
HAL Id: hal-03200989
https://hal.science/hal-03200989

Submitted on 17 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic and Intelligent Composition of Pervasive
Applications - Demonstration

Kévin Delcourt, Françoise Adreit, Jean-Paul Arcangeli, Kahina Hacid, Sylvie
Trouilhet, Walid Younes

To cite this version:
Kévin Delcourt, Françoise Adreit, Jean-Paul Arcangeli, Kahina Hacid, Sylvie Trouilhet, et al.. Au-
tomatic and Intelligent Composition of Pervasive Applications - Demonstration. 19th IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom 2021), Mar 2021, Kassel
(virtual), Germany. �hal-03200989�

https://hal.science/hal-03200989
https://hal.archives-ouvertes.fr


Automatic and Intelligent Composition
of Pervasive Applications

K. Delcourt, F. Adreit, J.-P. Arcangeli, K. Hacid, S. Trouilhet, W. Younes
Institut de Recherche en Informatique de Toulouse, University of Toulouse, France

Email : {Kevin.Delcourt, Francoise.Adreit, Jean-Paul.Arcangeli, Kahina.Hacid, Sylvie.Trouilhet, Walid.Younes}@irit.fr

Abstract—Opportunistic service composition is a novel and
disruptive approach for building software in dynamic and open
pervasive environments. It aims to tackle the growing complexity
of software design in such environments by dynamically provid-
ing relevant applications in the absence of explicit user needs:
an intelligent engine composes software components that are
present in the pervasive environment in order to build user-
tailored context-adapted applications, relying on reinforcement
learning.

This demonstration presents the current status of our op-
portunistic composition prototype: the intelligent engine builds
pervasive applications in bottom-up mode from actual software
components that are discovered via the UPnP (Universal Plug
and Play) protocol, taking into account learned user preferences.

I. INTRODUCTION

Today’s users are living in cyber-physical pervasive envi-
ronments that are more and more complex with the increasing
number of devices in the Internet of Things. These environ-
ments consist of fix or mobile devices, driven by software
components using communication networks to operate.

Those devices and components are generally developed,
installed, activated, and assembled independently of each
other. Due to user and device mobility, software components
may appear or disappear with unpredictable dynamics, giving
to pervasive environments an open and unstable nature. In such
a context, applications based on component assemblies are
hard to design, maintain and adapt.

In order to tackle these issues, our project aims to design and
build a solution that automatically and dynamically assembles
software components in order to build applications that are
adapted to the current state of the environment and the user.
In the opportunistic approach, applications are built on the fly
in a bottom-up manner from the available components at that
time, with no explicit user needs or predefined assembly plans.
In this way, applications emerge from the environment, taking
advantage of opportunities as they arise. Besides, the user is
put in the loop in order to keep control on the environment:
she/he decides on the relevance of the emergent application
before it is deployed. The composition engine learns from this
feedback in order to build relevant applications.

This paper presents the latest developments of our proto-
type OCE - Opportunistic Composition Engine, previously
discussed in more details in [1]. Indeed, OCE is now able to
build, from the bottom up, fully operational component-based

applications, using actual software components discovered via
the UPnP - Universal Plug and Play - protocol and taking into
account the user feedback.

For this purpose, we have developed a Java API, allowing
to create UPnP components with provided and required inter-
faces. In order to assess the validity of OCE, a demonstration
has been built around a realistic use case in the context of the
AILP project1: a user in his car benefits from an emerging
application that guides him to the charging station closest to
his current position, without explicitly asking for it.

This paper is structured as follows: Section 2 presents
a quick summary of component-based software engineering,
Section 3 presents the global architecture of our solution,
focusing on OCE main original principles, and Section 4
details the use case of the demonstration. Section 5 concludes
and states the current limitations of our prototype.

II. SOFTWARE COMPONENTS AND COMPOSITE SERVICES

Component-based software engineering[2] consists in build-
ing software as assemblies of reusable and versatile software
components. This paradigm emphasizes composability, reuse
and software flexibility: an application can be modified by
replacing one component by another in the assembly.

Software components [3] are runtime units that implement
and provide services. Symmetrically, they exhibit the services
they require to be operational. Composing them consists in
binding required services to matched provided ones, and
finally building applications with added value. Fig. 1 shows the
example of a component-based implementation of a location
application, made from a GPS component and a Map com-
ponent. The Map DrawPoint provided service is bound to the
GPS SetLocation required service, this application allowing
the measured coordinates to be displayed on the map.

Traditional approaches for designing component-based ap-
plications are problematic when applied to open dynamic
pervasive environments: at design time, it is difficult to predict
which components and devices will actually be available at
runtime. Furthermore, building applications on the basis of a
priori stated user needs may lead to disregard arising needs
and to miss opportunities the environment could bring.

1AILP (Assistance InteLligente et proactive en environnement Profession-
nel) is supported by the French region Occitanie and the operational program
FEDER-FSE Midi-Pyrénées et Garonne.



Fig. 1: A component-based location application

III. USER-ORIENTED OPPORTUNISTIC COMPOSITION

Fig. 2 shows the overall architecture of the composition
system, which consists of three main elements: OCE, ICE -
Interactive Control Environment - and the user.

A. OCE - Opportunistic Composition Engine

At the center, OCE has the main task of assembling the
components. It periodically senses the pervasive environment
in order to discover available components, connects corre-
sponding provided and required services with each other and
thereby constructs on the fly composite applications.

OCE is designed in a MAS - Multi-Agent System - ar-
chitectural style [4] which is known to meet main challenges
raised by pervasive environments: decentralization, distribu-
tion, scalability, dynamics and adaptability. Any service sensed
in the pervasive environment is managed by a dedicated agent
[1]. The agents cooperate in order to choose the correct
and pertinent connections to realize between the available
components. Agent’s decision is based on its local view of the
assembly and of the environment, and its estimated values of
the other agents: these values are computed from the feedback
gathered throughout the previous OCE executions.

B. ICE - Interactive Control Environment

ICE allows to put the user in the loop: as soon as an
application emerges, i.e., is assembled by OCE, ICE presents
it to the user. Using model-driven engineering, ICE aims
to present emerging applications in an intelligible manner:
several graphical representation styles are available, from
abstract ones to concrete and technical ones. Non-expert users
can choose the one that best suits her/his preferences [5].

Thanks to ICE, the user can either accept, reject or modify
the proposed application. Feedback data (including the newly
produced composition model if the application has been mod-
ified) are then deducted from these actions. This feedback is
central in our approach as it allows OCE to learn and build
knowledge about the user related to the current situation, in
an endless online reinforcement learning mode [6].

IV. DEMONSTRATION

A. Demonstration background

The early version of our prototype, presented in [1]2,
exploited dummy components loaded from an XML file, with
no actual implementation.

2A video that demonstrates the early prototype is available online at
https://www.irit.fr/%7eSylvie.Trouilhet/demo/wetice2020.mp4

In this new demonstration, we show the current status of
our solution, which now uses actual software components
distributed on multiple devices. Thus, we demonstrate how our
solution works in a pervasive environment where components
can appear and disappear dynamically.

Those components rely on the UPnP protocol [7] for discov-
ery, and connect to each other through the user’s local network.
We have developed an API to build UPnP components that can
be detected by OCE3. This API includes a wrapper class de-
signed to add the concept of required service to the definition
of a UPnP component, which is not available in the UPnP
specification [7]. OCE senses the UPnP components in the
environment, reads the description of their provided/required
services and can issue binding orders to the components.

B. Use case: seeking an outlet for an electric car

A demonstration video based on the following scenario is
available4. Consider Paul driving his electric car, in need of a
power outlet. With the assistance of our solution that makes
emerge an application from the pervasive environment, he is
able to locate the nearest available power outlet.

Since Paul is traveling with his Android smartphone, both
components of the phone and the car are present in the
environment. The latter contains:

• GPS components, locating Paul’s car and phone.
• An AndroidMap component displaying points and routes.
• BatteryLevel components, giving information on the car

and phone battery level.
• An OutletLocalizer component, which requires a map and

a BatteryLevel component in order to locate the nearest
available outlet from a set of coordinates.

All components presented in the demonstration have been
fully developed and are functional. Although it is possible, the
car components aren’t deployed on a true car, but on a separate
desktop computer; as such, they provide simulated positions
and battery levels. Thus, the pervasive environment presented
in this demo is actually composed of one desktop computer
and one Android device.

1) Initial composition: When starting the engine, the agents
have no knowledge about the environment or Paul’s prefer-
ences: the first assembly is built in an exploratory manner
using the available components, then it is presented to Paul.
Fig. 3 shows a screenshot of ICE, with this assembly.

Then, using ICE, Paul edits this proposition, giving his
feedback. He makes changes according to:

• his current need: to charge his car’s battery; therefore he
chooses CarBatteryLevel over PhoneBatteryLevel.

• his preferences: both the PhoneGPS and CarGPS compo-
nents can locate him, thus he chooses CarGPS.

Fig. 4 presents the resulting application. OCE learns from
this feedback: each agent updates its knowledge. It also carries

3https://github.com/KevinDelcourt/UPnPComponents
4https://www.irit.fr/%7eSylvie.Trouilhet/demo/outletSeeking.mp4



Fig. 2: General architecture of the composition system

Fig. 3: First assembly proposition - ICE screenshot

Fig. 4: First assembly proposition, edited by the user

out the bindings between the components: Paul can now see
the route to the nearest outlet.

2) Disappearance of OutletLocalizer: The OutletLocalizer
component is turned off, breaking the previous application.
This change in the environment is sensed by OCE, which in
turn proposes a new application, using its acquired knowledge.
Reusing the preferred components, CarGPS and AndroidMap,
OCE proposes a new application (Fig. 5) that displays the
car’s position on Paul’s phone. Paul accepts it, sending positive
feedback to OCE which orders the component bindings.

Fig. 5: Assembly after disappearance of OutletLocalizer

3) Appearance of components: We show the case of the
appearance of two components: GPSToCityConverter which
converts a set of coordinates into the corresponding city name,

and TextReceiver which displays text. OCE composes a new
application, giving priority to Paul’s preferred components as
well as the new ones in order to build a potentially interesting
application. Fig. 6 shows a part of the resulting application: it
displays the name of the city where Paul is located as well as
its position on a map. It is then accepted and deployed.

Fig. 6: Assembly after appearance of new components

V. CONCLUSION

Additional tests on realistic use cases, with real-world users
and components, are necessary to consolidate the validation
of our solution. For example, scalability problems could arise
with high numbers of components and extended uses.

However, our experiences show that the current prototype
works. It builds on the fly emergent applications depending
on the situation, and proposes them to the user. As the
user goes along, it learns about his/her preferences, and uses
this knowledge to make the next proposals, more and more
relevant. The engine does not require the prior expression of
the user’s needs to propose an assembly, and that it is sensitive
to changes in the environment.

REFERENCES

[1] W. Younes, S. Trouilhet, F. Adreit, and J.-P. Arcangeli. Agent-mediated
application emergence through reinforcement learning from user feed-
back. In 29th IEEE Int. Conf. on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE). IEEE Press, 2020. https:
//hal.archives-ouvertes.fr/hal-02895011.

[2] I. Sommerville. Component-based software engineering. In Software
Engineering, pages 464–489. Pearson Education, 10th edition, 2016.

[3] OMG. Unified Modeling Language, chapter 11.6. 2017. https://www.
omg.org/spec/UML/2.5.1/PDF.

[4] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2009.
[5] M. Koussaifi, J.-P. Arcangeli, S. Trouilhet, and Bruel J.-M. Model-

Driven Engineering for End-Users in the Loop in Smart Ambient Systems.
Technical report IRIT/RR–2020–06–FR, IRIT, September 2020. https:
//www.irit.fr/∼Sylvie.Trouilhet/publiInfo/IRIT RR 2020 06 FR.pdf.

[6] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT
Press, 2nd edition, 2018.

[7] C. Lee and S. Helal. Protocols for service discovery in dynamic and
mobile networks. Int. J. of Computer Research, 11(1):1–12, 2002.


