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Abstract

A recovery-based error indicator developed to evaluate the quality of polyg-
onal finite element approximations is presented in this paper. Generalizations
of the finite element method to arbitrary polygonal meshes have been increas-
ingly investigated in the last years, as they provide flexibility in meshing and
improve solution accuracy. As any numerical approximation, they have an
induced error which has to be accounted for in order to validate the approx-
imate solution. Here, we propose a recovery type error measure based on a
moving least squares fitting of the finite element stress field. The quality of
the recovered field is improved by imposing equilibrium conditions and, for
singular problems, splitting the stress field into smooth and singular parts.
We assess the performance of the error indicator using three problems with
exact solution, and we also compared the results with those obtained with
standard finite element meshes based on simplexes. The results indicate good
values for the local and global effectivities, similar to the values obtained for
standard approximations, and are always within the recommended range.

Keywords: polygonal finite element method; Laplace interpolants; error estimation; statical ad-

missibility; singularity; recovery
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1 Introduction

Mathematically, a real physical process can be recast in terms of governing partial
differential equations (PDEs). One of the most robust numerical methods to the
solution of PDEs is the finite element method (FEM). In general, numerical meth-
ods provide an approximated solution to the physical problem under consideration.
The approximated solution exhibits an error which has to be quantified to validate
the numerical model. Error estimation and error control techniques have been in-
tensively researched for the FEM and robust procedures are already available [1]. In
particular, we are interested in the family of recovery-based error estimation tech-
niques first introduced by [2]. Recovery methods based on stress smoothing are
often preferred for practical applications among the engineering community, mostly
because very simple procedures can yield good results. Simple nodal averaging, su-
perconvergent patch recovery (SPR) [3] or moving least squares approaches [4–6]
are common in the literature [7]. Stress smoothing yields good values of effectivity
globally for a given mesh, but is known to have problems locally, especially along
the boundaries, where stress values are normally of interest. This condition poses
a problem for the error indicator to guide adaptivity algorithms. To overcome this
difficulty, a balance between the stress smoothing techniques and approaches based
on equilibrium have been proposed [6,8]. The aforementioned error estimation tech-
niques have been successfully applied to advanced discretization techniques such as
the XFEM, the smoothed finite element method (SFEM) to name a few in [6,9,10].
The earlier studies were restricted to quadrilateral and triangular elements in two
dimensions and, tetrahedral and hexahedral elements in three dimensions. Recently,
finite elements in the shape of pentagons, hexagons and in general n−sided poly-
gons (and polyhedral elements in three dimensions) have attracted attention in the
research community, both in computational physics [11–16] and in computer graph-
ics [17, 18]. In the early 1970s, Wachspress derived a systematic approach to con-
struct basis functions over arbitrary polygonal domains in his famous book on the
rational finite element method [19]. Polygonal finite elements, which are not limited
to have up to four sides in two dimensions or up to six faces in three dimensions,
started with the seminal works from [12, 20, 21]. A non-conforming method, called
the variable element topology finite element method (VETFEM), was proposed
in [22], and uses a constrained minimization procedure to construct shape func-
tions for convex and non-convex elements, computed in the physical space (x ∈ Ω).
The Voronöı cell finite element model (VCFEM) was introduced in [11, 23, 24] for
modeling heterogeneous microstructures of composites and porous materials with
heterogeneities of regular shapes, incorporating a hybrid assumed stress formula-
tion. The cells in the VCFEM do not conform to the strict definitions of Voronöı
cells as they are, in general, arbitrary. In [25], a conformal mapping method was de-
veloped to investigate microstructures with irregular heterogeneities. Other recent
formulations include the polygonal elements based on the virtual nodes [26], the vir-
tual element methods (VEM) [27] and the scaled boundary polygon finite element
method [28, 29], strain smoothing technique [30], BEM-based FEM [31] and hp−
clouds [32]. In [33], a connection between the hourglass control and the VEM was
showed, and in [34], a connection between the cell based smoothed finite element
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method and the VEM.
The study of the error in novel types of numerical approximations, e.g. arbitrary
polygonal FEM, has to be considered in order to be able to guarantee the numerical
results in practical applications. In the case of polygonal elements, first attempts
using residual-based error measures can be found in [35, 36]. More recently, a pri-
ori error analysis for polygonal meshes has been performed in [37] and a posteriori
residual based error estimates have been investigated in [38] for the virtual element
method. Regarding recovery-based error estimates using gradient smoothing, first
approaches have been presented in [39,40], and more recently in [41].

In this paper, we present the use of a recovery-based error indicator for arbitrary
polygonal finite element approximations, which uses an enhanced moving least
squares approach to smooth the raw stress field. The paper is organised as fol-
lows: In section 2, we introduce the linear elasticity problem under consideration
and its approximated solution using polygonal FEM. In section 3 we explain the
methodology for recovery based error estimation, and the proposed approach for
polygonal elements. Then, in section 4 we validate the error estimation procedure
using benchmark problems with exact solution, both for smooth and singular prob-
lems. Finally, we present some concluding remarks.

2 Linear elasticity problem and finite element ap-

proximation

In this section, we introduce the linear elasticity problem under consideration for two
dimensions. Using Voigt notation, we denote the Cauchy stress by σ = {σxx, σyy, σxy}T ,
the displacement by u = {ux, uy}T and the strain by ε = {εxx, εyy, εxy}T . These
fields are defined over a domain Ω ⊂ R2, bounded by the boundary ∂Ω. The bound-
ary accommodates the following decompositions: Neumann and Dirichlet boundary
as ∂Ω = ΓN ∪ΓD and ΓN ∩ΓD = ∅. Prescribed tractions, denoted by t, are imposed
over the Neumann boundary, ΓN , while displacements, denoted by ū, are prescribed
over the complementary part of the boundary, ΓD. The body load is denoted by b.
The elasticity problem takes the following form. We seek (σ,u) satisfying:

LTσ + b = 0 in Ω, (1)

Gσ = t on ΓN , (2)

u = ū on ΓD, (3)

ε(u) = Lu in Ω, (4)

σ = D
[
ε(u)− ε0

]
+ σ0 in Ω, (5)

in the above expressions, D represents the standard elasticity matrix of the con-
stitutive relation between the stress and the strain for linear isotropic materials,
σ0 represents the initial stress and ε0 the initial strain. L is the linear differential
operator and G is the operator that projects the stresses onto tractions over the
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Neumann boundary considering the unit normal n to ΓN :

LT =

[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]
, G =

[
nx 0 ny
0 ny nx

]
The variational form of the linear elasticity problem can be written as:

Find u ∈ V such that ∀v ∈ V :∫
Ω

ε(v)TDε(u)dΩ =∫
Ω

vTbdΩ +

∫
ΓN

vTtdΓ +

∫
Ω

ε(v)TDε0dΩ−
∫

Ω

ε(v)Tσ0dΩ

(6)

with V = {v | v ∈ [H1(Ω)]2,v|ΓD
= 0}. The approximate displacement solution uh

is found in a finite dimensional space V h ⊂ V , spanned by the finite element basis
functions with local support. Using the Galerkin approach, the variational form (6)
takes the form:

Find uh ∈ V h such that ∀v ∈ V h :∫
Ω

ε(v)TDε(uh)dΩ =∫
Ω

vTbdΩ +

∫
ΓN

vTtdΓ +

∫
Ω

ε(v)TDε0dΩ−
∫

Ω

ε(v)Tσ0dΩ

(7)

which can be solved using classical finite elements [7] or with the more recent polyg-
onal finite element method (PFEM) [11,20,22–24,42].
The PFEM can be seen as the generalization of the finite elements that allows the
elements to take arbitrary shapes and size. The use of polygonal elements requires
the computation of basis functions satisfying the following properties: partition of
unity, interpolation, linear completeness and non-negativity. However, there is no
unique way to represent these basis functions over arbitrary polytopes that satisfies
the aforementioned properties. The basis functions over arbitrary polytopes are
referred to as ‘barycentric coordinates ’ [19, 20,43,44].
Wachspress [19] investigated the construction of basis functions for any wedge form,
also defining interpolants on arbitrary polygons. Sibson [45] proposed natural neigh-
bor interpolants which are based on the Voronöı diagram. Voronöı interpolants have
been broadly applied in mechanics [46–49]. During their studies on random lattices,
Chris et al. [50] introduced a weighting functional based on the distance to the
boundary. In the late 1990s, the Sibson [51] and Laplace [52] interpolants were
re-discovered. For advances in polygonal elements, interested readers are referred
to the literature [20, 53] and the references therein. In this study we consider only
Wachspress shape functions with an isoparametric mapping. However, other shape
functions can also be employed.
The Wachspress shape functions are rational functions and the construction of these
coordinates is as follows: Let P ⊂ R2 be a simple convex polygon with vertices
vi, i = 1, · · · , n, where n represents the number of sides of the convex polygon.
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Figure 1: Arbitrary pentagon: (a) definition of unit outward normals and perpen-
dicular distances and (b) basis function for a vertex node.

For each edge e ∈ E(P ), where E(P ) represents the collection of edges of P , let ne
be the unit outward normal and for any x ∈ P , let he(x) denote the perpendicular
distance of x to e, given by:

he(x) = (v − x) · ne (8)

for any vertex v ∈ V(P ) that belongs to e, where V(P ) denotes the set of vertices
of P . For each vertex v ∈ V(P ), let e1, e2 be the two edges incident to v and for
x ∈ P , let

wv(x) =
det(ne1 ,ne2)

he1(x)he2(x)
(9)

with a condition that the ordering of e1, e2 be anticlockwise around the vertex v
when seen from outside P (see Figure (1) for the definition of vertices, outward
normal and perpendicular distances). Then, the Wachspress shape functions for
x ∈ P is given by [19,43]:

φv(x) =
wv(x)∑

u∈V(P )

wu(x)
(10)

Figure (1) shows a representative polygon and a shape function for a vertex node
computed by the above expression.
The shape functions described above over arbitrary polygons are rational func-
tions, hence the formulation of efficient integration rules and evaluation of their
derivatives pose a particular challenge. This has received much attention in recent
years [42, 54–56] as evidenced by the growing literature. One potential solution is
to subdivide the physical element into triangles and, then, use available quadrature
rules for the numerical integration over triangles [42]. Subdivision is introduced
solely to facilitate the numerical integration and does not introduce additional un-
knowns. Although straightforward, this process involves a two-level isoparametric
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mapping, and requires the positivity of the Jacobian matrix used for the transforma-
tion. Lyness and Monegato [57] presented quadrature rules for regions with hexago-
nal symmetry. Natarajan et al. [54] proposed a numerical integration technique over
arbitrary polygons based on complex mapping. This procedure avoids the two-level
isoparametric mapping while guaranteeing the positivity of the Jacobian, but is re-
stricted to only two dimensions. Sommariva and Vianello [58] presented a Gauss-like
cubature over arbitrary polygons. Mousavi et al. [55] presented a numerical algo-
rithm based on group theory and an optimization scheme to compute integration
rules over arbitrary polygons, and very recently Thiagarajan and Shapiro [59] pre-
sented an adaptively weighted numerical integration scheme over arbitrary domains.
Based on Stokes’ theorem and using the property of homogeneous functions, Chin
et al., [60] showed that integration over polytope can be reduced to integration over
the boundary facets. Francis et al. [30] presented a modification to the constant
smoothing scheme that recovers optimal convergence rates and yields better accu-
racy. For the present study, we employ sub-triangulation of the polygonal domain
unless otherwise indicated.

3 Error estimates in the energy norm

3.1 Zienkiewicz–Zhu estimate

Let us assume that the difference between the exact solution and the finite element
solution is only due to the finite size of the elements (i.e. geometrical modeling errors,
numerical integration errors and other types of errors are considered negligible).
Under this assumption, the discretisation error of the finite element approximation
can be defined as e = u − uh. The error in energy norm ‖e‖ is normally used to
quantify the quality of uh, and it is defined by:

‖e‖2 =

∫
Ω

eT
σD−1eσdΩ, (11)

where the error in the stress field is denoted as eσ = σ−σh, and the finite element
stress field is given by σh = D

(
ε(uh)− ε0

)
+ σ0.

A recovery-based estimate E of the exact error measure ‖e‖ can be approximated
as [2]:

‖e‖2 ≈ (E)2 =

∫
Ω

(e∗σ)T D−1 (e∗σ) dΩ, (12)

where e∗σ denotes the approximate error in the stress field, defined by e∗σ = σ∗−σh,
being σ∗ the recovered stress field, evaluated as a postprocess of the FE solution.
When σ∗ converges to the exact stress field at a higher rate than the finite element
solution, the estimate measure is considered asymptotically exact, meaning that
the approximated error tends to the exact error as we refine the mesh [7]. Notice
that the accuracy of the error estimate depends on the quality of the recovered
stress field. Nodal averaging was used in [2] to obtain σ∗, however, basic smoothing
techniques provide good global effectivities but suffer from a local lack of accuracy.
For example, simple recovery approaches, such as the standard superconvergent
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patch recovery (SPR) [3], do not use the information from the boundary conditions,
where the imposed tractions are known a priori and the patches can have less
sampling points, thus, leading to a reported lack of accuracy of the recovered field
along the Neumann boundary. To improve the quality of the recovered stress field,
methods considering equilibrium conditions have been developed [6, 8, 61, 62]. In
the next section, we describe a moving least squares (MLS) recovery scheme that
considers equilibrium conditions and singular fields, applied to the problem of error
estimation for arbitrary polygonal FE formulations.

3.2 Enhanced MLS recovery

The moving least squares recovery is a weighted least squares fitting defined in
a support around the point where the value of the recovered stress is requested.
The method expresses the recovered stress field, for 2D problems, coupling each
stress component as shown in (13). For a polynomial of degree N , the basis has
M = (N + 2)(N + 1)/2 functions, such that we could write

σ∗(x) =

σ∗xx(x)
σ∗yy(x)
σ∗xy(x)

 = A(x)p(x) =

a11(x) · · · a1M(x)
a21(x) · · · a2M(x)
a31(x) · · · a3M(x)



p1(x)
p2(x)

...
pM(x)

 (13)

where p(x) denotes a polynomial basis, and A is the matrix having the coefficients
to evaluate, with respect to the basis in p, of each component of the recovered stress
σ∗.
We can use (13) to impose equilibrium constraints in the recovered field σ∗. Let
us consider a point x with a support Ωx, defined by a distance (radius) Rx, and a
set of points χ within Ωx, see Figure 2. The size of the support is discussed in [6]
for standard FEM formulations. The moving least squares reconstruction for each
component of the stress field σ∗(x) = σ∗(x,x) for a point χ within the support
reads

σ∗(x,χ) = A(x)p(χ) ∀χ ∈ Ωx (14)

We use a discrete moving least squares approach, that is motivated by the continuous
version [63] via quadrature approximation, to obtain the set A by minimising the
functional:

J(x) =
n∑
l=1

W (x− χl)[σ∗(x,χl)− σh(χl)]2|J(χl)|Hl,

≈
∫

Ωx

W (x− χ)
[
σ∗ (x,χ)− σh (χ)

]2
dχ,

(15)

considering the set of n sampling points within the support of x that will be used as
integration points, of coordinates χl (l = 1...n). Hl denotes the weight of each point
and |J(χl)| corresponds to the Jacobian determinant. We evaluate at the integration
points of the FE analysis, note that each point χl is weighted by |J(χl)|Hl, which
represents its associated area.
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For the weighting function W , we consider a bell-shaped function commonly used
in meshfree methods [63] for the construction of MLS approximations. The function
W provides weightings for stress values obtained from the sampling points in the
support domain, with farther points having small weights. Also, it ensures that
the sampling points leave or enter the support domain gradually, guaranteeing the
continuity of the recovered stress field σ∗. The weighting function is defined as:

W (x− χ) =

{
1− 6s2 + 8s3 − 3s4 if s ≤ 1

0 if s > 1
(16)

where s is a distance function, normalised within the support Ωx and defined as:

s =
‖x− χ‖
Rx

(17)

The minimisation process results in a system of linear equations M(x)AT (x) =
G(x), where

M (x) =
n∑
l=1

W (x− χl) p (χl) pT (χl) |J(χl)|Hl

G (x) =
n∑
l=1

W (x− χl) p (χl) (σh (χl))
T |J(χl)|Hl.

(18)

3.2.1 Satisfaction of the boundary equilibrium equation

From the problem statement, the boundary equilibrium equations should be satisfied
along the Neumann boundary. Lagrange Multipliers are used in [8, 64], for an SPR
formulation, in order to enforce the equilibrium on patches along the boundary.
However, for a MLS recovery, this approach introduces a discontinuity when moving
from supports inside the domain to the boundary [6].
We introduce the exact satisfaction of the boundary equilibrium equation smoothly
using a nearest point approach, thus, avoiding discontinuities in the recovered field.
Consider a point x ∈ Ω with a support Ωx of radius Rx intersecting the Neumann
boundary Γ, as shown in Figure 2. Equilibrium constraints are imposed in the
nearest points χj ∈ Γ on the boundaries within the support Ωx. More than one
point can be accounted for depending on the support intersection with the curves
that define the boundary.
Let us define a coordinate system x̃ỹ at χj, such that x̃ is the outward normal vector,
rotated an angle α with respect to x. The stress vector σ∗(x,χ) can be written as:

σ̃∗(x,χ) = R(α)σ∗(x,χ) (19)

being R a matrix to rotate the stresses:

R =

rx̃x̃
rỹỹ
rx̃ỹ

 =

 cos2 α sin2 α sin(2α)
sin2 α cos2 α − sin(2α)

− sin(2α)/2 sin(2α)/2 cos(2α)

 (20)
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Figure 2: Nearest boundary points to apply boundary conditions in the MLS sup-
port.

The continuous MLS functional including the boundary constraints is given by:

J(x) =
n∑
l=1

W (x− χl)
[
A (x) p(χl)− σh (χl)

]2 |J(χl)|Hl+

nbc∑
j=1

W̃
(
x− χj

) [
rĩ(α)A (x) p(χj)− σexĩ

(
χj
)]2

ĩ = x̃x̃, x̃ỹ (21)

in the above equation, nbc represents the number of points χj were the boundary

tractions σex
ĩ

are known and constraints are applied. W̃ is a weighting function
which reads:

W̃ (x− χj) =
W (x− χj)

s
=


1

s
− 6s+ 8s2 − 3s3 if s ≤ 1

0 if s > 1
(22)

To guarantee that the weight of the boundary condition in J(x) increases as we
approach the Neumann boundary, the function W̃ considers the term s−1 (when x→
χj s → 0) [6]. Further study could include the investigation of other functions to
include the boundary conditions. Notice that, as we use integration points inside the
elements as sampling points, the recovered stress is not evaluated on the boundary,
avoiding singular terms.

3.2.2 Satisfaction of the internal equilibrium equation.

To improve the quality of the recovered stress field we also consider the satisfaction
of the internal equilibrium equation in (1) for σ∗. We impose adequate constraints
by means of Lagrange Multipliers.
From (13), the spatial derivatives of σ∗ are:

∇ · σ∗ = A (∇ · p) + (∇ ·A) p (23)
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The first term in (23) can be directly evaluated differentiating the polynomial basis.
The second term in (23) can be obtained by differentiating the linear system MAT =
G:

(∇ ·M) AT + M
(
∇ ·AT

)
= ∇ ·G (24)

From (24) and (23), we can write:

∂σ∗

∂x
= A

(
∂p

∂x
−M−1∂M

∂x
p

)
+

(
M−1∂G

∂x

)T
p = AE,x + f ,x (25)

∂σ∗

∂y
= A

(
∂p

∂y
−M−1∂M

∂y
p

)
+

(
M−1∂G

∂y

)T
p = AE,y + f ,y (26)

Equations (25)-(26) are expressed as a function of A. Thus, the internal equilibrium
equations can be rewritten as:

∂σ∗xx
∂x

+
∂σ∗xy
∂y

+ bx = (Exx,x + Exy,y) A + (fxx,x + fxy,y) + bx = 0 (27)

∂σ∗xy
∂x

+
∂σ∗yy
∂y

+ by = (Exx,y + Eyy,y) A + (fxy,x + fyy,y) + by = 0. (28)

Lagrange Multipliers are used to impose the equilibrium constraints between the
coefficients A from (27)-(28) in (21), leading to:[

M CT

C 0

] [
AT

λ

]
=

[
G
Q

]
(29)

where λ represents the Lagrange Multipliers and, C and Q represent the terms re-
lated to the constraint equations. This approach leads to a nearly exact satisfaction
of the internal equilibrium equation, as explained in [6].

3.2.3 Visibility

We use the visibility criterion shown in [4,6] to normalise the distance s in (17) for
problems with re-entrant corners and cracks, see Figure 3. For a sampling point
χl, the weighting function defined by the distance to the point x is affected by the
re-entrant corner at χλ, such that it decreases as χl cannot be directly viewed from
x. The distance function takes the form

s =
‖x− χλ‖+ ‖χl − χλ‖

Rx

(30)

3.2.4 Stress splitting for singular problems.

Recovery of stresses works poorly for singular problems as standard procedures
cannot capture high gradients of the stress field. A technique which decomposes the
stress field into singular and smooth parts was proposed for recovery based error
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Figure 3: Domain with re-entrant corner.

estimators in [6,9,65]. The recovered stress field σ∗ of the singular problem can be
expressed as the linear combination of the singular and non-singular terms:

σ∗ = σ∗smo + σ∗sing (31)

An accurate approximation of the singular part can be evaluated using the asymp-
totic field expansion near the crack tip given by [10,66]:

σ∗sing(r, φ) = K∗I λIr
λI−1ΦI(λI, φ) +K∗IIλIIr

λII−1ΦII(λII, φ) (32)

where K∗I and K∗II are estimated values of the generalised stress intensity factors
(GSIF) obtained from the FE results using the interaction integral [67]. Φm are
trigonometric functions depending on the angular position φ, and λm (m = I, II)
represent the eigenvalues determining the intensity of the singularity. Notice that the
stresses in σ∗sing are already equilibrated, as they satisfy the equilibrium equations.
A discrete representation of the smooth part σhsmo is obtained by subtracting the
singular recovered field:

σhsmo = σh − σ∗sing (33)

To smooth the discontinuous stress field σhsmo resulting from the splitting, we can
use a superconvergent patch recovery technique, as shown in [9, 65]. For polygonal
FE elements we propose to use the moving least squares procedure to recover the
smooth part of the solution σ∗smo.

4 Numerical Examples

To investigate the performance of the proposed recovery technique for polygonal
elements, we use three 2D benchmark problems with analytical solution. To analyse
the results, the global error in energy norm, global effectivity and element effectivity
index are used, which we now define.

The global effectivity of the error estimator is calculated as:

θ =
E
||e||

. (34)

To investigate the local effectivity, we define an element effectivity index, D, as

D =


θe − 1 , if θe > 1

1− 1

θe
, if θe < 1 ,

(35)
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where θe is the element effectivity. With this definition, positive values of D indicate
elements where the local error is overestimated, and negative values indicate where
it is underestimated, with respect to the exact error. In order to calculate θe,
Equation (12) is used, but with the domain of integration now being the element
rather than the physical domain.
For the formulation of the moving least squares support, we consider a second order
polynomial basis. Regarding the size of the domain of influence defined by the
radius Rx, we need a support large enough to have a sufficient number of sampling
points for the least squares fitting, but not too large such that we smooth in excess
the gradient field. For standard FEM, a good balance between accuracy and local
smoothing was obtained for values of Rx equals two times the interpolated value of
the average element size at nodes [6]. For polygonal FE approximations, we have
chosen a support size with similar conditions, i.e., two times the average element
size of surrounding elements.

4.1 A square plate

The first benchmark problem is a model of a 2×2 square plate shown in Figure 4,
with material parameters E = 1000 for the Young’s modulus and ν = 0.3 for the
Poisson’s ratio. For this problem the exact displacement solution is defined as

u(x, y) = x+ x2 − 2xy + x3 − 3xy2 + x2y (36a)

v(x, y) = −y − 2xy + y2 − 3x2y + y3 − xy2 . (36b)

2

2

x

y

Figure 4: The 2×2 square plate.

Dirichlet boundary conditions are shown as triangles in Figure 4. Displacements in
y-direction are constrained at (-1,0) and (1,0), and displacements in x-direction are
constrained at (0,-1) and (0,1). Along the Neumann boundary, denoted by a dashed
line, we apply the exact values of the stress in (37). The exact stress field obtained

12



from the displacement field under plane strain conditions reads:

σxx =
E

1 + ν

(
1 + 2x− 2y + 3x2 − 3y2 + 2xy

)
(37a)

σyy =
E

1 + ν

(
−1− 2x+ 2y − 3x2 + 3y2 − 2xy

)
(37b)

σxy =
E

1 + ν

(
−x− y +

x2

2
− y2

2
− 6xy

)
. (37c)

Equilibrium condition is guaranteed by applying the body forces

bx(x, y) = − E

1 + ν
(1 + y) (38a)

by(x, y) = − E

1 + ν
(1− x) . (38b)

The problem was solved using the polygonal finite element meshes shown in Figure 5.
The estimated error in the numerical approximation is evaluated using the moving
least squares recovery technique. In Figure 6 the global error norm and the effectivity
of the error norm are plotted vs the number of degrees of freedom (DOFs). We
compare the results with standard FEM meshes of linear quadrilateral (FEM-Q4)
and triangular (FEM-T3) elements using an enhanced moving least squares recovery
technique [6]. The rate of convergence of the estimated error in the energy norm
for polygonal FEM is approximately 0.5, which is similar to the results obtained for
standard FEM and the theoretical convergence rate. The effectivity is within 1%
of the ideal value of 1, which means that the estimate of the discretisation error
obtained by moving least squares is good for polygonal FEM. The performance
of the error estimator is similar to the one observed for linear quadrilateral FEM
(FEM-Q4).

Figure 5: 2× 2 square plate. Polygonal finite element meshes

The local effectivity index is plotted for the polygonal meshes in Figure 7. For
this smooth problem we notice a balance between underestimated (red colour) and
overestimated (blue colour) errors in the elements. Dark blue and dark red indicate
top of the scale. The local effectivity index D is within a range of [−0.4, 0.4], which
is in agreement with the results reported in the literature for standard FEM [6].
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Figure 6: 2×2 square plate. Global estimated error in energy norm and effectivity, θ,
for polygonal (polyFEM), linear quadrilateral (FEM-Q4) and triangular (FEM-T3)
elements.

−0.4 −0.2 0 0.2 0.4 −0.2 −0.1 0 0.1 0.2 −0.2 −0.1 0 0.1 0.2 −0.2 −0.1 0 0.1 0.2

Figure 7: 2× 2 square plate. Local effectivity index D for polygonal FEM

4.2 Thick-walled cylinder subject to an internal pressure

The geometrical model for the thick-walled cylinder considering symmetry condi-
tions is shown in Figure 8. The exact solution for this problem is given for a point
(x, y) in cylindrical coordinates. Denoting c = b/a and r =

√
x2 + y2, the radial

displacement can be written as

ur =
P (1 + ν)

E(c2 − 1)

(
r (1− 2ν) +

b2

r

)
(39)

Stresses can be derived from the known displacements, and read

σr =
P

c2 − 1

(
1− b2

r2

)
, σt =

P

c2 − 1

(
1 +

b2

r2

)
, σz = 2ν

P

c2 − 1
. (40)

In Figure 9 we show the set of polygonal meshes used to solve the cylinder problem.
The global error norm and its effectivity are shown in Figure 10. The convergence
rate for polyFEM is 0.6, for FEMQ4 is 0.51 and for FEMT3 is 0.49, which are close
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Figure 8: Thick-walled cylinder subject to internal pressure.

Figure 9: Thick-walled cylinder. Polygonal finite element meshes.

to the theoretical convergence rate. The global effectivity is very close to the ideal
value of 1, indicating that the estimation of the error is good for the polygonal
meshes used in this study.
Note that the stress field recovered by the proposed technique is not statically ad-
missible, therefore, although the error estimation is quite close to the exact error
(θ ≈ 1), the error estimate is not necessarily an overestimation of the exact error.
For this problem, the accuracy of the estimated error for polyFEM meshes is similar
to the accuracy obtained for FEM, although the polyFEM results underestimate
the exact error whereas the FEM results, except for one of the FEMT3 meshes,
overestimate it. In any case, the results always provide effectivities within the range
[0.8,1.2]. According to the literature [66], it could be desired that the effectivity
index be such that 0.8 ≤ θ ≤ 1.2 and θ → 1.
Figure 11 shows the element effectivity index for each of the four meshes. For the
coarse mesh, the element error is less well approximated on the outer boundary
of the cylinder. On increasing mesh density, the quality of the approximation of
the error becomes more uniform throughout the domain. The same behaviour was
observed for FEM approximations [6].

4.3 L-shaped domain under mode I loading

The singular elasticity problem of a finite portion of an infinite domain with a
reentrant corner is shown in Figure 12.
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Figure 10: Thick-walled cylinder. Global estimated error in energy norm and effec-
tivity, θ, for polygonal (polyFEM), linear quadrilateral (FEM-Q4) and triangular
(FEM-T3) elements.
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Figure 11: Thick-walled cylinder. Local effectivity index D for polygonal FEM.

Neumann boundary conditions are indicated by thick, dashed lines. The applied
tractions are evaluated from the first terms of the asymptotic expansion describing
the exact solution under mixed mode loading conditions.
The exact solution for the displacements and stresses for this problem can be found
in [10,66]. The problem exhibits a singular solution in the vertex. To model mode I
loading conditions, we fix the exact values of the generalised stress intensity factors
(GSIF) to KI = 1 and KII = 0 [66]. Material parameters are Young’s modulus
E = 1000 and Poisson’s ratio ν = 0.3. For this singular problem, we apply the
singular+smooth stress splitting procedure as explained in Section 3.2.4. We use an
equivalent domain integral to obtain an approximation of the stress intensity factors
that describes the recovered singular part.
The final benchmark test will demonstrate the improved performance of MLSCX
when compared with a standard MLS, which is not especially designed for problems
with singularities. First, the problem is solved on four meshes using a MLS recovery
which does not consider equilibrium conditions and singular stress splitting. Then,
the problem is solved again on the same four meshes, but, the stress solution is
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Figure 12: L-shaped domain under mode I load.

decomposed into smooth and singular parts, and the recovered stress field is forced
to satisfy equilibrium, referred to as MLSCX. In Figure 13 we show the set of
polygonal meshes used to solve the L-shaped problem problem.

Figure 13: L-shaped domain. Polygonal finite element meshes.

The global effectivities are plotted for both sets of results in Figure 14. We can
observe that for basic MLS recovery, the effectivity is above the desire value of
1.2. For the enhanched MLSCX, the global effectivity is closer to 1, as observed
in previous examples. The convergence rate of the error in energy norm for the
two recovery approaches is near 0.23, which is in agreement with the theoretical
convergence rate for this singular problem under uniform refinement conditions, i.e.
0.272.
The local effectivity index, D, is shown for each mesh in Figures 15 (MLS) and 16
(MLSCX). For the error estimate based on MLS, the value of the effectivity index
is overestimated near the singular corner. For the enhanced error estimator, the
effectivity index is much improved at the corner, where it is closer to the ideal
value of 0. Therefore, at the corner, the enhanced recovery technique gives a more
accurate approximation of the error. This improvement is mostly due to the splitting
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Figure 14: L-shaped domain. Global estimated error in energy norm and effectivity,
θ, for MLS and MLSCX stress recovery.

of the stress field and this behaviour is similar for standard FE approximations.
Underestimated areas on the right are due to pollution error effects, as observed in
FE meshes with uniform refinement.

 

 

−0.5 0 0.5

 

 

−0.5 0 0.5

 

 

−1 0 1

 

 

−1 0 1

Figure 15: L-shaped domain. Local effectivity index D for the error estimator based
on MLS recovery.

5 Conclusions

In this paper, we have presented a novel technique to estimate the discretization
error in arbitrary polygonal finite element meshes for smooth and singular elasticity
problems. The MLSCX technique is based on an enhanced moving least squares
recovery which considers internal and boundary equilibrium conditions to improve
the quality of the recovered stress field. For singular problems, the MLSCX also
involves a stress splitting procedure to separately recover the smooth and singular
parts of the stress field.
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Figure 16: L-shaped domain. Local effectivity index D for the error estimator based
on enhanced MLSCX recovery.

We have used three benchmark problems with known solution to assess the per-
formance of the MLSCX recovery: two problems with an smooth solution and one
singular problem. For smooth problems, results show the good performance of the
error measure obtained with the proposed method, both globally and locally at ele-
ment level. The obtained convergence rate for the estimated error was 0.5, similar to
the rate observed for standard finite element approximations. The global effectivity
θ was within the recommended range [0.8, 1.2]. We have tested the singular prob-
lem of a plate with a reentrant corner under mode I loading conditions. Numerical
results show that the stress splitting improves the error measure in the vicinity of
the crack tip and the values of θ are also close to one. Convergence rate of the
estimated error is lower than for smooth problems (0.23), due to the intensity of the
singularity. Similar performance was observed for conventional FE singular models.
Results indicate that the proposed error estimator technique for arbitrary polygonal
FE meshes yields good error measures, and could be used to control the error in this
kind of numerical approximations.

6 Acknowledgements

This work was partially funded by the EPSRC grant EP/G042705/1 “Increased
Reliability for Industrially Relevant Automatic Crack Growth Simulation with the
eXtended Finite Element Method”, the Framework Programme 7 Initial Training
Network Funding under grant number 289361 “Integrating Numerical Simulation
and Geometric Design Technology”, and Convocatoria Interna VIE 2522, Universi-
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[23] Ghosh S, Liu Y. Voronöı cell finite element model-based on micropolar theory of
thermoelasticity for heterogeno us materials. Internation Journal of Numerical
Methods in Engineering 1995; 38:1361–1398.

[24] Ghosh S, Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous mate-
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