5 | ©—=6 Bleg—20-20—-20—206—2006
6 | &—=5—6 Do >0 —=265
T8 —-5 20| &5—-6—6

8 | =6 21 | © = 0O

9 o202 —20 |20
10]e—=6—26 2 o2 —-06
H|losvoso—-0 24|20

12|26 —-6 |20 —206
13|lo—se-26 26 | &0

Table 13: Sequences of Ag given ca(n¢) for 1 < ng < 26.

Conjecture 3. Following Lemma [{] we conjecture nor more nor less than five sub-arc
diagrams as part of A for double-step iterations denoted as As and symbolised as

a positive overpass: an increment crossing the number line and remaining over n;_o,
a positive underpass: an increment crossing the number line and under ni_o,

a negative overpass: a decrement crossing the number line and remaining over ni_o,
a negative underpass: a decrement crossing the number line and under ny_s, and
that symbolises a cycle circling back to ny_so.

ORVICECNO)

Remark 8. Increments or decrements in As also express the clock or anti-clockwise wind-
ing direction. In other words, for Ao under this conjecture, sequences with ng € N, solely
contain positive passes, while sequences with ng € N solely contain negative passes. Thus,
remaining over” or "under” in the previous statement takes this direction into account.

Ag sequences are listed in Table [13] for 1 < ng < 26 for illustration purposes. The orbital
length of A of ca(n¢) is equal to OEIS A160541 [8] minus one for ng > 2.

Corollary 11. Also following Lemma we derive a rational function for ci(ny).

Proof. When ny is subtracted from outcomes of ¢;(ng) we isolate the operation of single-
step iteration and observe linear correspondences between elements (visible Figure @ For
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no | g =y | o | gl =y
2412 14 | =2z404
2004 |5 | 18024652 _
102452 _ 4 16 | =802032
—6ct08 — | 17 | 2412
112 18 | =2zt04 _

24104 _ 102+52
2 Y 19 8

3824192 __ —6240-8 __
B 20 7=y

—14240-16 __ 20+12 _
16 =y |21 s Y

OO N ||| W[N]~
¥
8
-+
=
N

2c+1-2 —2x+04 __
=Y 2| 77 =Y

10 —2m:—0~4 =y 23 38x+19-2 —
16
11 10x§-5~2 — 24 —14€-é-ﬂ~16 =y
12 7618+0-8 =y 25 QIZLQ =y
13 2$Zl~2 =y 26 72362»0-4 =y

Table 14: Linear fractions within element pairs as seen in Figure@, for 1 <ng < 26| c1(ny).

each correspondence we can identify a linear fraction in the form of

ax + gf
b

with outcomes listed in Table As ng € N, of ¢1(n¢) results in an ny € No we can remove
factors of two for each as listed in Table For f we identify this in reduced form to be

f(ng) = 22
or f(ng) = 2v2("0)+1 in unreduced form. For g we have
g(ng) = 372(no+1) _ gua(no+1)
where g(ng) = 0|ng € N.. For b we observe these to be powers of two forming the sequence
(2,2,4,4,2,2,8,8,2,2,4,4,2,2,16, 16, ...)

or
(21, 21,2222 2% 21 23 2% 21 9! 22 92 ol 2l 9% 24 )

where we denote the exponent as d1(ng) and in fact

61(no) = p1(no)-
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no | wel —y |y | el —y
L it —y 14| 52—y
2 | =lef02 _ |5 | Gatfsdl _
3 | il —y 16 | =15z f016 —
4| =y |17 B =y
5 M=y |18 TR oy
6 | =502 =y | 19| 2

7 | B9l | oo | =Szi0d _
8 | Moy |21 | =y
9 | =y 22| 52—y
10 | =lzt02 — | o3 | Lox4191 _
1| 2t =y |24 ] =R =
12 | =t =y | 25| B
13| =y |26 ] =502 =y

Table 15: Simplified linear fractions within element pairs of ¢1(n¢) as seen in Figure @

Finally for a we identify this to be

a(ng) = 320t _ 98i(no),

Bringing it all together we arrive at

(31/2(n+1) . 261(n)) n+ (31/2(n+1) . 21/2(n+1)) 21/2(11)

9261(n)

where removing the 21(") term from a(n;) gives

Suz(m—l-l)n + (Suz(m—l-l) . 21/2(nt+1)) 21/2(nt)

c1(ng) ==

as claimed.

961 (1)

O]

Corollary 12. Following Theorem [3, Lemma’s[3, and[{], and Corollaries [1( and [11] we
now derive a rational function for ca(ng) ¥ ng € N*.

Proof. Similar to Corollary we start by subtracting ng from c2(ng) to isolate the oper-
ation of double-step iterations. Outcomes are listed in Table [16 and Figure Similarly

evident from Figure [8{ are apparent 2-tuple outcomes, e.g. (9, —2) with (10,
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ng | ca(ng) —no | no | ca(ng) — no

1 11-1=0 14 | 26 —14 =12
2 12-2=0 15| 5—-15=-10
3 | 1-3=-2 16 | 2—16=—14
4 |2—4=-2 17 | 13—-17=—4
5 |1—-5=-4 18 | 14—-18=—4
6 | 8—6=2 19|11 -19=-8
7T |13-7=6 20 | 8 —20=—12
8 |2—-8=—-6 21 | 1—-21=-20
9 | 7—-9=-2 22 | 26—22=14

10| 8—10=—-2{23 | 5—-23=—-18
11 | 13-11=2 | 24 | 8—24=-16
12 |1 8—-12=—-4 125 |19—-25=—-6
131 5—-13=—-81]26|20—26=—6

Table 16: Subtraction of ng terms from ca(ng) as given in Lemma for 1 < ng < 26.

200 T T T T T T T

ca(ng) —ng

_150 I I I I I I I I I I I
1 11 21 31 41 51 61 71 81 91 101

Figure 8: Outcomes of ca(ng) — ng for 1 < ng < 100.
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ng | gx+4 =y ng | gx+4 =y

1| Zo+i=y |14 22+ =y

2 | Fa+i=y |[15] 30+ B =y
3| Glx+ 2=y |16| Zat+i=y

4 *1—%01:—#%:?; 17 %x-k%:y

5| e+ m=y|18| Fat+i=y

6 1%3:—1—%:3/ 19 3—12496—1-1%

7 %x—k%:y 20 _l—g):c—i-%:y
8 %x—k%:y 21 %x—ké:y
9 | Rr+i=y | 22| Ez+3=y

10 %x%—%zy 23 %x—l—%:y
11| Zz+3=y |24| Fa+3=y
12| Fla+3=y |25 Za+l=y
13|50 41l=y |26] Zatli=y

Table 17: Linear fractions within element pairs as seen in Figure for 1 <ng < 26| ca(ny).

with (18, —4) with linear correspondences between outcomes of the first element and conse-
quently of the second element of every pair. Solving for each correspondence symbolically
we arrive at a set of partial fractions, listed in Table These can be further simplified

and combined in the form of
a-ng+g-f
b

, listed in Table For f we observe this to remain f(ng) = 22("0),

For g we have the sequence
(1,1,5,1,1,5,19,1,1,1,5,5,1,19,65, ...)

which we identify to be g(ng) = 372("0) — 2P2("0) ith py(ng) as derived in Lemma |4, For b
we observe these to be powers of two forming the sequence

(4,4,32,8,16,8,16,16,4,4,8,16,8, 16, 256, 32, ...)

or
(22,22,27,23 24,23 24 24 22 22 23 2% 93 2% 9% 25 )

36



no a:pJggf =y no abergf =y

1 —lz+1-1 __ y 14 11z+19-2 _ y
4 _ 16 —

) —lz+1-2 _ 15 —1752465-1 __ y
4 256

3 —23x+5-1 — 16 —29z+1-16 =y
32 32

4 —bx+1-4 __ y 17 —lz+1-1 __
8 — 4 —

5 —13Zl‘+1'1 — y 18 —1:17+1~2 — y
16 4

6 1lz+5-2 — 19 —Tx+5-1
8 16

7 11x+19-1 __ y 20 —bx+14 __ y
16 — 8 —

8 —13x+1-8 — 21 —6lz+1-1 =y
16 64

9 —1:E+1-1 _ y 22 1£E+1~2 _ y
4 — 8 —

10 —1lz+1-2 =y 23 —101z+19-1 =y
4 128

11 1z+5-1 — 24 —23x+5-8 =y
8 32

12 —Tx+54 y 25 —lx+1-1 __ y
16 — 4 —

—5x+1-1 __ —lx41-2 __
13 | Bzl —y [ g6 | —lefl2

Table 18: Simplified linear fractions within element pairs as seen in Figure |8} for 1 < ng < 26 | c2(n¢).

where the exponent we have identified as the function

d2(no) = p1(c1(no)) + p1(no)
=5 (e1(no)? + c1(ng)) + v2 (n§ + no)
= vy (c1(ng) + (c1(ng) = 1)) 4+ va (ng + (no

embedding c;(n¢) as a function of p; and where n; + 202(n¢)+

1

=1))

represents the Az metric to

(mod 2)

reach a pair (ny,n; + 1) of equal 2-adic valuation in N* | n, € N, A n; + 1 € N, during
double-step iterations. Removing vs from vs (c1(ng) + (c1(no) = 1)) (mod 2) in pi(c1(no))

yields the following sequence

(2,2,8,2,8,4,26,2,14,6, 26,4, 20,8, 80,2, ...)

while removing vo from v (c1(no)? + c1(no)) in p1(ci(no)) yields the following sequence

(6,2,72,2,72,12,702, 2, 210, 30, 702, 12, 420, 56, 6480, 2, ...) .

Because of the following p-adic property

vp (zy) = vp () + 1p (y)
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where x A y € N we have that

v(@+1)+v(y) =vp(z+1)y) =vp((zy +y)).

As such, the result of the 2-adic valuation function holds even though the two integer
sequences above are not equal.

For d2(ng) as the exponent of powers of two we thus complete the denominator as
b(no) = 252(710).
Finally for a we identify this to be

a(ng) = gp2(no) _ 9d2(no)

Remark 9. Subscript 2 applied on §(ng) as d2(ng) denotes the denominator-exponent
variety of double-step iterations in the parity-alternating formulation of c(ny).

Adding it all together results in

(3p2(n) — 202 4 (3p2(n) — 2p2(0)) ova(n)
252 (n)

Subtracting 22(") term from a(ng) allows for the reformulation with n; to obtain

3p2(nt)p, 4+ (3p2(nt) _ sz(nt)) ova(nt)
252(%15)

ca(ng) ==
which allows us to apply double-steps iteratively. For example for ng = 7 we have
2 (2 (2(7))) =1
N————
3 times

that maps
7T—-13—-5—>1

as claimed. 0

Corollary 13. We can remove a factor of 2°2(") from M

and Corollary [19 thereby reducing the number of unknowns from three to two fully.

as given in Corollary

Proof. Let

3y2(nt+1)n + (Bljg(nt—i-l) . 2V2(7lt+1)) 2V2(nt)

Cl(nt) = 961 (1)
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g

9va(nt)

We can include (sequence OEIS A000265 [9]) in c1(n;) as

Uz
V2 (ne)
V2 (ne+1)

3u2(nt+1) 31/2(nt+1) _ 2u2(nt+1)

c1(ng) ==

where the denominator is the result of 201(")=»2(m) - Fyrthermore, from the simplifications
that were identified in Theorem [2] we also obtain

340 (Gt 1)

2V2(nt+1)

c1(ng) ==

Similarly, for ca(n;) we also include % and obtain

3p2 (m)% 4 3p2(ne) _ gpa(ne)

op1(ci(ne))+ve(ni+1)

co(ny) ==

where the denominator is the result of 202(")=»2(nt)  Here, we also have the identity
piei(ne)) +va(ng +1) = valer(ng)) + va(ei(ne) +1) + va(ng + 1) = va(er(ne)) + pa(ne)
with the last term being equal to the function py(n) from Lemma [4] because
(pr(er(ne)) +va(ne +1)) = (2 (e1(ne)) + 0+ va(ne +1)) | (ne =1)  (mod 2)

= (2 (et +v2 (5 +1)) | (u=1) (mod 2)

and
(pl(cl(nt)) + I/Q(Tbt + 1)) = (0 + 19 (Cl(nt) + 1) + 0) | (nt = O) (mod 2)

— 1y (Mm) + 1) | (e =0) (mod 2).

As such, we can similarly simplify ca(n;) to

p2(nt) "
ca(ny) := ’ (21/2(7“) - 1> - !
2V T oun(ea (ne)) +pa2 () gva(er(ne))

O

Lemma 5. Following previous Corollaries, a rational function for c3(n:) exists, effectively
mapping ng — n3.
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Proof. By induction, suppose that a rational function for c¢3(n;) can be deduced from the
previously derived rational functions co(n¢) and ¢;(n¢) with three unknowns. We consider
once again
a(n) -n+g(n)- f(n)
b(n)

As b(n) is present both in the numerator (as part of a(n)) and the denominator we will
deduce b(n) first. Considering the result from previous Corollaries we define d3(n) as

+ n.

d3 (n) = p1(cz(n)) + pi(c1(n)) + p1(n)
that embeds previous c-step functions and where
b(n) = 2%,

Then we can assert
Dg(n) =n-+ 263(n)+1

that would reach the same subsequence of d3(n), mapping a metric to the next occurrence
of a subsequence, i.e. to a proceeding pair equal with respect to d3(n). Thus arriving at
another pair that contains the same 2-adic valuation outcome as the current pair. E.g.

Ds(7) =71, D3(9) = 73, D3(11) = 43
d3(7) =5, 95(71) =5, §5(9) = 5, 95(73) =5, d3(11) =4, 55(43) =4
for natural odd numbers, or
D3(8) = 72, D3(10) = 74, D3(12) = 268
93(8) =5, 95(72) =5, 05(10) = 5, 05(74) = 5, 05(12) = 7,05(268) =7
for natural even numbers. Indeed, for d3(n) we have the sequence
d3(n) = (3,3,6,4,5,6,5,5,5,5,4,7,4,5,9,6,...)

or
2%3(n) = (2893 26 2% 25 96 25 95 95 95 2% 9T 24 9% 29 96 )

while for D3(n) the sequence
Ds(n) = (17, 18,131, 36,69, 134, 71, 72, 73, 74, 43, 268, 45, 78, 1039, 144, ...) .

For f(n) we claim this to remain
fln) = 22
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equal to previous c-step functions. For the exponent in the numerator, which we shall now
denote as r that is contained within a(n) and g(n), we claim the following. If

ri(ng) =wvo (ny + 1) | c1(ng)

n

v2(ne) T 1) | ea(ns)

ra(m) = pa(ne) = va (
then

r3(ng) = vo (ca(ng) + 1) + 14 <% + 1) | es(n)
= vy (c2(ne) + 1) +ra(me) | es(me)
resulting in the sequence
ra(ng) = (2,1,3,1,2,2,4,1,4,1,3,2,2,3,5,1,...)..

It’s worth highlighting that this is a continuation that recurrently follows from

ro(ne) = pa(ne) = va (c1(ne) + 1) +r1(ne) | ca(ne)

because
va(er(ng) +1)+va(ny+1) =04+ va(ng +1) | (ng =1) (mod 2)
and n
Vs (c1(ng) + 1) + va(ng + 1) = v (rfn) + 1) 10| (ne=0) (mod 2).

Finalising a(n) we thus have
a(ng) = 373(m0) — 93 (no),
For g(n) we experimentally obtain
g(no) = ((3»2(c2(no>+1> _ 2uz(cz(no>+1)) (21'2(81(710))) _ (3”2(02(n0)+1) _ 21’2(62(”0)+1))) gv2(no+1)
4 3r3(n0) _ gra(no)
— ((3T3(n0)*rz(n0) _ 2T3(n0)*T2(n0)) (2V2(61(n0))) _ (3T3(n0)*T2(n0) _ 2T3(n0)*T2(n0))) gv2(no+1)
4 373(n0) _ g7a(no)

_ (3T3(n0)*rz(no) _ 2T3(n0)*T2(n0)) (21'2(61(”0)) _ 1) 2V2(”0+1) + 373(710) _ 2T3<”0)

Bringing it all together in non-simplified or original form we have
(3r3(n)2 _ 263(n)+1) n
+ ((37‘3(71)77"2(11) _ 2r3(n)7r2(n)) (21/2(01 (n)) _ 1) ora2(n+1) + 37"3(11) _ 27‘3(71)) gva(n)+1
253(n)+1
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N %SE—I-%Zy no %Ji+%:y

1 % =y 14 710%1194 =y
9 710116+1-4 =y 15 7538198;1151-2 =y
3 —74:152—247-2 =y 16 —122&;—132 =y
BE el

5 —46:%1—19-2 =y 18 —10icél—1'4 =y

6 711?290;5-4 — 19 34x1+21825-2

7 98wg—473-2 — 20 _IQ%QIS—HB =y
8 —581(:51-1&6 =y 21 —2382;1'05—(&5-67-2 =y
9 98z—gi03~2 — 29 —14;;54 =y
10 758%5:1-4 =y 23 7350§1+2185-2 =y
11 22x§r223-2 — 24 7494?5;5-16 =y
12 —233;6—5%5-8 =y 25 221;—229-2 —

13 —14m3—2&—11-2 =y 2% —26§c2+1~4 —

Table 19: Non-simplified or original linear fractions within element pairs for

300 T T T T T T T
. cz(ng) —ng

250 | ) .

200 | I .

100 | ’ T T

—150

1 11 21 31 41 51 61 71 81 91 101
Figure 9: Outcomes of ¢3(ng) — ng for 1 < ng < 100.
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of which its results are listed in Table [I9 and Figure 0] From here we can reformulate to
c3(n¢) by subtracting 2% +! from a(n). Additionally, removing a factor of 2v2(")+1 from
all terms to obtain

g
ova(ne)
+ (3r3(m)77'2(m) _ 2T3(nt)*7’2(nt)) (21/2(01(nt)) _ 1) gua(ni+1) 4 gra(ne) _ gra(n)

3r3 (ne)

Cg(nt) = 263(11,5)71/2(%75) ’

which can be reduced to

T

r3(ne)
3 21/2 (nt) + 1

+ (37'3(7%)*7“2(7%) _ 27'3(7%)*7'2(7745)) (21/2(01(”75)) _ 1) gra(ne+1) _ ors(ne)

c3(ne) == 05 (ne)—va(mr)

From Corollary [13] we also have the identity

263(nt)7ug(nt) — 2V2(C2(nt))+l/2(01 (nt))+7"3(nt)
thereby allowing the further reduction of cg(n¢) to

ra(ne) [ "
3ra(ne <2y2(nt) + 1>
c3(ng) ==

~ova(ez(ng))+ve(ci(ne))+ra(ne)
ora(ca(ne)+1) _ (3V2(02(nt)+1) — 2V2(C2(nt)+1)) (2V2(01(nt)) — 1)
op1(ca(nt))+rz(ei(ne))

yielding for ny — ns the sequence
es(no) =(2,1,2,1,2,1,20,1,26,1,20,1,8,13,8,1,...).

For example for ng = 7 we have
C3 (03(7)) =1

N——
2 times
that maps
7—20—1
as claimed. O

Corollary 14. As g(n;) gets more complex to deduce for every iteration jump, we propose
ai(ng) and by (ny), where k denotes jumps in iteration steps, to first obtain successive results
of g(n¢) computationally, denoted as gi(n) with t = 0.
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Table 20: Outcomes of g (ng) for 1 < n < 33 and for 1 < k < 33 (zoom in for inspection).

20) | ex(30) | e 50) | ex(60) x(100) | ex(110) | cx(120) | ce(130) | (140 | ext150) | ex160) | 1) | exlaso) | ex(aon) | en(200) 1) | cx(220) %) o) ) | cx260) | et ol (200) | ex(300) | (31 3 33
[ s 1 s 3 5 20 3 20 7 50 1 2 ] 1 5 ) 1 0 3 0 13 62 [ [ 2 1 0
1 2 1 7 13 s 5 2% 5 2 13 i 11 B 1 2% 5 s 19 20 31 2% i S| 2
B 1 1 ] N 0 1 13 1 0 7 20 1 B 3 [ n B 13 2 I 1 3
1 2 2 5 2] 1 2 5 2 20 3 5 2 B 2 1 2 1 2 1 S| 20 i3 s o1 3 10
2 1 2 s 20 s 2 5 2 1 s 13 20 1 2 5 2 2% 152 5 2 [ 206 1 1
1 2 1 1 1 1 1 2 1 0 5 2 1 1 13 o1 s 5 103 2 11

1 1 1 1 1 1 1 2 1 1 2 206 1 N 1 6
1 1 1 1 1 1 1 5 103 T B
1 1 ] 2 1 1 1 1 1 2 s 350 1 1 0 1 0
1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 175 1 1
1 1 1 1 1 1 1 1 2 1 [ 800 1 o 1 B
1 1 I 1 1 1 1 1 1 15 16 1
1 1 2 1 1 2 1 2 o8, 6
1 ] 2 1 1 1 1 1 1 2 1 2 1 1 167 1 25 1
1 1 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 66 1 1 o 1 2
1 1 1 1 1 1 1 55 1 519 1
1 1 1 1 1 1 2 1 3 3611 1
1 2 1 1 1 1 2 2 319 011 1
2 1 1 2 1 1 1 2 1 2 1 2 1 1 3611 1 R 1 2
1 1 1 [ 1 1 1 1 1 1 o1l 1 577, 1
1 1 1 1 2 1 1 1 1616 566 1
1 2 1 1 1 1 1 2 2 577 133 1
1 2 1 1 2 1 1 1 1 1 2 1 2 1 2 1 1 G 1 60 1 2
1 1 1 1 [ 1 1 1 1 1 1 1 133 1 3 1
1 1 1 1 2 1 1 G50 @ 1
1 1 1 2 1 1 2 325 1 1
2 1 1 2 1 1 1 1 2 1 2 1 2 1 5 1 1
1 2 1 1 2 [ 1 2 1 2 1 2 1 2 1 1 ! 1 2 3 2 1
1 T 1 1 1 1 B 1 1 : 1 0 1
1 1 1 1 2 1 1 3 1
] 2 1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 0 1 1 1
1 2 1 1 1 1 1 2 1 2 1 2 1 1 [ 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1

Table 21: Outcomes of ci(ng) for 1 <n < 33 and for 1 < k < 33 (zoom in for inspection).

Proof. Deductively speaking, if k& defines jump iterations over executions of ¢(n¢) as cx(ny)
then

gr(ne) = (Ck:(nt) - ak(nt)L)) br(ny) |t = 0.

21/2(nt

The computational verification of gx(ng) is given in Appendix [4] with some of its results
listed in Table [20| along with Table [21] that lists corresponding integers of cx(ng). O

Remark 10. Noteworthy from Table are the appearance of integers that are at most
va(n) =1 between differences of odd elements of k and k + 2 for every ny.

Remark 11. Also, in this particular instance we subtract 2°+(™) from ay(ny) and have
f(ny) =1 by removing a factor of two from both the numerator and the denominator.

Definition 6. We introduce the notion of a zipper function for c(n;) denoted with C.

Let ny
a(nt)

) 21/2(7%)
b(ne)

+ g(ne)

c(ng) :==
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and let k € N denote the iteration index for every number of k-iteration steps. Then, we
can substitute as

ar(n) - =+ gi(n)

ova(n)
C p—
that contains the expansion
3L k) () + 90,k (1)
C (n) = 22 —
(1,....k) 20a1,....k) (M)

up until k = 1 that forms the basis with co(n) = n. The zipper function thus symbolically
encodes continuous inclusions of previous iterations from k...1 where outcomes of n trend
to converge around the trivial parity cycle (2;1) giving the visual impression of closing a
zipper for increments k. As a result we highlight the example of C7(n) that gets defined as

gva(ce(n)+1)+va(es(n)+1)+v2(ca(n)+1)+-+va(co(n)+1) . _"

. ova(n)
Cr(n) = 91 (o ()1 (e () Fpr(ea () pr (o (m)

+9a,..k(n)

which through the results of computational verification as listed in Table yields the
sequence
C7(n)=(2,1,2,1,2,1,2,1,8,1,2,1,2,1,2,1,...) .

Remark 12. gi(n) encapsulates all terms as previously stated and is by Comllary the
only term that is (at this moment) reliant on the outcome of ci(n).

Theorem 4. Following Definition [6| we can induce and validate identifications of subse-
quent results of gi(n) |k > 3 computationally.

Proof. Let
g1(n) = (31/2(10) _ 21/2(10))
g2(n) = (3'/2(1110) _ 2u2(1110)>
g3(n) = (3”2(121110) _ 21/2(121110))

n 21,2(10) (31,2(12) . 21/2([2)) <2u2(V1) — 1> .

The p-adic property for multiplication as stated in Corollary [I2)is used here as a way to
shorten the exponents of each identified result from a series to a product. We also further
denote Ij,_1 1 as the variety for iterates (cx—1,.1(n¢) + 1) and Vi_1, ;1 as the variety for
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iterates (cx—1,..1(n¢) +0). For 4 < k < 6 of gi(n) we have experimentally identified the
following results

ga(n) = (31/2(13121110) _ 21/2(13121110))
+ 27/2(1110) (3'/2(1312) _ 21'2(1312)) (2V2(V2V1) _ 1)
gs(n) = (3V2(1413121110) _ 2V2(14131211Io))

T ogv2(I2I110) (3u2(I4) _ 2,/2(14)) (21/2(V3V2V1) _ 1)
4 gv2Ua)gua(lilo) (31/2(1312) _ 21/2([3[2)) (2u2(v2v1) _ 1)
go(n) = (31/2(151413[211]0) o 21/2(151413[21110))
+ 21/2(13121110) (31/2(1514) . 21/2(1514)) (21/2(\/4V3V2V1) . 1)
4 gvaUsTa)gra(Tilo) (3u2(1312) o 21/2(]312)) (2u2(V2V1) _ 1) )
Then, by induction we claim
gr(n) = (31/2(16151413121110) . 21/2(]615[413121110))
+ 21/2(I4I312]1[0) (3u2(16) B 21/2(16)) (21/2(V5V4V3V2V1) . 1)
4 3v2Usls ) gva(I1lo) (3y2(1312) _ 2u2(I312)> (21/2(ng1) _ 1)
+ 31/2(16)21/2(141I31211) (3112(1514) . 21/2(1514)) (2V2(V4V3V2V1) o 1)
resulting in the sequence
g7(n) = (175,37,1319, 37,619, 269, 3089, 37,1631, 121, 1423, 269, 995, 347, 32731, 37, ...) .

and validated computationally in Appendix [f] for successive k integers, making Definition
[6] thereby fulfilled. We provide a result of Appendix [f] of a first-time convergence to the
minimum element 1, which is ng = 999999999999999999999999 and a stopping time of
k = 314 (for the parity-alternating reformulation of the Collatz function). O

Conjecture 4. We conjecture the following three constraints ¥V n € N* from Theorem [].
First, an upper bound for the total number or series of expressions for each k of g, given

as the function
k+1

B(k) = |

that calculates a growth of one extra expression for every other g, by embedding the last
expression of gr_o multiplied with additive factors of 3v2(k=1) . The second is a sequence
of I,_1’s in the second expression that coincides with subsequences of OEIS A004523 [10)].

J|k>0
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For example, ((2,3),(4),(4,5),(6),...). The third constraint is a combination of at most
four types of expressions, which are (3”2(<I>) - 2”2(<I>)), ov2({1)) (2”2(<V>) - 1), and lastly
3v2(1)) " All three constraints are demonstrated by Appendiz @
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Appendix

1 Binary opposite modulo

For definition in Appendix [2] we employ a binary opposite modulo, defined as

1 ifz—y[g] =0

bomod (z,y) =
omod(z, ) {o if  —y[%] >0

using floored division. For example if y = 2 then bomod(2,2) = 1, conversely bomod(1, 2) =
0 for y € N*. This provides versatility in testing membership of integers.

Remark 13. This concept was developed to assist in computing p-adic valuations on some
graphing calculators such as Desmos to accelerate the research brought forth herein.

2 Primitive recursive N*-adic valuation function

Given Appendix [I] we can define a primitive recursive function of the N*-adic valuation
function v, (z) described in Corollary [2| other than the common algorithmic approach that
uses a while-loop as
[log,, (x)]
vy(z) = Z bomod(z, y')
i=1
for x > 0 A y > 0 with the accompanying code for the Python 3 language

from mpmath import mp

mp.dps = 300 # adjust precision as needed

# Binary opposite modulo function, returns 1 if 0 or 0 if 1
def bomod(x, y):
if mp.fsub(x, mp.fmul(y, mp.floor(mp.fdiv(x, y)))) > 0:
return 0
else:

return 1

# General n—adic valuation function in primitive form (a = n—adic number, e.g. 2 prime)
def v(n, a):
k=20
# in Python, end of range function is exclusive, hence + 1
for i in range(l, int(mp.floor(mp.fadd(mp.log(n, a), 1)))):
k = k + bomod(n, mp.power(a, 1))

return k
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3 One approach to derive t following Corollary

no=1,t=0+2(1)4+1=3

ng=2,t=1

ngo=3,t=0+22)+3="7

ng=4,t=2

no=>5t=0+2(1)4+3=5

no=6t=1+2(2)+3=38
ngo="7t=0+23)+1+2(1)+2+4+2(1)+3=16
ng=38,t=3
no=9t=0+21)+1+23)+1+2(1)+2+2(1)+3=19
ng=10,t=1+2(1)+3=6
no=11,t=0+2(2)+1+2(1)+2+2(1)+3=14
no=12,t=2+2(2)+3=9
no=13,t=0+4+2(1)+2+2(1)+3=9
no=14,t=1+23)+1+2(1)+2+2(1)+3 =17
no=15t=0+2(4)+1+2(1)+6=17

ng =16t =4

49



4 Computational verification of g;(n;)

from mpmath import mp
mp.dps = 300 #adjust precision as needed

import functools

# general algorithmic way to write a n—adic valuation function

@functools.lru_cache (maxsize=None)

def v(n, a):
i=0
while mp. fmod(n, a) == 0:
n = mp.fdiv(n, a)

i=14+1

return i

# p_1(n) as defined in the paper
@functools.lru_cache (maxsize=None)
def p(n):

return v(mp.fadd(n, mp.fmod(n, 2)), 2)

# parity alternating Collatz function
def c(n):
nm = mp.fadd(n, mp.fmod(n, 2))
d = mp.fdiv(nm, mp.power(2, v(nm, 2)))
three = mp.power(3, v(mp.fadd(n, 1), 2))
return int(mp.fsub(mp.fmul(d, three), mp.fmod(n, 2)))

# demonstration of the zipper function (to compute g(n))

def gFromZipper(nMax, k):

nt = []
b =[]
r =[]
a =[]
g =[]

# integers of c(n)
cint = []
for n in range(l, nMax+1):
# temp store for results of c(n)
nk = []
nk.append(n)
delta = v(mp.fadd(n, 1), 2)
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rk = delta
# temp store to recall last result of c(n)
ck = n
for ki in range(l, k):
# iterate c(n), a.k.a. c_.1, c.2, etc.
ck = c(nk[ki—1])
nk.append(ck)
delta = mp.fadd(delta, p(ck))
rk = mp.fadd(v(mp.fadd(ck, 1), 2), rk)
bn = mp.power (2, delta)
b.append (int (bn))
r.append (int (rk))
ak = mp.power(3, rk)
a.append(int(ak))
xdiv = mp.fdiv(n, mp.power(2, v(n, 2)))
akx = mp. fmul (ak, xdiv)
akxb = mp.fdiv(akx, bn)
gkb = mp.fsub(c(ck), akxb)
cint.append(c(ck))
gk = mp.fmul (gkb, bn)
g.append (int (gk))
#return(a)
#return(b)
return(g)

#return(cint)

# test range
for n in range(l, 33 + 1):
derived = gFromZipper (33, n)

print (derived)
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5

Computational validation of g;(n;)

# see Appendix 3 for c, p, v and gFromZipper functions

def

def

def

def

def

def

def

ckMul (ck, s, e):
exponent = 1
for k in range(s, e):
exponent = mp.fmul (exponent, ck[k])

return exponent

expressl(ckOdd, s, e):
exponent = ckMul (ckOdd, s, e)

return mp. fsub(mp.power (3, v(exponent, 2)), mp.power(2, v(exponent,

express2(ckOdd, s, e):
exponent = ckMul (ckOdd, s, e)

return mp.power (2, v(exponent, 2))

express3(ckEven, s, e):
exponent = ckMul (ckEven, s, e)

return mp. fsub(mp.power (2, v(exponent, 2)), 1)

express4 (ckOdd, s, e):
exponent = ckMul (ckOdd, s, e)

return mp.power (3, v(exponent, 2))

t1t2t3(ck0Odd, ckEven, e):
tl = express2(ckOodd, 0, e — 2)
if (mp.fmod(e, 2) == 0):
t2 = expressl(ckOdd, e — 2, e)
else:
t2 = expressl(ckOdd, e — 1, e)
# start at k = 1 as we can remove v_2(c_0) from all
t3 = express3(ckEven, 1, e — 1)
return mp. fprod([tl, t2, t3])

gkV(nMax, nMin, kMax):

# storage for sum of k—expressions for every n
nExpressionSums = []

# go through n—columns (we start at n = 1)

for n in range(nMin, nMax + 1):

ck0odd = []
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ckEven = []

ckOdd. append (int (mp. fadd(n, 1))) # precompute all c_ k iterates

ckEven.append(n)
for ck in range(®, kMax — 1):

ckEven.append(int(c(ckEven[ck])))

ckOdd. append (int (mp. fadd(ckEven[ck + 1], 1)))

kExpresss = [] # storage of expressions per k

# max number of expressions for every k

maxExpressions = int(mp. floor (mp. fdiv(mp. fadd(kMax, 1),

# keep track of self—expressions
expressRemainder = maxExpressions
for express in range(maxExpressions):

if (express == 0):

kExpresss.append(expressl(ckOdd, 0, kMax))

expressRemainder = expressRemainder — 1
elif (express == 1):

kExpresss.append(t1t2t3(ckOdd, ckEven,

expressRemainder = expressRemainder — 1

else: # express >= 2

kMax))

# for each additional expression we look back

2)))

for iter in range(expressRemainder, expressRemainder + 1):

if (mp.fmod(kMax, 2) == 0):

lookB4 = expressRemainder * 2

t4 = express4(ckOdd, kMax — lookB4,

t4 = mp.fmul (t4, tlt2t3(ckodd,

expressRemainder = expressRemainder — 1

ckEven,

kMax)

kMax — lookB4))

else:
lookB4 = expressRemainder * 2 — 1
t4 = express4(ckOdd, kMax — lookB4, kMax)
t4 = mp.fmul (t4, t1t2t3(ckOdd, ckEven, kMax — lookB4))

expressRemainder = expressRemainder — 1

kExpresss.append(t4)
nExpressionSums.append (int (mp. fsum(kExpresss)))

return(nExpressionSums)

for k in range(l, 33 + 1):
obtained = gFromZipper (33, k)
validated = gkv(33, 1, k)

difference = list(map(int.__sub__, obtained, validated))

print(difference) # expectation is a matrix with only zeros
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6 Zipper function Cj;(n) demonstration

mp.dps = 10000 # adjust precision as needed

# Zipper function (construction)
# n: number in NA%
# k: k—step or number of rows
def cZipper(n, k):
nk = []
# here we only iterate once
if k ==
return c(n)
# temp store for results of c(n)
nk.append(n)
delta = v(mp.fadd(n, 1), 2)
rk = delta
# temp store to recall last result of c(n)
ck = n
gk = n
for ki in range(l, k):
# iterate c(n), a.k.a. c.1, c.2, etc.
ck = c(nk[ki — 11)
nk.append(ck)
delta = mp.fadd(delta, p(ck))
rk = mp.fadd(v(mp.fadd(ck, 1), 2), rk)
gk = gkV(n, n, k)[0]
bn = mp.power (2, delta)
ak = mp.power(3, rk)
xdiv = mp.fdiv(n, mp.power(2, v(n, 2)))
akx = mp. fmul (ak, xdiv)
akxg = mp.fadd(akx, gk)
ck = mp.fdiv(akxg, bn)

return(int (ck))

print (cZipper (999999999999999999999999, 314))
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Postface

I would first of all like to extend my apologies as I, the author, does not have a formal
education/training in pure mathematics but has instead a degree in computer science.
Hence, the information presented in this paper could be described differently through
more formal/advanced mathematical concepts. Unfortunately, time is a luxury in these
uncertain times and the exploration would not have been possible if the author were to
undertake a formal education.

This information should be best considered as meta extracts from an external observer that
took a submarine into the number theory ocean, to find a rock that is lurking at the depth
of the sea floor, and start chipping it away to see what lies inside. Communicating these
ideas are meant to catch the attention of the experts and professionals to help validate
them and determine whether it regresses or progresses our understanding of this truth
seeking problem.

The author wishes to thank especially his amazing wife, brilliant kids, extended family,
and friends for their consistent support throughout this pattern seeking quest, followed
by Quanta Magazine with Prof. Terrence Tao for the introduction to the ~ 84 years old
conjecture of Lothar Collatz. Last but not least, the vibrant communities that maintain
the Encyclopaedia of Integer Sequences, Wikipedia, Math StackExchange, Python, and
the folks at Desmos for making this useful graphing calculator free.
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