Stéphane Demri

Morgan Deters

The Effects of Modalities in Separation Logics (Extended Abstract)

Keywords: Separation logic, decidability, computational complexity, expressive power, temporal logic, modal logic, first-order logic, second-order logic

Like modal logic, temporal logic, or description logic, separation logic has become a popular class of logical formalisms in computer science, conceived as assertion languages for Hoare-style proof systems with the goal to perform automatic program analysis. We present similarities with modal and temporal logics, and we present landmark results about decidability, complexity and expressive power.

When separation logic joins the club Introducing new logics is always an uncertain enterprise since there must be sufficient interest to use new formalisms. In spite of this hurdle, we know several recent success stories. For instance, even though a pioneering work on symbolic modal logic by Lewis appeared in 1918 [START_REF] Lewis | A survey of symbolic logic[END_REF], the first monographs on symbolic modal logic appear some fifty years later, see e.g. [START_REF] Hughes | An introduction to modal logic[END_REF]. Nowadays, modal logic is divided into many distinct branches and remains one of the most active research fields in logic and computer science. Additionally, the introduction of temporal logic to computer science, due to Pnueli [START_REF] Pnueli | The temporal logic of programs[END_REF], has been a major step in the development of modelchecking techniques, see e.g. [START_REF] Clarke | Model checking[END_REF][START_REF] Bérard | Systems and Software Verification, Model-Checking Techniques and Tools[END_REF]. This is now a well-established approach for the formal verification of computer systems: one models the system to be verified by a mathematical structure (typically a directed graph) and expresses behavioral properties in a logical formalism (typically a temporal logic). Verification by model-checking [START_REF] Clarke | Model checking[END_REF] consists of developing algorithms whose goal is to verify whether the logical properties are satisfied by the abstract model. The development of tools is done in parallel with the design of techniques to optimize the verification process. Apart from the development of model-checkers such as Cadence SMV, SPIN, or Uppaal, the transfer towards industrial applications is also present in research and development units. The development of description logics for knowledge representation has also followed a successful path, thanks to a permanent interaction between theoretical works, pushing ever further the high complexity and undecidability borders, and more applied works dedicated to the design of new tools and the production of more and more applications, especially in the realm of ontology languages. The wealth of research on description logic is best illustrated by [START_REF] Baader | The Description Logic Handbook: Theory, Implementation and Applications[END_REF], in which can be found many chapters on theory, implementations, and applications. By contrast, Chapter 1 of [START_REF] Baader | The Description Logic Handbook: Theory, Implementation and Applications[END_REF] provides a gentle introduction to description logics and recalls that its roots can be traced back a few decades. It is well-known that modal logic, temporal logic, and description logic have many similarities even though each family has its own research agenda. For instance, models can be (finite or infinite) graphs, the classes of models range from concrete ones to more abstract ones, and any above-mentioned class includes a wide range of logics and fragments. In this work, we deal with another class of logics, separation logic, that has been introduced quite recently (see e.g. [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF][START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF]). Separation logic is the subject of tremendous interest, leading to many works on theory, tools and applications (mainly for the automatic program analysis). Any resemblance to modal, temporal, or description logic is certainly not purely coincidental-but separation logic also has its own assets.

In the possible-world semantics for modal logic, the modal operator 2 [resp. 3] corresponds to universal [resp. existential] quantification on successor worlds, and these are essential properties to be stated, partly explaining the impact of Kripke's discovery [START_REF] Kripke | A completeness theorem in modal logic[END_REF][START_REF] Copeland | The genesis of possible worlds semantics[END_REF]. Similarly, the ability to divide a model into two disjoint parts happens to be a very natural property. This might explain the success of separation logic: disjoint memory states can be considered, providing an elegant means to perform local reasoning. Separation is a key concept that has been already introduced in interval temporal logic (ITL) [START_REF] Moszkowski | Reasoning about digital circuits[END_REF] with the chop operator (and probably in many other logical formalisms such as in graph logics [START_REF] Dawar | Expressiveness and complexity of graph logic[END_REF]) and therefore, the development of separation logic can be partly explained by the relevance of the separation concept. Its impressive development can be also justified by the fact that separation logic extends Hoare logic for reasoning about programs with dynamic data structures, meeting also industrial needs as witnessed by the recent acquisition of Monoidics Ltd. by Facebook.

Separation and composition Separation logic has been introduced as an extension of Hoare logic [START_REF] Hoare | An axiomatic basis for computer programming[END_REF] to verify programs with mutable data structures [START_REF] Ishtiaq | BI as an assertion language for mutable data structures[END_REF][START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF]. A major feature is the ability to reason locally in a modular way, which can be performed thanks to the separating conjunction * that allows one to state properties in disjoint parts of the memory. Moreover, the adjunct implication - * asserts that whenever a fresh heap satisfies a property, its composition with the current heap satisfies another property. This is particularly useful when a piece of code mutates memory locally, and we want to state some property of the entire memory (such as the preservation of data structure invariants). In a sense, if modal logic is made for reasoning about necessity and possibility, separation logic is made for reasoning about separation and composition. Of course this type of statement is an oversimplification-apart from the fact that it may appear a bit old-fashioned to most modal logicians-but this may help to get a first picture. As a taste of separation logic, it is worth observing that models can be finite graphs and the classes of models range from concrete ones (with heaps for instance) to very abstract ones (e.g., cancellative partial commutative monoids). While evaluating a formula, models can be updated as in public announcement logics.

Smallfoot was the first implementation to use separation logic, its goal to verify the extent to which proofs and specifications made by hand could be treated automatically [START_REF] Berdine | Smallfoot: Modular automatic assertion checking with separation logic[END_REF]. The automatic part is related to assertion checking, but the user has to provide preconditions, postconditions, and loop invariants. A major step has been then to show that the method is indeed scalable [START_REF] Yang | Scalable shape analysis for systems code[END_REF]. In a sense, the legitimate question about the practical utility of separation logic was quickly answered, leading to a new generation of tools including Slayer developed by Microsoft Research, Space Invader [START_REF] Distefano | A local shape analysis based on separation logic[END_REF][START_REF] Yang | Scalable shape analysis for systems code[END_REF], and Infer [START_REF] Calcagno | Infer: An automatic program verifier for memory safety of C programs[END_REF]. Actually, nowadays, many tools support separation logic as an assertion language and, more importantly, in order to produce interactive proofs with separation logic, several proof assistants encode the logic, see e.g. [START_REF] Tuerk | A separation logic fragment for HOL[END_REF].

From the very beginning, the theory of separation logic has been an important research thread even if not always related to automatic verification. This is not very surprising since separation logic can be understood as a concretization of bunched logic BI which is a general logic of resources with a nice proof theory [START_REF] O'hearn | The logic of bunched implications[END_REF]. Besides, as for modal and temporal logics, the relationships between separation logic, and first-order or second-order logics have been the source of many characterizations and works. This is particularly true since the separation connectives are second-order in nature, see e.g. [START_REF] Lozes | Expressivité des Logiques Spatiales[END_REF][START_REF] Kuncak | On spatial conjunction as second-order logic[END_REF][START_REF] Calcagno | From separation logic to first-order logic[END_REF][START_REF] Brochenin | On the almighty wand[END_REF]. For instance, separation logic is equivalent to a Boolean propositional logic [START_REF] Lozes | Separation logic preserves the expressive power of classical logic[END_REF][START_REF] Lozes | Expressivité des Logiques Spatiales[END_REF] if first-order quantifiers are disabled. Similarly, the complexity of satisfiability and model-checking problems for fragments of separation logic has been examined [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF][START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF][START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF][START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF][START_REF] Brotherston | A decision procedure for satisfiability in separation logic with inductive predicates[END_REF]. In [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF], the model-checking and satisfiability problems for propositional separation logic are shown pspace-complete; this is done by proving a small model property.

Content The goal of this work is twofold. First, we would like to emphasize the similarities between separation logic and modal and temporal logics. Our intention is to pinpoint the common features in terms of models, proof techniques, motivations, and so forth. Second, we wish to present landmark results about decidability, complexity, and expressive power, providing a survey on the theoretical side of separation logic. These are standard themes for studying logics in computer science, and we deliberately focus on the logical aspects of separation logic.

demri@cs.nyu.edu. Work partially supported by the EU Seventh Framework Programme under grant agreement No. PIOF-GA-2011-301166 (DATAVERIF).

mdeters@cs.nyu.edu. Work partially supported by the Air Force Office of Scientific Research under award FA9550-09-1-0596, and the National Science Foundation under grant 0644299.