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1 Introduction

Information logics are modal formalisms for representation of and reasoning about con-
cepts derived from data that describe an application domain. Traditionally, concepts are
determined by defining their extension or denotation and intension or connotation. The
extension of a concept consists of the objects that are instances of this concept and the
intension of a concept consists of the properties that are characteristic for the objects
to which this concept applies. For example, to define the concept ’organism’ we should
list the earmarks of organism and the typical species of organisms [Bun67]. Let a set
OB of objects be given, and suppose that properties of those objects are articulated in
terms of attributes from a set AT and values of these attributes. For example, property
of ’being green’ is represented as a pair (colour, green), where ’colour’ is an attribute, and
’green’ is one of its values. Nondeterministic information about an object is of the form
(attribute, a subset of values). For instance, if the age of a person is known approximately,
say between 20 and 25, then this information is represented as a pair (age, {20, ..., 25}).
By an information system S we understand a pair (OB,AT ) where OB is a non-empty
set of objects and AT is a non-empty set of attributes. Each attribute a is a mapping
a : OB → P(V ala) \ {∅}. For each a ∈ AT , the non-empty set V ala is the set of values of
the attribute a [Paw83, OP84]. We write IS to denote the class of information systems.
An information system S′ = (OB′, AT ′) is said to be a subsystem of the information sys-
tem S = (OB,AT ) iff OB′ ⊆ OB and {aOB′ : a ∈ AT} = AT ′ where aOB′ denotes the
restriction of a to OB′.

In various application areas acquisition of concepts is carried on in the situation when
the complete information about objects that are supposed to be their instances is not
available. There are two major types of incompleteness of information which is given in
the form of an information system: indiscernibility and orthogonality. The indiscernibility
paradigm emerged from the observation that characterization of objects in terms of their
properties might result in indistinguishability: some objects are ’the same’ as far as the
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admitted properties are concerned. Hence, instead of crisp entities we rather grasp classes
of objects such that each class contains those objects that cannot be distinguished one
from another in terms of the given properties. It also follows that membership of an object
in a set can only be defined modulo the properties of objects, and we might not be able to
determine a sharp boundary between a set and its complement. As a consequence we might
not be able to assert membership of objects in the extensions of concepts in a two-valued
(yes or no) manner. The objects from the classes that are included in a boundary region
of the concept can be classified neither as its positive nor negative instances. It follows
that we need at least three valued means of reasoning in the presence of indiscernibility-
type incompleteness of information. To model types of incompleteness of information
of this kind we introduce a family of relations that reflect impossibility of discerning
all the individual objects. The information relations from this group model degrees of
indistinguishability in a nonnumerical way and they enable us to define a hierarchy of
definability classes of sets [Or lo88b, Or lo89, Paw91].

However, in many situations it might be more suitable to ask not for indistinguisha-
bility but for its opposite. To model in a nonnumerical way degrees of distinguishability
we consider a family of orthogonality type relations. The concept of orthogonality plays a
crucial role in quantum logic and various classes of logical and algebraic systems have been
introduced in this connection [CN89, CDCG93, Gol91]. In those systems orthogonality is
a semantic counterpart of negation or complement. In this paper we consider modeling of
orthogonality that is related to representation of incomplete information [Or lo94]. Both
the information relations from the indiscernibility group and the orthogonality group are
relative to subsets of attributes. In general, both indiscernibility-type and orthogonality-
type incompleteness of information lead to non-numerical many-valuedness of assertions
about objects. The truth value of each assertion depends on a subset of properties of
objects that are involved in expressing that assertion. Thus we can view the subsets of
properties as non-numerical measures of degrees of truth.

Information logics enable us to represent both extensions and intensions of concepts,
and moreover, they exhibit a relevant type of incompleteness of information from which the
extensions and the intensions are derived. There are two kinds of semantic structures for
information logics: general (or abstract) models and standard models. General models are
based on Kripke frames that, however, differ from the usual ones in that their accessibility
relations are relative to subsets of a set. This set is intuitively interpreted as the set
of attributes that are relevant for the objects from the universe of the frame [Or lo88a,
Bal97]. The relations are assumed to satisfy various properties, for example indiscernibility
relations are equivalence relations, (right) orthogonality relations are the relations whose
complements are tolerances, etc. Standard models are based on frames derived from
information systems. In these frames the accessibility relations are defined explicitly in
terms of the attributes from these systems. Hence, the standard frames are the ’concrete’
structures derived directly from data that describe an application domain. A broad family
of abstract and standard information frames is presented in [Vak89, Vak91b, Vak91a,
Vak97, Or lo85, Or lo95].

The purpose of this paper is to elaborate a formal framework for expressing and prov-
ing informational representability of abstract frames. Let a similarity relation � in a
class C of frames be given, for example relation of ’being isomorphic’ or ’being modally
equivalent’. Intuitively, a frame K from the class C is informationally �-representable if
there is an information system and a frame K′ derived from this system such that K′ is
in class C and, moreover, K is �-related to K′. The first theorem of this kind has been
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proved in [Vak87, Vak89]. In [Or lo93] it has been observed that a property of informa-
tional representability might be meaningful in investigations of nonclassical logics, and a
notion of informational representability has been proposed. In the present paper we intro-
duce a general notion of informational representability, we develop a method of proving
informational representability and we give examples of informational representability and
non-representability of frames.

An extended version of this paper will appear in [Or lo98].

2 Frames with parameterized accessibility relations

In this section we introduce a general notion of frame that captures all the types of frames
considered in connection with information logics. This notion is an extension of the notion
of frame used in the theory of modal logics (see e.g. [Kri63, Che80, vB84, HC84, Gol92]).
We shall consider frames with several (finitely many) families of accessibility relations of
different arities, and moreover each of these families will be indexed with subsets (and not
individual elements) of a set, referred to as the set of parameters. Parameters are intended
to be abstract counterparts of entities that determine relations. For example, if we are
interested in information relations of an information system, then we should take the
attributes of the system as the parameters. If we deal with a logic of knowledge, then the
parameters are knowledge agents. Instead of ordinary frames of multimodal logics that
contain just several relations, we will be dealing with frames with families of relations.
Intuitively, each family consists of relations of the same type, that is all the relations in
a family satisfy the same conditions e.g. they are equivalence relations, and in general
there are several relations in every such family, each of which is determined by a subset of
parameters. For example, the family of indiscernibility relations of an information system
consists of relations that reflect indiscernibility of objects with respect to any subset of
attributes in that information system. Each of these relations is an equivalence relation.

A signature Σ is a pair 〈P, 〈n1, . . . , nk〉〉 where P is a non-empty set of parameters and
〈n1, . . . , nk〉 is a non-empty sequence of natural numbers greater than 2. Classes of frames
indexing the relations by sets of parameters have been intensively studied in the past (see
e.g. [Or lo88b, HM92, Bal97]). Let Σ = 〈P, 〈n1, . . . , nk〉〉 be a signature. By a Σ-frame we
understand a structure (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) where U is a non-empty set
and for all P ⊆ P, for all l ∈ {1, . . . , k}, Rl(P ) is a nl-ary relation on U .

We write FΣ to denote the class of Σ-frames. We also write ≡ (resp. ≡m) to denote
the isomorphism relation (resp. the modal equivalence relation) between two frames. It is
clear that =⊆≡⊆≡m.

Example 2.1. Let S = (OB,AT ) be an information system. Consider the signature
Σ0 = 〈AT, 〈2〉〉. Two objects o1 and o2 are said to be indiscernible with respect to A ⊆ AT
(in short o1 ind(A) o2) iff for all a ∈ A, a(o1) = a(o2). In the Σ0-frame (OB, {ind(A) : A ⊆
AT}), ind(A) is an equivalence relation on OB for every A ⊆ AT and for any A,A′ ⊆ AT ,
ind(A ∪A′) = ind(A) ∩ ind(A′).

A Σ-frame K′ = (U ′, {R′l(P ) : P ⊆ P, l ∈ {1, . . . , k}}) is said to be a subframe of the
Σ-frame K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) iff U ′ ⊆ U and for all l ∈ {1, . . . , k},
P ⊆ P, Rl(P ) ∩ (U ′ × U ′) = R′l(P ).
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3 Frames derived from information systems

In order to derive Σ-frames from information systems, a first task consists in relating the
set of parameters with a given set of attributes. That is why any derivation of frames
shall be defined modulo a contribution function.

Definition 3.1. Let S = (OB,AT ) ∈ IS and Σ be a signature 〈P, 〈n1, . . . , nk〉〉. A
contribution function for S is a mapping I : AT → P(P) such that

⋃
a∈AT I(a) = P. ∇

For any P ⊆ P, we write I−1(P ) to denote the set {a ∈ AT : I(a) ∩ P 6= ∅}. The
intended meaning of I is the following: every attribute a contributes to the construction
of relations involving some parameters in I(a). Moreover, every parameter p has at least
one attribute that contributes to p.

3.1 A language for information systems

The language LS is determined by seven sets which are supposed to be pairwise disjoint:
the set of constants CONS = {0, 1}, the non-empty countable set of variables VAR, the
non-empty set of unary function symbols FUN, the set of constructors OR = {∩,∪,−} (of
respective arity 2,2,1), the set of predicate symbols PRE = {=,⊆}, the set of quantifiers
{∀,∃} and the set of propositional logical operators OP = {¬,∧}. Function symbols are
intended to represent the attributes and variables will range over the set of objects of
an information system. The set T of terms is the smallest set that satisfies the following
conditions: (1) CONS ⊆ T; (2) if f ∈ FUN and x ∈ VAR then f(x),−f(x) ∈ T and (3) for all
⊕ ∈ OR \ {−} if t1, t2 ∈ T then ⊕(t1, t2) ∈ T. The set F0 of atomic formulae is the set of
expressions {⊕(t1, t2) : t1, t2 ∈ T, ⊕ ∈ PRE}. The set F of formulae is the smallest set that
satisfies the following conditions: F0 ⊆ F and if c is any n-ary propositional operator and
F1, . . . , Fn ∈ F then c(F1, . . . , Fn) ∈ F. An extended formula is an expression of the form
q1f1 . . . qnfnF (also writtenQ F ) with F ∈ F, {q1, . . . , qn} ⊆ {∃,∀} and {f1, . . . , fn} ⊆ FUN.
The set of extended formulae is written Fe. The extended formula q1f1 . . . qnfnF is said to
be weak (resp. strong) iff {q1, . . . , qn} = {∃} (resp. {q1, . . . , qn} = {∀}). For any syntactic
set X, and for any syntactic object O, we write X(O) to denote the set consisting of those
elements of X that occur in O. An extended formula Q F is said to be well-closed iff for
all f ∈ FUN(F ), f occurs exactly once in Q. We shall adopt the convention F ⊆ Fe by
considering that a formula is an extended formula with an empty string of quantifications.

Let S = (OB,AT ) be an information system. A function interpretation in S is a
mapping m : FUN → AT . An object interpretation in S is a mapping v : VAR → OB. The
interpretation of terms generated by m and v is the mapping Im,v : T → P(

⋃
a∈AT V ala)

such that:

• Im,v(f(x)) = m(f)(v(x)), Im,v(−f(x)) = V alm(f) \ Im,v(f(x)), Im,v(0) = ∅,
• Im,v(1) =

⋃
a∈AT V ala, Im,v(⊕(t1, t2)) = ⊕(Im,v(t1), Im,v(t2)) when ⊕ ∈ OR \ {−}.

By abusing our notation, as usual ∩,∪,− denote the Boolean operations on sets.

It follows that terms represent sets of values of attributes. Let S = (OB,AT ) be an
information system, m be a function interpretation and v be an object interpretation. We
say that an extended formula F is satisfied in S under the interpretation Im,v (written
S, Im,v |= F ) when the following conditions are satisfied.

• S, Im,v |= ⊕(t1, t2) iff ⊕(Im,v(t1), Im,v(t2)) when ⊕ ∈ PRE
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• S, Im,v |= ¬F iff not S, Im,v |= F , S, Im,v |= F ∧G iff S, Im,v |= F and S, Im,v |= G,

• S, Im,v |= ∀f F iff for all a ∈ AT , S, Im′a,v |= F where m′a is defined as follows:
m′a(f) = a and for all f ′ 6= f , m′a(f

′) = m(f ′)

• S, Im,v |= ∃f F iff there exists a ∈ AT such that S, Im′a,v |= F where m′a is defined
as above.

Let S = (OB,AT ) be an information system and F ∈ Fe such that the variables
occurring in F are x1, . . . , xn (in the order of enumeration). For all function interpretations
m for S, we write mS(F ) to denote the set

mS(F ) = {〈v(x1), . . . , v(xn)〉 : ∃v : VAR→ OB, S, Im,v |= F}

If F has the form ∀f G (resp. ∃f G) then mS(F ) =
⋂
a∈AT (m′a)S(G) (resp. mS(F ) =⋃

a∈AT (m′a)S(G)).

Example 3.1. (follows Example 2.1) Consider the formula f(x1) = f(x2), say F0. Let
S = (OB,AT ) ∈ IS. It is easy to show that for all A ⊆ AT , o1, o2 ∈ OB, o1 ind(A) o2

iff for all a ∈ A, (o1, o2) ∈ m(OB,{a})(F0) where m is the unique function interpretation in
(OB, {a}).

3.2 Σ-specification

The language LS enables us to express definitions of relations derived from information
systems. These definitions will be referred to as specifications. Let Σ be the signature
〈P, 〈n1, . . . , nk〉〉. A Σ-specification S is a sequence of k well-closed extended formulas, say
〈F1, . . . , Fk〉 such that for all l ∈ {1, . . . , k}, card(VAR(Fl)) = nl. A Σ-specification S is
said to be strong (resp. weak) iff S is a sequence of strong extended formulae (resp. S

is a sequence of either strong or weak extended formulae). Since every extended formula
occurring in a Σ-specification 〈Q1F1, . . . ,QkFk〉 is closed with respect to the function
symbols, for all l ∈ {1, . . . , k}, for all information systems S = (OB,AT ) and for all
function interpretations m,m′ in S, mS(QlFl) = m′S(QlFl).

Observe also that when card(FUN(F )) = 1, for all P, P ′ ∈ P(P) \ {∅}, if q1f1F is
strong (resp. weak) then m(OB,I−1(P∪P ′))(q1f1F ) =

⋂
Q∈{P,P ′}m(OB,I−1(Q))(q1f1F ) (resp.

m(OB,I−1(P∪P ′))(q1f1F ) =
⋃
Q∈{P,P ′}m(OB,I−1(Q))(q1f1F )). Moreover, for any information

system S = (OB,AT ) and for any contribution function I for S, if card(AT ) = 1 then
for all extended formulae Q1F and Q2F and for all ∅ 6= P ⊆ P, m(OB,I−1(P ))(Q1F ) =
m(OB,I−1(P ))(Q2F ) = m(OB,I−1(P ))(F ). In the sequel, we write spec1

Σ to denote the set of
Σ-specifications 〈F1, . . . , Fk〉 such that for all l ∈ {1, . . . , k}, card(FUN(Fl)) = 1.

3.3 A frame derived from an information system

We are now in position to define a family of derivation functions parametrized by signatures
and specifications.

Definition 3.2. Let Σ = 〈P, 〈n1, . . . , nk〉〉 be a signature, S = (OB,AT ) ∈ IS, I be a
contribution function for S and S = 〈F1, . . . , Fk〉 be a Σ-specification. We write DΣ,S(S, I)
to denote the Σ-frame (OB, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) such that

∀l ∈ {1, . . . k}, ∀∅ 6= P ⊆ P, Rl(P ) = m(OB,I−1(P ))(Fl)
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By convention, for all l ∈ {1, . . . k}, if Fl is weak then Rl(∅) = ∅ otherwise Rl(∅) =
OB ×OB ∇

It is important to remember that the correctness of Definition 3.2 rests on the fact
that each Fl is closed with respect to the function symbols.

4 Informational representability of Σ-frames

In this section we present a notion of informational representability of a class of frames
and a general method of proving representability. Next, the method will be applied to
some particular classes of frames.

Definition 4.1. Let Σ be a signature, X ⊆ FΣ, Y ⊆ IS, and S = 〈F1, . . . , Fk〉 be a
Σ-specification. The class of Σ-frames X is said to be (�, S)-inf-representable (� ∈ {=,≡
,≡m}) in Y iff

1. (soundness) for all S ∈ Y and for all contribution functions I for S, DΣ,S(S, I) ∈ X,

2. (completeness) for all K ∈ X, there is S ∈ Y and a contribution function I for S
such that DΣ,S(S, I) �K.

∇

4.1 Nice pair proof technique

This technique has been originally introduced in [Vak87] for the logic NIL. For all non-
empty sets X, for all 〈p, Y 〉 ∈ P × P(P(X)), we write at〈p,Y 〉 to denote the mapping
X → P({p} × Y ) such that for all x ∈ X, at〈p,Y 〉(x) = {〈p, Z〉 : x ∈ Z ∈ Y }. Hence for
all Z ∈ Y , x ∈ X, x ∈ Z iff 〈p, Z〉 ∈ at〈p,Y 〉(x).

Definition 4.2. LetK = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) ∈ FΣ and S = 〈F1, . . . , Fk〉 ∈
spec1

Σ. A nice pair with respect to K and S, say N = 〈p, X〉, is a member of P×P(P(U))
such that (1)

⋃
{Y : Y ∈ X} = U and (2) for all l ∈ {1, . . . , k},Rl({p}) ⊆ m(U,{at〈p,X〉})(Fl)

where m is the unique function interpretation in (U, {at〈p,X〉}). ∇

Definition 4.3 below presents different kinds of nice pairs and sets of nice pairs.

Definition 4.3. With the notations of Definition 4.2, a nice pair N is (K, S)-complete
with respect to the parameter p iff the inclusion in Definition 4.2(2) is replaced by an
equality. A set of nice pairs X is said to be (K, S)-complete iff for all p ∈ P, there is
(p, Y ) ∈ X such that (p, Y ) is (K, S)-complete with respect to p. A set of nice pairs X
is said to be P-full iff for all p ∈ P, {〈p′, Y 〉 ∈ X : p = p′} 6= ∅. A set of nice pairs
X is minimally (K, S)-complete iff X is (K, S)-complete and for all Y ⊂ X, Y is not
(K, S)-complete. ∇

Definition 4.4 shall be mainly needed in Section 4.2.

Definition 4.4. Let Σ be a signature, S = 〈F1, . . . , Fk〉 ∈ spec1
Σ and X ⊆ FΣ. A (resp.

minimal) nice pair function with respect to S and X is a mapping truc such that for all
K ∈ X, truc(K) is a (resp. minimally) (K, S)-complete set of nice pairs ∇
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Example 4.1. (Example 3.1 continued) Consider the Σ0-specification S0 = 〈∀f F0〉
with Σ0 = 〈P, 〈2〉〉 for some set of parameters P = {p}. Let K = (U, {Rl(P ) : P ⊆ {p}, l ∈
{1}}) be a Σ0-frame such that R1(∅) = U × U and R1({p}) is an equivalence relation.
Consider the pair 〈p, {R1({p})(u) : u ∈ U}〉 = 〈p, X〉. Since R1({p}) is reflexive, then⋃
Y ∈X Y = U . Moreover, for all u, v ∈ U

(u, v) ∈ R1({p}) iff R1({p})(u) = R1({p})(v)
iff {Y : u ∈ Y ∈ X} = {Y : v ∈ Y ∈ X}
iff {〈p, Y 〉 : u ∈ Y ∈ X} = {〈p, Y 〉 : v ∈ Y ∈ X}
iff at〈p,X〉(u) = at〈p,X〉(v)
iff (u, v) ∈ m

(U,{at〈p,X〉})(F0)

So 〈p, X〉 is (K, S0)-complete with respect to p and {〈p, X〉} is a minimally (K, S0)-complete
set of nice pairs.

Proposition 4.1. With the notations of Definition 4.2, let X be a P-full set of nice
pairs. Then, (1) SX = (U, {at〈p,Y 〉 : 〈p, Y 〉 ∈ X}) is an information system and (2)
IX : {at〈p,Y 〉 : 〈p, Y 〉 ∈ X} → P(P) with IX(at〈p,Y 〉) = {p}, is a contribution function for
SX .

Observe that for any 〈p, Y 〉, 〈p′, Y ′〉 ∈ X with p 6= p′, at〈p,Y 〉 6= at〈p
′,Y ′〉. SX is

a set-theoretical information system following Vakarelov’s terminology (see e.g. [Vak95,
Vak97]). Lemma 4.2 below can be seen as the main technical result of the paper since
it establishes correspondences between Σ-frames and set-theoretical information systems
obtained from complete set of nice pairs (using the language LS). Proposition 4.3 states
some consequences for the informational representability.

Lemma 4.2. Let Σ be a signature, K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) ∈ FΣ,
S = 〈F1, . . . , Fk〉 be a weak Σ-specification in spec1

Σ and X be a set of nice pairs with
respect to K and S. Moreover, assume that for all l ∈ {1, . . . , k}, for all ∅ 6= P ⊆ P, if Fl
is strong then Rl(P ) =

⋂
p∈P Rl({p}) otherwise Rl(P ) =

⋃
p∈P Rl({p}).

1. If S is strong and X is (K, S)-complete then
(?) ∀l ∈ {1, . . . , k}, ∀∅ 6= P ⊆ P, Rl(P ) = m(U,I−1

X (P ))(Fl)

2. If X is minimally (K, S)-complete then (?).

Proposition 4.3 below states sufficient conditions to establish informational repre-
sentability.

Proposition 4.3. Let Σ be a signature, S = 〈F1, . . . , Fk〉 be a strong (resp. weak) Σ-
specification in spec1

Σ. LetX ⊆ FΣ such that for all l ∈ {1, . . . , k}, for all ∅ 6= P ⊆ P, for all
K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) ∈ X, if Fl is strong then Rl(P ) =

⋂
p∈P Rl({p})

and Rl(∅) = U × U otherwise Rl(P ) =
⋃
p∈P Rl({p}) and Rl(∅) = ∅. Let Y ⊆ IS and

� ∈ {=,≡,≡m} such that:

1. For all S ∈ Y , for all contribution functions I for S, we have DΣ,S(S, I) ∈ X.

2. there is a (resp. minimal) nice pair function with respect to S and X, say truc, such
that {Struc(K) : ∃K ∈ X} ⊆ Y . Struc(K) is defined as in Proposition 4.1.

Then X is (�, S)-inf-representable in Y .
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Example 4.2. (Example 4.1 continued) We write X0 to denote the set of Σ0-frames
such that R1(∅) = U × U and R1({p}) is an equivalence relation. We show that X0 is
(=, S0)-inf-representable in IS. For any information system S, and for any contribution
function I (actually there is a only one), it is easy to check that DΣ0,S0

(S, I) ∈ X0. For
each K ∈ X0, we build the pair truc(K) = 〈p, X〉 as in Example 4.1 From Example 4.1,
for each K ∈ X0, {truc(K)} is a minimally (K, S0)-complete set of nice pairs. {Struc(K) :
K ∈ X} ⊆ IS by Proposition 4.1 and by Proposition 4.3, X0 is (=, S0)-inf-representable
in IS.

4.2 Negation and reordering lemmas

In this section, we present two ways to obtain (minimal) nice pair functions from existing
ones by relating adequately the specifications and classes of frames. In that way, we
facilitate the application of Proposition 4.3.

Let F ∈ Fe such that VAR(F ) = {x1, . . . , xn}, x1, . . . , xn being in the order of enumera-
tion. For any permutation σ of set {1, . . . , n} we write Fσ to denote the formula obtained
from F by substituting simultaneously in F , xi by xσ(i) for all i ∈ {1, . . . , n}. Moreover,
for any n-ary relation R and for any permutation σ of set {1, . . . , n} we write Rσ to denote
the following n-ary relation:

Rσ = {(oσ(1), . . . , oσ(n)) : (o1, . . . , on) ∈ R}

Observe that for any information system S = (OB,AT ), for any function interpre-
tation m in S, mS(F )σ = mS(Fσ). For any Σ-specification S = 〈F1, . . . , Fk〉, for any
set of permutations {σl : {1, . . . , nl} → {1, . . . , nl}, l ∈ {1, . . . , k}}, for any Σ-frame
K = (U, {Rl(P ) : P ⊆ P, l ∈ {1, . . . , k}}) we write Kσ1 . . . σk = (U, {R′l(P ) : P ⊆
P, l ∈ {1, . . . , k}}) to denote the Σ-frame such that for any l ∈ {1, . . . , k}, for any P ⊆ P,
R′l(P ) = Rl(P )σl.

Lemma 4.4. (Reordering) Let Σ be a signature, S = 〈F1, . . . , Fk〉 be a weak Σ-specification
in spec1

Σ, X ⊆ FΣ, and truc be a minimal nice pair function with respect to S and X. Let
σl be a permutation of the set {1, . . . , nl} for all l ∈ {1, . . . , k}. Then truc′ is a minimal
nice pair function with respect to S′ = 〈F1σ1, . . . , Fkσk〉 and {Kσ1 . . . σk : K ∈ X} where
truc′(Kσ1 . . . σk) = truc(K) for all K ∈ X.

The starting point of Lemma 4.5 below rests on the fact that for any S = (OB,AT ) ∈
IS, for any function interpretation in S, m, mS(¬F ) = OBcard(VAR(F )) \ mS(F ) with
F ∈ F. For any Σ-specification S = 〈F1, . . . , Fk〉, for any Σ-frame K = (U, {Rl(P ) : P ⊆
P, l ∈ {1, . . . , k}}) we write K¬ = (U, {R′l(P ) : P ⊆ P, l ∈ {1, . . . , k}}) to denote the
Σ-frame such that

• if Fl is weak then R′l(∅) = ∅ otherwise R′l(∅) = U × U ,

• for all ∅ 6= P ⊆ P, if Fl is strong then R′l(P ) =
⋂
p∈P R′l({p}) otherwise R′l(P ) =⋃

p∈P R′l({p}),

• for all p ∈ P; R′l({p}) = −Rl({p}).

Lemma 4.5. (Negation) Let Σ be a signature, S = 〈q1f1 F1, . . . , qkfk Fk〉 be a weak
Σ-specification in spec1

Σ, X ⊆ FΣ and truc be a minimal nice pair function with re-
spect to S and X. Then truc′ is a minimal nice pair function with respect to S′ =
〈q1f1 ¬F1, . . . , qkfk ¬Fk〉 and {K¬ : ∃K ∈ X} where truc′(K¬) = truc(K) for all K ∈ X.
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5 Examples of informational representability

We present examples of informational representability theorems for frames with informa-
tion relations from the indiscernibility group and the orthogonality group. The analogous
representability results for many other classes of frames can be obtained using the method
developed in the paper.

In the rest of the section, Σ is assumed to be a signature 〈P, 〈2〉〉 for some non-empty
set of parameters P, unless otherwise stated. Concerning the indiscernibility relation
extensively used in the literature, the reader is invited to check the previous examples.

5.1 Complementarity

Let S = (OB,AT ) ∈ IS. Two objects o1 and o2 are said to be in relation of complementar-
ity with respect to A ⊆ AT (in short o1 comp(A) o2) iff for all a ∈ A, a(o1) = V ala \ a(o2).
With LS, comp(A) = m(OB,A)(F0) with F0 = ∀f f(x1)=− f(x2). Observe that comp(A) is
symmetrical, irreflexive and intransitive. When o1 comp(A) o2 holds, for all a ∈ A, V ala is
uniquely determined by a(o1) and a(o2) (V ala is then the union of a(o1) and a(o2)). This
may explain why the representation of complementary relations has been an open problem
until now [Vak97]. We define a class of abstract Σ-frames related to the Σ-specification
S0 = 〈F0〉. First, some preliminary definitions are needed. Let R be a binary relation over
the set U , R is said to be complementary iff R is symmetrical, R does not contain cycles of
odd length and for all u, v, w, z ∈ U , if (u, v) ∈ R, (v, w) ∈ R and (w, z) ∈ R then (u, z) ∈ R
(3-transitivity). It can be shown that comp(AT ) is a complementary relation. We write
FS0

to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) such that, R1(∅) = U×U ,
for all ∅ 6= P ⊆ P, R1(P ) =

⋂
p∈P R1({p}) and for all p ∈ P, R1({p}) is complementary.

The rest of the section is devoted to show that FS0
is (=, S0)-inf-representable in IS. For

any binary relation R over the set U , for all u ∈ U we write Cu,R to denote the largest
subset of U such that u ∈ Cu,R and for all v ∈ Cu,R \{u}, there is a R′-path between u and
v where R′ is the symmetrical closure of R. Observe that {Cu,R : u ∈ U} is a partition of
U . For all u ∈ U , we write C0

u,R (resp. C1
u,R) to denote the largest subset of Cu,R such that

for all v ∈ C0
u,R, there is a R′-path of even (resp. odd) length between u and v where R′

is the symmetrical closure of R. Moreover, for all U ′ ⊆ U , we write CU
′

u,R to denote C0
u,R

if u ∈ U ′, C1
u,R otherwise. Observe that for all u, v, w ∈ U , when R is complementary, if

{v, w} ⊆ Cu,R then {C1
v,R, C

0
v,R} = {C1

w,R, C
0
w,R}.

Lemma 5.1. Let R be a complementary relation over the set U . The set {Ciu,R : u ∈
U, i ∈ {0, 1}} is a partition of U .

Let truc be the mapping such that for all K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0
,

truc(K) = {〈p, {
⋃
u∈Y

CU
′

u,R1({p}) : ∃U ′ ⊆ U, ∃Y ∈Wp}〉 : p ∈ P}

with Wp = {Y ⊆ U : ∀u, v ∈ Y, Cu,R1({p}) 6= Cv,R1({p}),
⋃
u∈Y Cu,R1({p}) = U}. It is easy

to show that for all 〈p, X〉 ∈ truc(K), for all Y0 ∈Wp, X = {
⋃
u∈Y0 C

U ′

u,R1({p}) : ∃U ′ ⊆ U}.
It is worth mentioning that, for all u, v ∈ U , (∀Y ∈ X, either u ∈ Y and v 6∈ Y or u 6∈ Y and
v ∈ Y ) iff (u, v) ∈ m

(U,{at〈p,X〉})(F0). Moreover, for all 〈p, X〉 ∈ truc(K),
⋃
Y ∈X Y = U .
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Lemma 5.2. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0
. For all 〈p, X〉 ∈ truc(K), for

all u, v ∈ U , (u, v) ∈ R1({p}) iff for all Y ∈ X, either (u ∈ Y and v 6∈ Y ) or (u 6∈ Y and
v ∈ Y ).

Lemma 5.3. Let K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0
. truc(K) is a minimally

(K, S0)-complete set of nice pairs.

Corollary 5.4. FS0
is (=, S0)-inf-representable in IS.

For any p ∈ P the class of frames Fp (in the standard sense for modal logics) defined
by Fp = {(U,R1({p})) : (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FS0

} is not closed by the
p-morphism construction. It follows that Fp is not modally definable (see [GT75]). The
condition of being a complementary relation can be expressed by a set Γ of formulas from
the classical first-order logic.

Let S = (OB,AT ) ∈ IS. Two objects o1 and o2 are said to be in relation of incom-
plementarity with respect to A ⊆ AT (in short o1 incomp(A) o2) iff for all a ∈ A, (V ala \
a(o1)) 6= a(o2). With LS, incomp(A) = mS(F ′0) with F ′0 = ∀f ¬(−f(x1)=f(x2)). Using
Lemma 4.5 and the above construction, {K¬ : ∃K ∈ FS0

} is (=, 〈F ′0〉)-inf-representable in
IS.

5.2 Positive and negative similarity

Let S = (OB,AT ) ∈ IS. Two objects o1 and o2 are said to be in relation of positive
similarity (resp. negative similarity) with respect to A ⊆ AT (in short o1 psim(A) o2

-resp. o1 nsim(A) o2 ) iff for all a ∈ A, a(o1) ∩ a(o2) 6= ∅ (resp. (V ala \ a(o1)) ∩ (V ala \
a(o2)) 6= ∅). With LS, psim(A) = m(OB,A)(F0) (resp. nsim(A) = m(OB,A)(F0)) with
F0 = ∀f f(x1) ∩ f(x2) 6= 0 (resp. F0 = ∀f − f(x1) ∩ −f(x2) 6= 0). Let truc be the
mapping such that for all K = (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) ∈ FΣ,

truc(K) = {〈p, {{u, v} : (u, v) ∈ R1({p})}〉 : p ∈ P}

(resp. truc(K) = {〈p, {U \ {u, v} : (u, v) ∈ R1({p})} ∪ {U}〉 : p ∈ P} )

We write FS0
to denote the set of Σ-frames (U, {Rl(P ) : P ⊆ P, l ∈ {1}}) such that,

R1(∅) = U × U , for all ∅ 6= P ⊆ P, R1(P ) =
⋂
p∈P R1({p}) and for all p ∈ P, R1({p})

is (resp. weakly) reflexive and symmetrical. Following the lines of the previous sections,
it can be shown that truc is a minimal nice pair function with respect to S0 and FS0

.
Hence FS0

is (=, S0)-inf-representable in IS. Moreover, let S = (OB,AT ) ∈ IS. Two
objects o1 and o2 are said to be in relation of right orthogonality (resp. left orthogonality)
with respect to A ⊆ AT (in short o1 rorth(A) o2 -resp. o1 lorth(A) o2 ) iff for all a ∈ A,
a(o1) ⊆ (V ala \ a(o2)) (resp. (V ala \ a(o1)) ⊆ a(o2)). With LS, rorth(A) = m(OB,A)(F

′
0)

(resp. lorth(A) = m(OB,A)(F
′
0)) with F ′0 = ∀f f(x1) ⊆ −f(x2) (resp. F ′0 = ∀f − f(x1) ⊆

f(x2)). Using Lemma 4.5 and the above construction, {K¬ : ∃K ∈ FS0
} is (=, 〈F ′0〉)-inf-

representable in IS.

6 An example of non-representability

Until now, only representability results have been shown. However non representability
results are also very interesting in order to understand the relevance of the notion of

10



representability we introduced. The example below provides some insight about classes
of information systems closed under subsystems and classes of Σ-frames closed under
subframes. Although Proposition 6.1 might appear quite natural, it has some unexpected
consequences (see for instance Corollary 6.2).

Proposition 6.1. Let Σ be a signature, S be a Σ-specification, X ⊆ FΣ and Y ⊆ IS
closed under subsystems. If X is (=, S)-inf-representable in Y then X is closed under
subframes.

Corollary 6.2. Let Σ be a signature, S be a strong Σ-specification and X be a set of
Σ-frame such that for all l ∈ {1, . . . , k},

• Rl(∅) = U × U , for all ∅ 6= P ⊆ P, Rl(P ) =
⋂
p∈P Rl({p})

• for all p ∈ P, Rl({p}) is serial (resp. atomic, weakly dense, discrete).

X is not (=, S)-inf-representable in IS.

Some interesting relationships might exist between subframe logics (see [Wol93]) and
the logics characterized by classes of frames informationally representable by frames de-
rived from a class of information systems closed under subsystems. However it is not in
the scope of this work.
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