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[1] Terrestrial biosphere models are indispensable tools for analyzing the
biosphere‐atmosphere exchange of carbon and water. Evaluation of these models using
site level observations scrutinizes our current understanding of biospheric responses to
meteorological variables. Here we propose a novel model‐data comparison strategy
considering that CO2 and H2O exchanges fluctuate on a wide range of timescales.
Decomposing simulated and observed time series into subsignals allows to quantify model
performance as a function of frequency, and to localize model‐data disagreement in time.
This approach is illustrated using site level predictions from two models of different
complexity, Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE)
and Lund‐Potsdam‐Jena (LPJ), at four eddy covariance towers in different climates.
Frequency‐dependent errors reveal substantial model‐data disagreement in seasonal‐annual
and high‐frequency net CO2 fluxes. By localizing these errors in time we can trace these
back, for example, to overestimations of seasonal‐annual periodicities of ecosystem
respiration during spring greenup and autumn in both models. In the same frequencies,
systematic misrepresentations of CO2 uptake severely affect the performance of LPJ,
which is a consequence of the parsimonious representation of phenology. ORCHIDEE
shows pronounced model‐data disagreements in the high‐frequency fluctuations of
evapotranspiration across the four sites. We highlight the advantages that our novel
methodology offers for a rigorous model evaluation compared to classical model
evaluation approaches. We propose that ongoing model development will benefit from
considering model‐data (dis)agreements in the time‐frequency domain.

Citation: Mahecha, M. D., et al. (2010), Comparing observations and process‐based simulations of biosphere‐atmosphere
exchanges on multiple timescales, J. Geophys. Res., 115, G02003, doi:10.1029/2009JG001016.

1. Introduction

[2] Understanding the dynamics of CO2, H2O, and energy
exchange between the terrestrial biosphere and atmosphere
is essential for gaining insight to earth system functioning,
and prerequisite for projecting its behavior in the near future
[Barford et al., 2001; Schimel et al., 2001; Ciais et al.,
2005; Seneviratne et al., 2006a; Bonan, 2008; Heimann
and Reichstein, 2008]. In this context, state of the art

diagnostic, empirical or process oriented terrestrial biosphere
models are indispensable for analyzing greenhouse gas fluxes
in time over geographical space [Cramer et al., 2001; Friend
et al., 2007].
[3] One prerequisite for the integrative analysis of mod-

eled spatiotemporal biosphere‐atmosphere fluxes is the
comparison of different model runs [Vetter et al., 2008;
Jung et al., 2008]. Conducting comparative investigations of
terrestrial biosphere models ideally reveals the effects of
different model structures [Richardson et al., 2006], para-
meterizations [Braswell et al., 2005; Zaehle et al., 2005], or
initial conditions [Carvalhais et al., 2008]. The assessment of
the strength and pitfalls of terrestrial biosphere models itself
requires accurate qualitative and quantitative site level eva-
luations [Baldocchi and Wilson, 2001; Moorcroft, 2006;
Siqueira et al., 2006; Jung et al., 2007]. These analyses are
essentially pattern oriented model‐data comparisons, where
the validity of terrestrial biosphere models is indirectly
challenged [Rykiel, 1996; Savenije, 2009]. Model‐data
comparisons can be very instructive for understanding the
behavior of both models and data in a joint perspective [Betts,
2004; Jaeger et al., 2009].
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[4] Nowadays, the “Eddy Covariance” technique has
become a standard for the in situ monitoring of CO2 and H2O
fluxes [Aubinet et al., 2000]. Regional to global eddy
covariance data compilations (especially FLUXNET), play
an important role for our general understanding of ecosystem
responses to atmospheric forcing, and serve as an invaluable
basis for model performance evaluations [Baldocchi et al.,
2001a; Baldocchi, 2008]. The increasing availability of
eddy covariance data has led to a number of site level
model‐data comparisons where several models were driven
by site meteorology [e.g., Medlyn et al., 2005; Morales et
al., 2005; Kucharik et al., 2006; Siqueira et al., 2006].
[5] The simplest way to summarize model‐data dis-

agreement is using scalar error estimates. Applying error
metrics or quantifying flux biases up to annual flux integrals
provides only limited insight into the quality of a model.
Depending on the objective, however, these “single misfit
numbers” [Evans, 2003] might be very useful. More
sophisticated studies attempt to localize model‐data mis-
matches in time [Gulden et al., 2008]. Intuitively, this can be
achieved by moving window approaches or by varying
aggregation levels. The ideas behind the latter strive for the
identification of timescales of acceptable model perfor-
mances [Abramowitz et al., 2008]. Classical model perfor-
mance evaluation usually also embraces residual analysis
[Medlyn et al., 2005]. The rationale behind this is that the
coincidence of patterns in the residuals and certain environ-
mental conditions elucidate potential problems of terrestrial
biosphere models. Independently of the chosen approach
for model‐data comparison, the natural limit is set by the
influence of both random and systematic errors on the eddy
covariance data [Medlyn et al., 2005; Friend et al., 2007]. In
the overall view, however, the methodology of model per-
formance evaluation has not progressed substantially over
the last decades [Janssen and Heuberger, 1995; Rykiel,
1996; Medlyn et al., 2005; Abramowitz et al., 2008].
Gulden et al. [2008] made the point that “the development
of robust metrics for comprehensive model evaluation is in
its infancy.”
[6] Given this background, the present study revisits the

issue of model‐performance evaluation taking into consid-
eration that ecosystem‐atmosphere fluxes are shaped by a
variety of fluctuations on different scales of characteristic
variability. The (observable) variability in eddy covariance
time series ranges from hourly, diurnal, synoptic, seasonal‐
annual, to decadal periodicities [Katul et al., 2001; Stoy et
al., 2005; Mahecha et al., 2007; Qin et al., 2008; Stoy et
al., 2009]. The question of whether state of the art terres-
trial biosphere models reproduce these properties has been
addressed in the frequency domain by Braswell et al. [2005]
and Siqueira et al. [2006]. These studies show that model‐
data agreement is a matter of frequency and illustrate that
residual time series of CO2 exchange fluxes systematically
contain high relative spectral powers for intermediate fre-
quencies: model‐data disagreement affects especially peri-
odicities above diurnal and below annual variability, the
“spectral gap” where a minor part of the total variance is
allocated [Baldocchi et al., 2001b; Stoy et al., 2005]. The
efficiency of a spectral analysis lies in the potential to
summarize patterns corresponding to different frequency
scales in very few (temporally) global coefficients. On one
hand, this leads to a refined analysis compared to the use of

scalar error estimates, but on the other hand this does not
resolve the shortcoming of being a nonlocal analysis.
[7] This paper extends the available set of tools for model‐

data comparisons by providing a perspective for time‐
frequency localized performance evaluations. We separate
observed and simulated fluxes into subsignals shaped by
characteristic frequencies prior to model‐data compar-
isons. Focusing on fluctuations (amplitude modulations)
corresponding to certain scales of variability allows addres-
sing the question of whether pronounced disagreement of
state‐of‐the‐art terrestrial biosphere models and eddy co-
variance data occurs on specific scales of variability within
specific time periods.

2. Simulated and Observed Data

[8] Terrestrial biosphere models represent interactions
between ecosystems and the lower boundary layer of the
atmosphere. Model‐data comparisons therefore often focus
on net land‐atmosphere exchanges of CO2, H2O, or energy.
Along these lines, special emphasis is put here on the
behavior of “Net Ecosystem Exchange, NEE.” It is the bal-
ance of CO2 uptake, the “Gross Ecosystem Exchange,GEE,”
and the overall release of CO2, the “Terrestrial Ecosystem
Respiration, TER.” Following micrometeorological conven-
tion GEE is denoted as a negative flux,

NEE ¼ GEE þ TER; ð1Þ

where

TER ¼ RA þ RH : ð2Þ

Here, RA and RH are autotrophic and heterotrophic respira-
tion, respectively. Furthermore, water fluxes are considered
in terms of “Actual Evapotranspiration, AET.” Model‐based
predictions of these fluxes are compared to their counterparts
derived from eddy covariance measurements.
[9] Two well established and widely applied terrestrial

biosphere models were analyzed here: ORCHIDEE
[Krinner et al., 2005] and LPJ [Sitch et al., 2003]. Both are
“big leaf models” which means that the canopy is treated as
a single compartment. Biomass is further subdivided in
functional tissue pools where carbon allocation strategies are
parameterized according to the plant functional types under
investigation. A comparison of their performance is inter-
esting because LPJ and ORCHIDEE represent each a major
group of terrestrial biosphere model with a focus on bio-
geographical and biogeophysical aspects, respectively. The
two approaches differ in model structure and parameteriza-
tion, and for instance employ different approaches to
numerical solution. These differences may lead to divergent
simulation results as discussed hereafter, even though the
models share a common set of fundamental hypothesis about
critical ecosystem processes. The two models vary substan-
tially in runtime behavior and structural complexity, which is
partly due to the fact that ORCHIDEE runs on half hourly
time steps, while LPJ is based on daily values.

2.1. Modeled and Observed NEE

[10] Terrestrial biosphere models provide net carbon
fluxes as the sum of the opposing fluxes TER and GEE
(equation (1)), which are explicitly modeled (see below).
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From an experimental perspective, NEE is the only carbon
flux that can be directly observed at ecosystem level: For
each site, vertical wind velocity components and CO2 con-
centrations are available based on a 20 Hz sampling fre-
quency. Processing these data by the eddy covariance
method (as described in the EUROFLUX methodology)
[Aubinet et al., 2000] leads to half hourly estimates for the
CO2 flux density, NEE [see also Foken, 2008a]. These data
underwent canopy storage corrections and u* filtering as
described by Papale et al. [2006]. An initial gap filling of
the half hourly data was realized based on time local em-
pirical flux estimates (MDS [cf. Reichstein et al., 2005]).
The time series were then further aggregated to daily flux
estimates in order to realize the model‐data comparisons on
equal sampling frequencies (see section 2.6). However, only
high‐quality daily data were used in the aggregation step: If
a daily aggregate had to be estimated from less than 43 out
of 48 original half hourly flux estimates, the datum was
treated as missing value and filled by means of “Singular
System Analysis” (see Appendix B).

2.2. Modeled and Observed GEE

[11] In general, terrestrial biosphere models simulate
carbon assimilation according to the original Farquhar et
al. [1980] model or the simplification by Collatz et al.
[1992]. From an ecophysiological perspective, canopy con-
ductance gc is the key linkage between carbon and water
fluxes. Understanding and modeling this feedback system is
intricate and solved very differently in the models. The
principle however, consists in estimating canopy conduc-
tance based on an initial gc scaled by incident radiation, vapor
pressure deficit, leaf water potential, and minimum nighttime
temperature [Jarvis, 1976]. Temperature, atmospheric drying
power, and soil moisture, but also mutual dependencies
between gc and carbon assimilation play a fundamental role.
ORCHIDEE then uses the empirical “Ball‐Berry” relation
[Ball et al., 1987; Collatz et al., 1991] (also known as
“Ball‐Woodrow‐Berry” approach) where the assimilation
rate determines gc which in turn affects the assimilation rate
by modeling the leaf CO2 concentration. LPJ employs a
similar concept, but assumes a fixed ratio of ambient to leaf
CO2 concentration along with an empirical boundary layer
description for the atmospheric coupling [Haxeltine and
Prentice, 1996]. In both models gc is additionally linked to
soil matrix potential and a soil water stress factor.
[12] “Gross primary productivity” (GPP = −GEE) further

depends in both models on the absorbed photosynthetically
active radiation (APAR) and thus on the state of plant
phenology. Phenology in terrestrial biosphere models is
conventionally formulated as a thresholding problem char-
acteristic to each plant functional type. The parameterization
is based on heuristics, for instance regarding the prescription
of growing degree days, and ORCHIDEE is additionally
calibrated against satellite observations.
[13] Although GEE cannot be directly observed, it can

be partitioned from the observed (half hourly) NEE. Flux
partitioning exploits the fact that nighttime NEE is purely
attributable to respiratory processes. Short‐term exponential
temperature dependence of the available turbulent nighttime
CO2 exchange is extrapolated from nighttime to daytime TER
(for details, see Reichstein et al. [2005] and equation (1))
leads to a data driven estimate for GEE. The aggregation step

to daily GEE estimates was realized in the same way as
for NEE.

2.3. Modeled and Observed TER

[14] While RA and RH can hardly be distinguished
experimentally, it is a standard to model these processes
separately. RA is further differentiated into ecosystem carbon
losses due to maintenance (RA,m) and growth costs (RA,g).
Biomass (and other factors such as the characteristic C:N
ratio) determine RA,m which is furthermore a function of
temperature. The latter is represented as an exponential in
LPJ, whereas ORCHIDEE assumes a linear dependency.
RA,g is generally a constant fraction (LPJ: 0.25, ORCHIDEE:
0.28) of GPP reduced by RA,m.
[15] Heterotrophic respiration (RH) is also a composite

term, integrating the efflux from different soil organic matter
(SOM) pools. Model structures differ in the number of soil
C and litter pools, the description of SOM biogeochemistry,
i.e., in pool specific decay rates. In addition, the linkage and
sensitivity of the different SOM pools varies substantially.
LPJ simulates the dynamics of SOM pools by different
decomposition sensitivities where RH is temperature driven
as described by Lloyd and Taylor [1994]. ORCHIDEE
follows mainly an arctangent function [Parton et al., 1988]
to describe RH as a function of temperature, and has a more
differentiated architecture of SOM pools. In both models the
decomposition of soil organic C also depends on the soil
water content.
[16] As described for GEE, the component fluxes cannot

be directly monitored and “observed” TER is estimated in
tandem with the flux separation. Again, the aggregation
step to daily TER estimates was realized in the same way
as for NEE.

2.4. Modeled and Observed AET

[17] Also water fluxes are not attributable to unique
processes. Rather, actual evapotranspiration (AET) is a
composite flux integrating transpiration which is partly
controlled by canopy conductance, soil evaporation, and
interception losses. In ORCHIDEE total evapotranspiration is
derived according to the submodel SECHIBA [Ducoudre et
al., 1993], which calculates the half‐hourly energy and
water balance of vegetated and nonvegetated surfaces.
Evapotranspiration is here composed from semiempirical
descriptions of interception losses, soil evaporation and
transpiration. The LPJ model uses the empirical Penman‐
Monteith combination formulation [Monteith, 1995].
[18] The eddy covariance system allows to directly esti-

mate evapotranspiration along with the CO2 exchange,
where the covariate is water vapor density (instead of CO2).
These data are then processed in accordance with the
description for NEE (see above).

2.5. Site Selection

[19] The site level model‐data comparison focuses on four
CarboEurope‐IP eddy covariance towers that cover a rea-
sonable range of European forest ecosystems: Hainich,
Germany (temperate broadleaf), Hyytiälä, Finland (boreal
coniferous), Loobos, Netherlands (temperate coniferous),
and Puechabon, France (Mediterranean evergreen broad-
leaf). Precise geographical coordinates, site characteristics,
and references are summarized in Table 1.
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2.6. Simulation Protocol

[20] Models were driven with meteorological data mea-
sured on site and using prescribed soil water holding ca-
pacity data (based on Granier et al. [2007]). Plant functional
types were defined according to the prevalent vegetation at
the site (Table 1). Long‐term daily meteorological time
series for the model spin‐up were generated by the reanalysis‐
driven product (NCEP‐REMO) from Feser et al. [2001],
harmonized with the site‐level meteorology through a re-
gression approach (see Appendix A). Consistently with
previous studies [Jung et al., 2007; Vetter et al., 2008] the
carbon pools were brought to steady state in relation to a
constant atmospheric CO2 concentration of 285.2 ppm (year
1850) by recycling over one decade of meteorological data
(1958–1967). Subsequently, the terrestrial biosphere models
were run from 1850–1957 using the same meteorological
data but with measured CO2 concentrations. The last tran-
sient phase (1958–2005) was based on observed meteoro-
logical data and CO2 concentrations. The latter were derived
from ice core data by Etheridge et al. [1996] and atmo-
spheric observations by Keeling and Whorf [2005]. Given
the strong sensitivity of ecosystem‐atmosphere fluxes to the
meteorological forcing, only periods when the terrestrial
biosphere models were driven by effectively measured
meteorology were considered in all subsequent analyses.
Note that corrected NCEP‐REMOdata were only used for the
spin‐up runs and to keep the model running in the presence of
measurement gaps. Site history in terms of management was
not prescribed in the simulations.
[21] For the sake of comparability, the model runs were

evaluated on a daily time step. LPJ is originally designed to
model monthly flux values. However, since it uses internally
daily time steps, only the driver data interface was modified
for our purposes: daily meteorology measurements could be
directly read in so that reliable daily flux estimates could be
obtained. We used the models consistently with their
application in the CarboEurope‐IP project using the standard
parameterizations.

3. Methods

3.1. Separating Subsignals of Characteristic Variability

[22] Observed and modeled time series can be described
as sets of additively superimposed subsignals, and the
assumption is that these subsignals are shaped by character-
istic scales of variability. Any time series Y = {yi}, where i = 1,
… N is therefore denoted as the sum of its subsignals,

Y ¼
XF
f¼1

Xf ; ð3Þ

where f is the index over the contained (and discretely sepa-
rable) characteristic frequencies. Throughout this study, we
use “Singular SystemAnalysis” (SSA [Broomhead and King,
1986; Elsner and Tsonis, 1996;Golyandina et al., 2001;Ghil
et al., 2002]) for extracting the subsignals Xf. SSA already
proved to be well suited for exploring daily eddy covariance
ecosystem‐atmosphere fluxes [Mahecha et al., 2007]. Since
recent advances enable SSA applications to fragmented time
series [e.g., Kondrashov and Ghil, 2006; Golyandina and
Osipov, 2007], all technical prerequisites for SSA applica-
tions to data are fulfilled. Here, we only summarize the two
step SSA principle; technical details can be found in
Appendix B.
[23] 1. The first step is time series decomposition. Ini-

tially, time lagged windows of the time series Y are used to
embed the series into its trajectory space, which is an ap-
plication of Takens’ embedding theorem [Takens, 1981].
The embedding space can be decomposed into underlying
(orthogonal) features in terms of a “Principal Component
Analysis in the time domain” [Ghil et al., 2002]. This
decomposition identifies a set of empirical orthogonal
functions and associated principal components. Each com-
ponent is usually shaped by one single oscillatory mode, and
thus, has a very simple representation in the frequency
domain. This allows assigning to each empirical orthogonal
function a characteristic frequency as identified by the
standard Fourier spectrum.
[24] 2. The second step is time series reconstruction. The

time series is partly reconstructed from a set of principal
components of the user’s choice. Typically, a reconstruction
is based on few selected components that are characterized
by complementary frequencies. Thus, each time series can
be finally described by a set of subsignals Xf each of which
belongs to a well defined frequency bin.
[25] Two frequency binning schemes are chosen a priori:

a coarse binning to five bands and a finer resolution com-
prising 10 frequency bins (Table 2). Except from the edge
bins, both binning boundaries are approximately equally
spaced over the logarithm of the frequencies. The heuristic
binning schemes account for two desired properties: First,
the bins coincide with scales that are accessible to an
ecological discussion, e.g., in the fine binning scheme the
day‐to‐day variability can be distinguished from synoptic
variability or the annual cycle is separable from semiannual
(= seasonal) components. Also in the coarse binning scheme,
frequency ranges are met that are clearly interpretable.
Second, the chosen bin widths are sufficiently coarse to
avoid misinterpretations due to inaccuracies occurring in the
frequency assignments to the SSA modes.
[26] We expect an improved inference on possibly inad-

equate parts of model structure since the range of thinkable

Table 1. Details on the Four CarboEurope‐IP Sites Used in the Present Studya

Site‐Code Name Latitude Longitude Elevation
Instrument
Height Orography Dominant Tree

Last
Clear‐Cut Reference

DE‐Hai Hainich 51.0793 10.452 430 43.5 gently sloppy Fagus sylvatica L. 1753 Knohl et al. [2003]
FI‐Hyy Hyytiälä 61.8474 24.2948 181 14.0 gently sloppy Pinus sylvestris L.,

Picea abies (L.) Karsten
1967 Suni et al. [2003]

FR‐Pue Puechabon 43.7414 3.59583 270 6.5 flat Quercus ilex L. 1942 Rambal et al. [2004]
NL‐Loo Loobos 52.1679 5.74396 25 27.0 flat Pinus sylvestris L. ‐ Dolman et al. [2002]

aMore overview information is available at http://www.fluxdata.org:8080/SitePages/.
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reasons of model‐data disagreements might be considerably
reduced if only selected frequency bins are investigated. In
this respect, it is important to note that SSA is more than a
filtering technique: Subsignal separation does not imply a
loss of information, i.e., by choosing the full set of com-
ponents a time series can be reconstructed entirely.
[27] It has been reported that despite of orthogonal base

functions the accuracy of subsignals separability is not
guaranteed [Golyandina et al., 2001]. This methodological
uncertainty has to be strictly distinguished from the effective
model‐data disagreement. Here, we quantify the separation
inaccuracy by a surrogate technique (the “Iterative Ampli-
tude Adjusted Fourier Transform” [Schreiber and Schmitz,
2000]): In brief, a set of surrogates is generated for each
residual corresponding to an extracted subsignal of interest.
Then the subsignal Xf is reextracted many times (20 times
for the fine, and 500 times for the coarse binning scheme).
Any subsignal is thus replaced by an array of subsignals,
and their deviations quantify the extraction uncertainty. All
analyses in this paper rely on this array instead of a single
subsignal and form the basis for confidence envelopes
for any estimated metric (for details, see Appendix B and
Figure S1, available as auxiliary material).1

3.2. Error Spectra

[28] Subsignal separation is a prerequisite for the central
step of the study: the qualitative and quantitative model‐data
comparison on different scales. Figure 1 shows conceptually
that this leads to a model‐data comparison for each defined
frequency bin. This first part of the analysis replaces the
“single misfit number paradigm” by an “error spectrum.”
Unlike established model‐performance evaluations in the
frequency domain [Braswell et al., 2005; Stoy et al., 2005;
Siqueira et al., 2006; Richardson et al., 2007], the degree of
misfit is still estimated in the time domain but accounting
only for fluctuations within a well defined frequency range.
[29] For constructing error spectra we use simple, though

robust, estimates: the Median Euclidean Error, MEE, its
standardized counterpart, and the biweight midcorrelation,
R. This choice is motivated by previous observations that
many conventional measures, for instance the root mean
squared error, are highly sensitive to outliers [Li and Zhao,
2006]. Insisting on robust properties of misfit estimates
bears the risk of overly pessimistic model‐data comparisons.

However, this property increases the general credibility of
the error spectra.
[30] In the analysis, it has to be taken into account that the

subsignals are centered (and, if this is not precisely the case,
the mean is removed). Thus, this study focuses exclusively
on differences in amplitude modulation of the subsignals.
The MEE quantifies the deviations in amplitude modulation
misfit as follows,

MEEf ¼ M Xf ;mod � Xf ;obs

�� ��� �
; ð4Þ

where the index f indicates the frequency bin to which the
subsignal Xf corresponds, and M{·} denotes the sample
median. Standardizing the MEE by the standard deviation of
the fluctuations in the frequency bin leads to the relative
error estimate:

rel:MEEf ¼
M Xf ;mod � Xf ;obs

�� ��� �
s Xf ;obs

� � ; ð5Þ

where s is the standard deviation.
[31] Correlation coefficients investigate linear relations

between the extracted subsignals. We apply the biweight
midcorrelation coefficient [Wilcox, 2004] (see Appendix C)
which behaves similarly to the classical variants: it is
bounded in the range of −1 to 1. In the presence of outliers,
however, the coefficient is superior compared to Pearson’s
product moment correlation and yields lower values, other-
wise the estimators are equivalent.
[32] The global model performance measures benefit from

the uncertainty assessment of time series decomposition:
Each performance measure can be estimated for all combi-
nations of the reextracted modeled and observed subsignals.
The estimates can thus be characterized through their dis-
tributions. For the sake of interpretation, these distributions
are summarized in violin plots [Hintze and Nelson, 1998]. A
“violin” is formed by the mirrored envelope of a kernel‐
density estimate of the distribution. It contains furthermore
all box plot information: lines that indicate the location of
the quartiles.

3.3. Time‐Frequency Localized Evaluation

[33] As pointed out above, any global estimate of model‐
data agreement is unable to reveal temporally local model‐
data (dis)agreements. The discrete decomposition of the
time series has the advantage that model performance can be

Table 2. Limits of the Two Applied Frequency Binning Schemesa

Bins I Bins II Upper Limit p[d] ≤ … Lower Limit p[d] > … Denotation

A a maximum 5137 low‐frequency variability
B b 5137 2593 annual cycle

c 2593 1309 semiannual variability (seasonality)
C d 1309 661 intermonthly variability

e 661 334
D f 334 169 interweekly

g 169 85 (monthly) variability
E h 85 43 day‐to‐day

i 43 22 (weekly) variability
j 22 minimum

aThe discretization is approximately log‐equidistant and provides the basis for all illustrations and analyses. The choice of the binning is a trade‐off,
taking into account the requirements for an ecological interpretation and the limitations in the frequency definition of the reconstructed components (in
the SSA framework).

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JG001016.
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estimated in the frequency classes at specific times. To the
best of our knowledge, the timing of the model‐data
agreement has not yet been investigated on different scales
of characteristic variability, especially not for terrestrial
biosphere models. Decidability on the significance of
model‐data agreement on a specific scale at a time point i
results from contrasting modeled and observed subsignals.
More precisely, we use the 95% confidence envelopes that
account for the SSA extraction uncertainty to compare
observed and modeled subsignals.

3.4. Time Period of Model‐Data Comparison

[34] For both temporally global and local model‐data
comparisons we have chosen a consistent window for all

models at all sites ranging from the 01.01.2001 to
31.12.2004. For all sites, longer observations and model runs
were available. Thus, we always use the full length of the time
series to derive the subsignals and quantify the extraction
uncertainty. However, the effective evaluations only refer to
the chosen 4 year long window. This ensures that the effect of
the anomalous year 2003 is equally represented at all sites. In
this way, also edge effects that appear in SSA and are only
partly controlled by the uncertainty assessment, are mostly
excluded from the model‐data comparison.

4. Results

[35] In the following, we first report on the results from
the temporally global model performance evaluation, the

Figure 1. The principle of the model‐data comparison on multiple timescales. Both observed and
modeled time series are first decomposed into subsignals corresponding to characteristic frequency bins.
Qualitative or quantitative model‐data comparisons can be carried out on the corresponding pairs of
subsignals. Each of the subsignals is represented here by the confidence envelope accounting for the
extraction uncertainty. The line within the 95% confidence envelope is the median of the reextracted
subsignals. Figure 1 exemplifies the novel model‐data comparison strategy with LPJ simulations of
AET and corresponding observations at the site NL‐Loo. The frequency binning corresponds to the
coarse discretization as summarized in Table 2.
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error spectra, and then illustrate the time localization of the
frequency‐dependent model‐data comparisons. It should be
recalled that the “errors” disclose model‐data disagree-
ments that might originate from problems in models and/or
observations.

4.1. Error Spectra: Instantaneous to Weekly
Variability

[36] In the joint analysis of the instantaneous (day‐to‐day)
up to weekly variability (coarse binning scheme; bin
E in Table 2) the overall model‐data disagreement is
0.3 �< MEEf �< 0.7 g C/m2/d for NEE across sites and
models (Figure 2). Generally, the magnitude of these errors is
slightly smaller than that of the component fluxes TER and
GEE. This is a generic phenomenon attributable to the rela-
tive magnitudes of these fluxes. For the component fluxes, we

observe an error range of 0.4 �< MEEf �< 1 g C/m2/d with
some exceptions. In terms of the C fluxes, LPJ seems to
produce consistently larger model‐data disagreement in the
high frequencies than ORCHIDEE. The most extreme
example is the mismatch of the high frequencies in the LPJ
simulation ofGEE at FR‐Pue. Regarding the water fluxes, we
find a different picture: at DE‐Hai and FR‐Pue ORCHIDEE
is clearly outperformed by LPJ. Nonetheless, the differences
among the models are within the range of site‐to‐site differ-
ences. It is noteworthy that model‐data mismatches are
clearly above the uncertainty attributable to the subsignal
extraction which itself produces errors of �<0.2 g C/m2/d.
[37] A refined analysis of the high frequencies for NEE

(fine frequency binning h–j in Table 2) reveals that the
quantitative errors in the net C flux are dominated by
the instantaneous day‐to‐day variability (frequency bin j,

Figure 2. The temporally global median Euclidean errors as a function of frequency, MEEf, resulting
from confronting eddy covariance observations and site level terrestrial biosphere model runs. The error
analysis were performed separately in each frequency bin f as described in Table 2 and illustrated by
Figure 1. The violins characterize the shape of error distribution. Black violins quantify the methodo-
logical uncertainties of subsignal separation attributable to the applied “Singular System Analysis, SSA.”
The lines in the right gray box (tot) are the reference errors found when directly comparing undecomposed
(but centered) time series.
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Figure 4). Figure 4 also shows that the highest‐frequency bin
carries large fractions of time series variance. This explains
the quantitative importance of the error. Note also that the
values of the correlation analysis decrease in bin j compared
to bins h and i.

4.2. Error Spectra: (Intermonthly) Monthly Variability

[38] The temporally global model‐data comparison for the
two coarse frequency bins that include monthly (bin D in
Table 2) to intermonthly (bin C in Table 2) variability is not
enlightening in terms of NEE: In most cases, no significant
difference between both models is found. A notable pattern
is, however, that LPJ systematically shows slightly larger
disagreements with the observed GEE. ORCHIDEE instead
tends to produce larger errors regarding AET. It is also no-
ticeable that the error magnitudes are very similar across
sites for both CO2 and H2O fluxes.

[39] While these model‐data mismatches are quantitatively
small compared to the high‐frequency and the seasonal‐
annual errors (see above, below), Figure 3 further shows that
their relative counterparts are not that small compared to the
weekly or seasonal‐annual frequencies. Poor agreements
between simulations and observations are identifiable in the
intermonthly variability of all fluxes. The standardization of
the errors avoids that these are overlooked because of their
low magnitude: Only small fractions of flux variability are
induced by these fluctuations; this frequency range is “the
spectral gap” [Baldocchi et al., 2001b; Stoy et al., 2005]:
[40] High‐resolution NEE error spectra corroborate these

findings (bins e–h in Table 2 and Figure 4). The analysis
reveals on the one hand that less than 20% of the variance in
NEE is explained by the intermediate frequency bins ex-
plaining the quantitatively low error rates. On the other hand,
the relative errors are very high within this frequency range,
generally above the high‐frequency and seasonal‐annual

Figure 3. The temporally global relative median Euclidean errors as a function of frequency, rel.MEEf,
resulting from confronting eddy covariance observations and site level terrestrial biosphere model runs.
The error analysis were performed separately in each frequency bin f as described in Table 2 and
illustrated by Figure 1. Symbols as in Figure 2.
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errors. An interesting pattern is that within the spectral gap
the relative errors tend to increase with decreasing fre-
quency opposed to the correlation coefficients (which
however do not exceed values of Rf �> 0.55) across models
and sites. Also the ratios of standard deviations between
observed and modeled fluxes are too low/too high in these
intermediate bins.

4.3. Error Spectra: Seasonal to Annual Variability

[41] Contrasting the seasonal‐annual components (bin B,
Table 2) leads to the largest model‐data disagreements in the
MEEf spectra. For example, LPJ simulations at DE‐Hai di-
verge from observed NEE by a MEEf ≈ 1.7 g C/m2/d (see

Figure 2). While ORCHIDEE does a better job at that site it
leads to large error rates at FR‐Pue and NL‐Loo. Tracing the
origin of these model‐data disagreements back to the quality
of GEE and TER simulations, LPJ is found to depict largest
model‐data deviations (with the exception of GEE at
DE‐Hai). Obviously large errors in GEE and TER partly
cancel out.
[42] The misrepresentation of CO2 fluxes appears to be

the highest in the seasonal‐annual cycles compared to other
frequency bins. The corresponding picture for AET is,
however, less clear. Again, ORCHIDEE is less accurate in
terms of water fluxes than LPJ at DE‐Hai and NL‐Loo,
while LPJ produces comparable error rates at FI‐Hyy and

Figure 4. The median Euclidean errors MEEf, relative MEEf, robust correlation estimates Rf, variances
sf
2, and ratios of standard deviations corresponding to the frequency bins f (fine discretization, Table 2) for
NEE. Each estimate is characterized by the median, enveloped by the central quartiles, and the 95%
confidence area. The black lines (gray areas) represent the methodical uncertainties of the signal sepa-
ration by means of “Singular System Analysis, SSA.”
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FR‐Pue. Errors in the simulated seasonal‐annual AET are
smaller compared to the day‐to‐day variability. This is an
interesting observation given that the bulk of the errors in
the C fluxes is allocated in the seasonal‐annual cycles.
[43] However, these errors appear much less dramatic in

the relative perspective. The rel.MEEf’s lie within the range
of the errors in the other frequency bins (Figure 3). As an-
ticipated above, the seasonal‐annual variability is relatively
well represented compared to intermediate frequencies.
[44] This finding is supported by the high‐resolution NEE

error spectra. Again, the rel.MEEf’s show a clear depression
at the annual cycle. The semiannual cycle, however, which
shapes the seasonality, is completely off at the sites FR‐Pue and
NL‐Loo. Nevertheless: in many cases the correlation coeffi-
cients are excellent. In the overall picture, the models produce
similar high disagreements in the semiannual components.

4.4. Error Spectra: Low‐Frequency Variability

[45] In the low‐frequency modes (bin A, Table 2), the
subsignal separation induces itself errors that are of similar

magnitude than the model‐data disagreements in terms of
MEEf (Figure 2). Hence, the reliability of SSA for extracting
low‐frequency modes is not good enough to make any in-
ferences about model performance. At first glance, the
overall low values of the performance estimates may be a
minor cause of concern: in addition to the small quantitative
errors, less than 5% of the total variance is allocated to these
components anyhow. However, Figure 3 shows that relative
errors in the low frequencies can be as big as those reported
for the spectral gap but occurring in tandem with very low
(or no) correlation.

4.5. Error Spectra Versus Total Model‐Data
Mismatches

[46] When comparing the error spectra to the MEE of the
undecomposed (but centered) time series, the magnitudes
of the MEE are only sometimes higher compared to the
largest MEEf “peak.” This result provides evidence for an
error cancelation across different frequency classes. For all
variables at most sites, high errors, for instance in the pure

Figure 5. The seasonal‐annual subsignals for NEE (frequency bin B, Table 2) and the confidence en-
velopes of the subsignal uncertainty estimation procedure at the four CarboEurope‐IP sites extracted from
the eddy covariance data and the two terrestrial biosphere models ORCHIDEE and LPJ. Additionally, the
corresponding components for GEE and TER, forming the lower and upper envelopes of the net C flux are
displayed. Here, the mean of the original time series was kept, rendering the Singular System Analysis
here a filtering technique of the original signal.
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seasonal‐annual components appear to be partly neutral-
ized by misrepresentations of fluctuations acting on other
timescales.

4.6. Time‐Frequency Localized Errors

[47] The error spectra reveal model‐data disagreement in
discrete frequency bins. The obvious question then is if
these errors originate from specific periods in time. Time‐
frequency localized error analyses provide a more so-
phisticated view on this problem. Figure 5 illustrates the
seasonal‐annual subsignals of the corresponding simulated
and observed time series (bin B in Table 2). The sub-
signal extraction is used here as a filtering technique
where high‐ and low‐frequency variability is removed.
Figure 5 discloses the balancing of large deviations in the
seasonal‐annual variability of GEE and TER: the resulting
NEE is met with astonishing accuracy by both models across
sites (for example LPJ at FI‐Hyy and FR‐Pue). This obser-
vation is concordant with the question of model equifinality
[Beven, 2001, 2006]. It becomes also evident that for the
selection of sites considered here, error cancelation effects
are more important for LPJ because it generally overestimates
the magnitudes of both component fluxes.

4.7. Recurrent Model Data Disagreement

[48] The previous time‐frequency analysis suggests the
existence of recurrent model‐data disagreements on differ-
ent scales of variability. Displaying a time series in a polar
plot, where one full circle corresponds to one year, is a good
method to address systematically recurrent patterns. Figure 6
shows this for the seasonal‐annual residual subsignals of

Figure 6. The residuals of the seasonal‐annual subsignals (frequency bin B, Table 2) for NEE adjusted
to the original time series means: (Xf,mod

+ Ymod) − (Xf,obs + Y obs) for ORCHIDEE and LPJ. Figure 6 shows
the residuals in polar plots, where a full circle corresponds to 1 year. The range of the residuals indicates
the subsignal separation uncertainty (95% confidence envelopes). The black envelopes indicate the
subsignal separation uncertainty when the observations seasonal‐annual subsignals are reextracted from
the observations only.

Figure 7. Time series showing the model assumptions on
photosynthetically active radiation (FPAR) at DE‐Hai and
corresponding site level estimates. For the sake of compara-
bility, all time series were rescaled to range [0; 1]. The ob-
servations were additionally subjected to SSA for removing
the high‐frequency variability, which (per construction) is
not present in the model FPAR. Models and data disagree
in the timing of spring onset and senescence which is one
explanations for divergent simulations of GEE.
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NEE. Both models tend to underestimate the seasonal‐annual
NEE modes during spring and to overestimate it in the later
summer months. In the overall view, the seasonal‐annual
fluctuations in the simulated NEE are over pronounced
compared to the observations. One reason is that during
spring greenup both models systematically underestimate
GEE (overestimate productivity) except from the site DE‐Hai
(Figure S2). These patterns hint at problems concerning the
internal representation of evergreen phenology in the models:
while here ORCHIDEE assumes a dynamic fraction of
photosynthetically active radiation (FPAR), LPJ does not
distinguish any temporal variations. Consequently, LPJ
overestimates CO2 uptake at early stages of vegetation

development. A minor, yet relevant problem is that even at
DE‐Hai modeled FPAR disagrees in the timing. Figure 7
shows the model FPAR along with site level estimates.
Obviously, these observations are also problematic, however,
they indicate some differences in the timing of phenology
which are propagated into recurrent model‐data disagree-
ments regarding GEE.
[49] Even more systematic problems than reported for

GEE affect the simulations of the respiratory processes
(Figure S3). While LPJ overestimates TER for all sites be-
tween June and October, ORCHIDEE shows some site
specific problems. In general, GEE model‐data disagree-
ments are more site than model‐specific compared to TER

Figure 8. A conventional model‐data comparison: Observed and modeled fluxes were aggregated to
monthly values and an annual cycle was drawn from the observed monthly flux ranges (hatched areas,
DE‐Hai (2000–2005), FI‐Hyy (1998–2004), FR‐Pue (2001–2005), NL‐Loo (1998–2005)). However,
the anomalous year 2003 where Europe was hit by a severe summer heat wave was excluded from the
estimated monthly range estimate. This year is represented by a separate line.
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simulations. This possibly reflects impacts of climate
regimes specificities on the model accuracy [Jaeger et al.,
2009]. The very systematic seasonal‐annual TER model‐
data disagreements instead suggest that the corresponding
model concepts are not sufficiently elaborated, which has
also been concluded previously by Kucharik et al. [2006].
One reason could be the often occurring overestimations of
GEE influencing the C transfer to SOM over the course of
the growing season. However, this cannot explain seasonal‐
annual TER overestimations at all sites, especially not for
DE‐Hai where GEE is well behaved in LPJ and ORCHIDEE
simulations. Here, the soil C pools may induce a model bias.
One presumption to discuss is if model spin‐up and transient
runs are suitable for the present sites and account for
substantial nonequilibrium conditions [see also Carvalhais
et al., 2008]. As a result in the overall NEE, none of the
modeled seasonal‐annual cycle timings is right in the
course of the year.
[50] Polar plots for higher‐frequency components reveal

similar recurrent model‐data disagreements. Figure S4
shows the residual intermonthly subsignals (frequency
band C) for NEE and the component fluxes. Here we find
that intermediate frequency variability during the growing
season is misrepresented in NEE. This may be an indication
of issues related to the following three aspects: (1) timing of

onset of growing season; (2) possible soil moisture limita-
tion within growing season; (3) timing of end of growing
season. Moving on to the highest‐frequency class also
shows pronounced nonstationary residuals (results not
shown). Here, the effect of higher flux variability in the
summer is propagated to a higher residual variability in
these months. In the high frequencies, the sensitive coupling
of C and H2O fluxes through the canopy conductance,
accompanied by a limited understanding of soil moisture‐
TER interactions [Reichstein et al., 2003; Seneviratne et al.,
2006a, 2006b] are assumed to limit the performance of the
models. At the same time, observational errors become
increasingly important in the very high frequency bins as
discussed hereafter, limiting the potential to attribute these
mismatches to erroneous model parameterization.

5. Discussion

5.1. Time‐Frequency Model‐Data Comparison

[51] Model‐data comparisons traditionally use temporally
global performance estimates to quantify (dis)agreements
between simulated and observed time series. Drawing a
distinction of subsignals according to characteristic fre-
quency classes leads to more differentiated comparisons. In
particular, the analyses provided in this paper based on

Figure 9. A comparison of a conventional analysis of LPJ residuals and a set of scale‐dependent
counterparts at the site DE‐Hai: The undecomposed time series Y of both model residuals and incident
radiation are not clearly related. Using the retrieved subsignals Xf instead, uncovers systematic responses in
the residuals to the corresponding fluctuations in the driver. Encoding the scatter by the day of year shows
that frequency‐dependent model‐data disagreements are a function of time. Note that only 3 out of 10
frequencies are exemplarily shown (frequency bins b, c, and j, Table 2). Part of the scatter in the
subsignals originates from the uncertainty associated with the subsignal extraction (see section 3.1 and
Figure S1 for details).
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“error spectra” reveal that conventional model performance
estimates are strongly dominated by the shape of the dom-
inant fluctuations. That is to say that by considering global
performance measures of undecomposed time series we
overlook model deficiencies at other scales of variability.
Localizing frequency dependent model‐data disagreement in
time further refines the model evaluation.
[52] For further illustrating the advantages of the method,

we contrast our approach with a conventional model‐data
comparison. As exemplified in Figure 8, the conventional
approach shows ranges of monthly aggregated fluxes over
the available time periods (beyond the four previously an-
alyzed years). The anomalous year 2003 during which
Europe was hit by a severe summer heat wave (for details,
see Ciais et al. [2005] and Reichstein et al. [2007]) is
excluded from the range estimates and illustrated by sepa-
rated lines. Clearly the reported effect of recurrent model‐
data disagreements (Figure 6) due to misinterpretations of
the seasonal‐annual dynamics cannot be uncovered by the
conventional alternative. Figure 8 reveals that the extreme
summer deviations in NEE (of positive sign, indicating
ecosystem C losses) are dramatically overestimated by both
models, especially by ORCHIDEE. We could presume then
that short‐term anomalies are allocated in high‐frequency
components and deduce that the corresponding frequency

classes are not well represented in the simulations. This
conclusion, however, remains a vague speculation when
relying exclusively on Figure 8. The error spectrum, instead,
unambiguously quantifies errors in the high frequencies.
The classical model‐data comparison can serve as confir-
mation of our findings, but only provides limited insights as
an alone standing analysis.
[53] This effect becomes also evident when investigating

the sensitivity of model residuals to the drivers: a classical
element of model performance evaluations. In Figures 9 and
10 we visualize a conventional residual analysis along with
the corresponding counter parts based on select subsignals
of one driver and the residuals. While the standard approach
leads to an undefined scatter between the residuals of the
carbon fluxes and global radiation, the proposed subsignal
analysis allows to identify clear frequency‐dependent re-
lationships (further examples are summarized in Figure S5).
The residuals respond to the drivers in different intensity
and along systematic paths across frequency classes. For
instance, the hysteretic residual response of annual sub-
signals of CO2 fluxes to radiation supports the previous
hypothesis that delayed model responses to meteorological
forcing play a central role in model‐data mismatch. As in
this case, where we highlight systematic differences in
time‐frequency responses to incident radiation, analogous

Figure 10. A comparison of a conventional analysis of ORCHIDEE residuals and a set of scale‐dependent
counterparts at the site DE‐Hai: The undecomposed time series Y of both model residuals and incident
radiation are not clearly related. Using the retrieved subsignals Xf instead, uncovers systematic responses
in the residuals to the corresponding fluctuations in the driver. Encoding the scatter by the day of year
shows that frequency‐dependent model‐data disagreements are a function of time. Note that only 3 out
of 10 frequencies are exemplarily shown (frequency bins b, c, and j, Table 2). Part of the scatter in the
subsignals originates from the uncertainty associated with the subsignal extraction (see section 3.1 and
Figure S1 for details).
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investigations of model‐data disagreement can adumbrate
systematically deviating process representations in ongoing
model development.
[54] Also Figure 11 exemplifies the potential of such an

approach showing how abrupt changes in volumetric soil
water content are often, but not always, directly followed by
severe high frequency model‐data disagreements. This
residual analysis uncovers that the instantaneous TER and
GEE responses to alterations in the ecohydrological condi-
tions are more sensitive in LPJ compared to ORCHIDEE at
two very different sites. While the C flux residuals of the
two models show similar fluctuations, the opposite holds for
AET simulations: AET residuals of LPJ and ORCHIDEE are
sometimes even of different sign. ORCHIDEE appears to
react more sensitively to sudden hydrological shifts com-
pared to LPJ, which is the consequence of ORCHIDEE’s
soil surface layer parameterization.
[55] One weakness of the time‐frequency model‐data

comparison is that only the variability of a characteristic
scale is preserved and no information on the mean values is
given. This intrinsic property of any time series decompo-

sition requires that bias estimations are realized as an
additional step. Studies aiming at confining carbon balances
of terrestrial ecosystems should thus strive for conventional
tools as applied for example by Jung et al. [2007]. The two
approaches of model‐data comparisons can be seen as
complementary, where different patterns are addressed.
These patterns are, however, only partly independent: a
fundamental problem of model biases is their propagation.
In terrestrial biosphere models which contain a series of
coupled and often nonlinear submodels, biased internal
variables might be translated into erroneous amplitude
modulations of depending processes via multiplicative
terms. In the overall view, however, we find that time‐
frequency localized model‐data comparisons offer a per-
spective for meticulous analyses of particular interest for
model development.

5.2. Observational Limitations

[56] Random and systematic errors in the observations
naturally limit the quality of model‐data comparisons [Rykiel,
1996;Morales et al., 2005;Friend et al., 2007]. The effects of

Figure 11. Fluctuation of volumetric soil water content (SWC) and high‐frequency model‐data disagree-
ment. The colored background encodes the difference in SWC between 2 days in the time window
May–August 2002 at the eddy covariance sites DE‐Hai and FR‐Pue. The overlaid blue and red lines
are the residuals of the high‐frequency fluctuations in LPJ and ORCHIDEE simulations (bin E, Table 2),
respectively, for gross ecosystem exchange (GEE), terrestrial ecosystem respiration (TER), and actual
evapotranspiration (AET). The black lines show where data gaps occurred. Strong fluctuations in SWC are
clearly accompanied by high‐frequency model‐data disagreements. For the C fluxes these disagreements
are higher in the LPJ simulations and for AET ORCHIDEE seems more sensitive.
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random errors on eddy covariance data are well investigated
[e.g., Hollinger and Richardson, 2005; Richardson et al.,
2008], and it could be shown that the temporal autocorrela-
tion of eddy covariance measurement errors is very short,
usually subdaily [Lasslop et al., 2008]. Being founded
on daily aggregates, constructed from up to 48 replicate
measurements, we assume the presented model‐data com-
parison not to be strongly affected by error autocorrelation.
Thus, observational errors are not expected to have an effect
on the low‐frequency model‐data comparisons. For the
highest‐frequency bins, however, the quantified errors might
result from both model deficiencies and the observational
error.
[57] Unlike random errors, systematic biases are poorly

constrained. For example the impact of low nighttime tur-
bulence on nocturnal flux estimates [van Gorsel et al., 2007]
and the lack of energy balance closure [Wilson et al., 2002;
Foken, 2008b] might limit the quality of observational data
and propagate to subsequent model‐data comparisons. No
consensus has been achieved so far regarding the treatment
of systematic errors is model data synthesis approaches
[Kruijt et al., 2004; Burba et al., 2008].
[58] A very different shortcoming of the present model‐

data comparison is that historical ecosystem alterations re-
main unconsidered in our simulations. In principle, natural
or anthropogenic modifications of stand structure, or changes
in the magnitude of nitrogen deposition, to give only two
examples, can be incorporated in standard terrestrial bio-
sphere models [Thornton et al., 2002; Zaehle et al., 2006;
Carvalhais et al., 2010]. It is data scarcity that largely
impedes such modeling exercises [Morales et al., 2005].
[59] An in depth understanding of structural discrepancies

of terrestrial biosphere models is favored when singular
processes can be encircled in model‐data comparisons.
However, as introduced in section 2, the experimental setup
of eddy covariance observations can resolve only the
antipodal gross carbon fluxes of respiration and photosyn-
thesis. Yet, since even these two fluxes cannot be observed
independently, the model‐data comparison reaches an
intrinsic limitation: The applied flux separation turns “data”
into simulations and we can only state that here the study is
comparing model outputs against diagnostic flux estimates.
We hold the view that this is generally a valid reference since
we accept these empirical flux estimates as benchmark and
best possible approximation of the “true” fluxes (for a general
discussion on the role of empirical reference models, see
Abramowitz et al. [2008]).
[60] An additional limitation to any model‐data compari-

son is set by the limited monitoring period [Braswell et al.,
2005; Kucharik et al., 2006]. In the case of time‐frequency
model‐data comparisons this is critical since the accuracy of
low‐frequency pattern extraction decreases with time series
length. Investigating the potential of terrestrial biosphere
models to reproduce low‐frequency modes is, however, of
outstanding relevance under climate change conditions
[Richardson et al., 2007]. In this study we proposed a for-
mal method to quantify the uncertainty of subsignal sepa-
ration and found that the explored observation period does
not allow assessing the simulated low‐frequency variability.
This finding stresses the importance of continued flux
monitoring for understanding longer‐term carbon and water
flux variability in addition to other observations, such as

tree ring records [Briffa et al., 2008] or lysimeter data
[Teuling et al., 2009], which miss the high‐frequency
variability.

5.3. Confining Problems in Terrestrial Biosphere
Models

[61] The multifactoral effects on GEE simulations com-
plicate a precise model diagnostic based on time‐frequency
localized model‐data disagreements, for example how to
explain that especially LPJ produced large errors in the
seasonal‐annual variability? This pattern turns out to be very
site specific and especially the Pinus sylvestris L. dominated
forests FI‐Hyy and NL‐Loo are clearly misrepresented
between April and the beginning of August. In this period
GEE is underestimated (C uptake is overestimated), which
could be due to inaccurate plant functional type specific
parameterizations and assumptions which do not account for
seasonal changes in the physiological activity of evergreen
trees [cf.Wang et al., 2003]. Similar, but less dramatic effects
are apparent in the ORCHIDEE simulations of GEE which
is possibly because of the more differentiated phenology
(Figure 7).
[62] Site‐to‐site differences can help in scrutinizing the

origins of identified problems. For example, the fact that at
the Mediterranean site FR‐Pue the amplitude modulation of
the simulated seasonal‐annual GEE signal (Figure 5) is
shaped by overpronounced semiannual fluctuations could
hint at an oversensitivity of terrestrial biosphere models to
drought situations which shape Mediterranean ecosystems.
Indeed, when we correlate the model driver vapor pressure
deficit (VPD) and model residuals (Figure S5) we see high
correlations (Rf > 0.6) between intermonthly and annual
periodicities at FR‐Pue which are not existent at the other
sites.
[63] Another cause of concern is that LPJ simulations of

TER lead to systematic and recurrent model‐data disagree-
ments on a seasonal‐annual scale. The highly differentiated
architecture of coupled soil C pools and H2O dynamics, as it
is assumed by ORCHIDEE, is apparently less affected by
recurrent seasonal‐annual TER disagreements compared to
LPJ. In the latter, the discussed effect of biases, propagated
to specific fluctuations, can also play a substantial role. The
fact, however, that simulated seasonal‐annual TER sub-
signals of both models (especially at DE‐Hai) often reach
their yearly maximum with a time delay of several days or
weeks, indicates an insufficient sensitivity of the SOM
decomposition rates. The problem is not explicable by
model‐data disagreements in GEE transferred to incorrect
RA simulations, since sites are affected where the seasonal‐
annual GEE is well matched. Instead, this might be a struc-
tural (or parameterization) effect caused by inaccurately
defined dependencies of RA,g or RA,m to variations in GEE.
Also root development at the beginning of the growing
season (and the corresponding RA,g) is difficult to model and
to parameterize.
[64] The observed model‐data disagreements for TER

simulations across sites are, however, not totally unexpected:
Kucharik et al. [2006] reported overestimations of TER
during the growing seasons of very different sites. From their
comparison (of undecomposed) observed and simulated time
series they found disagreements in the range of approxi-
mately 0.6 to 3 g C/m2/d. Figure 5 suggests this number also
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to hold for ourmodel and site selection.Kucharik et al. [2006]
trace this mainly back to inappropriate temperature sensitiv-
ities of the different respiration subprocesses; we largely
agree with this conclusion.
[65] Deficient modulations of simulated seasonal‐annual

and high‐frequency variability in the C fluxes are symp-
tomatic and shape model‐data disagreement. Error cancel-
ation in NEE generally leads to low error rates for some
sites, however, this is not always the case. Especially at the
Mediterranean site FR‐Pue and the temperate broadleaf site
DE‐Hai errors in TER propagate to the seasonal‐annual NEE
dynamics. These disagreements occur along with imprecise
simulations of the variability in H2O fluxes. However, the
general time‐frequency analysis of simulated AET leads to a
very different shape of error spectra (Figure 2). Here, largest
errors occur in time‐instantaneous responses of AET which
implicitly shows that the seasonal‐annual cycles are quite
well represented. Model‐to‐model differences in AET are
small compared to some of the specific site‐to‐site differ-
ences. However, the high‐frequency responses of AET to
switches in soil water content (exemplarily shown in
Figure 11) uncover very different model responses to driving
variables, residing in the parameterization of a skin soil layer
in ORCHIDEE, causing the stomata to respond quickly to
rain events. These results emphasize the need to further
investigate the coupling of water and carbon fluxes on an
ecosystem scale.
[66] The model‐data differences at synoptic, intermonthly,

and low frequencies (period > 1 year) are quantitatively of
minor importance compared to errors in seasonal‐annual
and high‐frequency classes. Nonetheless, these disagree-
ments exist and also depict recurrent problems. If we ana-
lyze the time‐frequency errors for NL‐Loo it seems as if the
mismatch during anomalous years such as 2003 appears in
all models in different frequency bins. The two terrestrial
biosphere models seemed to respond on different scales to
an unexpected climate anomaly. In view of recent scenarios
[e.g., Yiou et al., 2009], alterations of ecosystem variability
in response to a changing climate variability are to be
expected. Thus, despite of their quantitative minor contribu-
tions to the total variability, the intermediate frequencies may
gain importance.
[67] As a final point in this study we aim at understanding

the relative importance of model choice, site‐to‐site differ-

ences, and target frequency. A qualitative ranking of such
factors requires a meta analysis where the variance of the
observed (temporally global) error distributions (in terms of
MEE) can be traced back to its dominant factors. A n‐way
analysis of variance where the impact of analyzed “site,”
chosen “model,” and “frequency band” and their interac-
tions provides an answer (Table 3). This variance parti-
tioning clearly reveals that the major cause of model‐data
disagreement is a matter of the timescale under investiga-
tion. The model‐to‐model differences play a very minor role
in the final net C and H2O fluxes but are relatively important
regarding the component fluxes (this was explained above
by error cancelation). Since the applied terrestrial biosphere
models encode relatively similar hypotheses of underlying
biogeochemical processes, this finding indicates that a
common source of model error lies in an incomplete un-
derstanding of biospheric responses to climate forcing
across timescales. The semiempirical character of dynamical
ecosystem theory implies that terrestrial biosphere models
differ especially in the detailed formulations and para-
meterizations of the known principles (section 2), but also
that they hardly account for the spatial heterogeneity of real
world ecosystems. This is confirmed by the large influence
of the site‐to‐site differences that cannot be captured by
these two models of different complexity.

6. Conclusions and Outlook

[68] This paper is an attempt to rethink model‐performance
evaluations in the context of biosphere‐atmosphere exchange
fluxes of CO2 and H2O. Explicitly locating model‐data
disagreements in frequency and time helps to identify and
explain the essential problems of state‐of‐the‐art terrestrial
biosphere models. Since these models encode the current
understanding of the dynamics of biosphere‐atmosphere
CO2, H2O, and energy fluxes, this model‐data comparison
also helps to point out future research andmodel development
needs. The analyzed model‐data disagreements are to be read
in two ways:
[69] First, they can serve as a guide for assessing the

available set of models. As we have demonstrated, we
expect improvements of models, for example by considering
the reported over sensitivity to short‐term fluctuations in the
drivers, or through adjustments of unrealistic representations
of seasonal‐annual variability during the growing season. In
this respect, this study provides a technical framework for
model assessments to be deployed in test runs accompanying
ongoing model development.
[70] Second, the conceptually novel way to analyze eco-

system fluxes on different scales of characteristic variability
might serve as a motivation for rethinking the principles of
current modeling techniques. We postulate that taking
fluctuations on different scales explicitly into account could
change the conventional paradigm of model parameteriza-
tions. First steps in this direction have been made, where
soil or ecosystem respiration models were parameterized
considering high‐frequency variability only [e.g., Reichstein
et al., 2005; Gu et al., 2008]. In this context, but also under
conditions where model biases affecting defined time-
scales are unavoidable, for example due to unknown site
history and inappropriate steady state assumptions con-
founding model parameterizations [Carvalhais et al., 2008],

Table 3. A Three‐Way Analysis of Variance That Traces the
Distributions of the Median Euclidean Errors (MEE) Back to
the Factorsa

Factor NEE GEE TER AET

Site 1 9 5 4
Model <1 <1 3 3
Frequency 43 33 38 44
Site × Model <1 <1 1 5
Site × Frequency 30 37 10 14
Model × Frequency 1 2 <1 3
Unexplained 24 19 43 28

aSite‐to‐site variability, model‐to‐model differences, and frequency
dependencies (summarized in Table 3 as percentages). This three‐way
ANOVA also considers the interaction terms of the factors. Apparently
model performance is first of all a matter of frequency. Regarding NEE,
strong site‐to‐site effects are observable which are less dominant in the
component fluxes GEE and TER compared to model‐to‐model differences.
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differentiation according to prevalent timescales offers novel
perspectives.

Appendix A: Long‐Term Drivers

[71] The product of Feser et al. [2001] corresponds to a
simulation with the REMO model [Jacob and Podzun,
1997] driven by the NCEP reanalysis data set [Kalnay et
al., 1996]. The harmonization of NCEP‐REMO and site‐
level meteorology was carried out by site‐specific regression
models derived from the overlap period in monthly
aggregates. Monthly data were chosen to avoid issues related
to the exact timing of the passage of frontal systems as
simulated in the regional climate model. These would corrupt
the regressions on daily time steps. The regression coeffi-
cients were then applied to the long NCEP‐REMO time
series for the respective grid cells at the four EC sites in order
to remove possible biases in the reanalysis product. The
corrected NCEP‐REMO time series were then further used to
extend the site meteorology backward and to fill gaps in the
meteorological measurements.

Appendix B: Singular System Analysis

[72] In the present study we used “Singular System
Analysis” (also known as “Singular Spectrum Analysis,”
SSA [Broomhead and King, 1986; Elsner and Tsonis, 1996;
Golyandina et al., 2001; Ghil et al., 2002]) as basis for the
time‐frequency model‐data comparison. The application of
SSA is justified because of some theoretical advantages
compared to other techniques (discussed by Mahecha et al.
[2007]), and favored by its applicability to fragmented time
series. Note however that the question of how to separate
superimposed subsignals from a single data stream has been
a matter of debate for decades, and is still not resolved [Ghil
et al., 2002]. Other methods might be equally applicable in
the context of model‐data comparisons.
[73] SSA aims at extracting subsignals of a given time

series X(t), t = 1, …, N belonging to characteristic scales of
variability. Initially, an embedding dimension has to be
defined a priori. This is a window of length P which in this
study was set equally for all time series to 3 years. Sliding the
window along the time series leads to a trajectory matrix
consisting of the sequence of K = N – P + 1 time‐lagged
vectors of the original series. The P dimensional vectors of
the trajectorymatrixZ are set up as described in equation (B1)
[Golyandina et al., 2001].

Zi ¼ X ið Þ; . . . ;X iþ P � 1ð Þð ÞT 1 � i � K ðB1Þ

Based on the K × P trajectory matrix Z a P × P covariance
matrix C = {ci, j} is built:

C ¼ 1

K
ZTZ ðB2Þ

For constructing the covariance matrix, various approaches
have been reported in the literature and we refer the reader to
the specialized literature for understanding different variants
of SSA [Vautard and Ghil, 1989; Golyandina et al., 2001;
Ghil et al., 2002]. The entries of the resulting P × P matrix
represent the captured lag covariance. This is used to deter-
mine the orthonormal basis by solving equation (B3),

ETCE ¼ L; ðB3Þ
where, E is a P × P matrix of the eigenvectors Ei, also called
empirical orthogonal functions (EOFs) of C. The matrix L
contains the respective eigenvalues in the diagonal, sorted by
convention in descending order diag(L) = (l1,…, lP), where
l1 ≥ l2 ≥… ≥ lP. It can be shown that due to the properties
of the covariance matrix C, preserving symmetry and being
real valued and positive semidefinite, all eigenvectors and
eigenvalues are real valued, where the latter are nonnegative
scalars. The eigenvalues are proportional to the fraction of
explained variance corresponding to each EOF. In analogy to
the well known Principal Component Analysis, the decom-
position allows the construction of principal components
(PCs) as generated time series representing the extracted
orthogonal modes (equation (B4)). This is why SSA is often
also called a “PCA in the time domain.”

A� tð Þ ¼
XP
j¼1

X t þ j� 1ð ÞE� jð Þ; 1 � � � P ðB4Þ

As it can be seen in equation (B4), the principal components
are obtained by simply projecting the time series onto the
EOFs. This projection constructs a set of P time series of
length K.
[74] The last step in SSA is the reconstruction of the time

series through the principal components Ak(t), see equation
(B5). The original signal can be fully or partially re-
constructed. This is a selective step, and the analyst has to
decide which Ak(t) are combined so that one obtains an
interpretable combination of principal components. This
enables signal‐noise separation and the reconstruction of
specifically selected frequency components, as illustrated by
equation (B5).

Rk tð Þ ¼ 1

Mt

X
�2K

XUt

j¼Lt

A� t � jþ 1ð ÞE� jð Þ ðB5Þ

In this reconstruction procedure, k is an index set deter-
mining the selection of modes used for the reconstruction,
Mt is a normalization factor, and the corresponding exten-
sion for the series boundaries are given by Lt and Ut (defi-
nitions for the boundary terms are given in Table B1; a
comprehensive derivation can be found in the work of Ghil
et al. [2002]).

B1. SSA Gap‐Filling Procedure

[75] Kondrashov and Ghil [2006] introduced an iterative
SSA gap‐filling strategy. Their method allows a time series
reconstruction for fragmented time series, and thus is a tool
for gap filling. Here we outline the fundamental steps of the
SSA gap‐filling algorithm:
[76] 1. Center the time series to zero mean, the latter being

estimated from present data only.

Table B1. Values of the Normalization Factor Mt and of the
Lower Lt and Upper Ut Bounds of Summation

Temporal Locations Mt Lt Ut

For 1 ≤ t ≤ P – 1 t−1 1 t
For P ≤ t ≤ K P−1 1 P
For K + 1 ≤ t ≤ N (N − t + 1)−1 t − N + P P
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[77] 2. Initiate an inner‐loop iteration by applying SSA of
the zero‐padded time series. The leading reconstructed
component (identified through its highest eigenvalue) is
used to fill the values in the gaps. This leads to a new
estimate of the time series mean, which is used for re-
centering the time series. The initially zero‐padded values
are set to their reconstructions. This procedure is carried out
based on the computed and recomputed reconstructed com-
ponents until a convergence criterion (in terms of the RMSE)
is met.
[78] 3. After the first inner‐loop iteration meets the con-

vergence criterion, switch to an outer‐loop iteration. This is
the natural extension of the described procedure above,
achieved by simply adding a second (third, etc.) additionally
reconstructed component to inner‐loop iteration.

B2. Subsignal Separability

[79] Golyandina et al. [2001] showed that sometimes a
signal carries an overtone that corresponds to a different
frequency bin. Thus, we applied SSA first and distribute the
subsignals to each frequency bin. The individual subsignals
are then resubjected to SSA and if subsignals are detected
that do not fit their actual bin these are redistributed to the
corresponding frequency class.

B3. Subsignal Confidence Boundaries

[80] It has been reported that despite of orthogonal base
functions (the EOFs) the accuracy of subsignals separability
is not warranted [Golyandina et al., 2001]. This methodo-
logical uncertainty has to be strictly distinguished from the
effective model‐data disagreement. We quantified the sep-
aration inaccuracy by a surrogate technique: For each sub-
signal in a frequency bin the corresponding residual was
retained. For each residual a set of surrogates is generated.
Since most of the analysis will focus on the coarse bins, 500
surrogates were created in case of the coarse binning, and 20
in case of the fine binning. A surrogate is a time series
which resembles the original counterpart (here the residuals)
in two fundamental aspects: the distribution and spectral
properties. The latter warrants as identical autocorrelation
structure. We followed the technique proposed by Schreiber
and Schmitz [1996] known as “Iterative Amplitude Adjusted
Fourier Transform, IAAFT” and we refer the reader to the
original paper for more details.
[81] One problem inherent to IAAFT is that when the

difference of start and end points are large, the
corresponding spectral power of the “jump” is spread over
all frequencies. This affects especially smooth time series
with low powers in the high frequencies. The corresponding
surrogate time series appear more noisy in all frequency
ranges compared to the reference [Schreiber and Schmitz,
2000]. Fortunately, in our set up a precise definition of
the spectral content is provided by the frequency binning
(Table 2). Thus in a final step, surrogates undergo itself
SSA, warranting that the surrogates accurately match the
frequency structure of the residuals.
[82] After a set of surrogates has been generated and

added to the subsignal of interest, the latter are reextracted.
Any subsignal is thus replaced by an array of subsignals
and their deviations quantify the extraction uncertainty. All

analyses in this paper rely on this array instead of a single
subsignal and form the basis for confidence envelopes for
any estimated metric. Figure S1 conceptually summarizes
the procedure in a flow chart.

Appendix C: Biweight Midcorrelation

[83] The correlation between an observed (Xobs) and a
modeled signal (Xmod) can be estimated by means of the
biweight midcorrelation coefficient [Wilcox, 2004]. First, we
need to find the median euclidean deviation from the sample
median, MED,

MED ¼ M X �M Xf gj jf g: ðC1Þ

Based upon these estimates, the data are rescaled as follows,

pi ¼ xi;mod �M Xmodf g
9MEDmod

; and

qi ¼ xi;obs �M Xobsf g
9MEDobs

:

ðC2Þ

These two quantities are used to encode whether the
rescaled data do meet the following constraints:

ai ¼
1 if pij j � 1

0 if pij j > 1

8<
: ; and

bi ¼
1 if qij j � 1

0 if qij j > 1

8<
: :

ðC3Þ

Finally, the terms

ci ¼ 1� p2i ; and di ¼ 1� q2i ; ðC4Þ

are to be defined, based upon which the biweight mid-
covariance is found,

smod;obs ¼
N
PN

i¼1 aibic
2
i d

2
i xi;mod �M Xmodf g� �

xi;obs �M Xobsf g� �
PN

i¼1 aici 1� 5p2ið Þ
� � PN

i¼1 bidi 1� 5q2ið Þ
� � :

ðC5Þ

[84] In analogy to the other correlation estimates, the
variances and covariances are used to obtain the coefficient:

Rmod;obs ¼ smod;obsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smod;modsobs;obs

p : ðC6Þ

The biweight midcorrelation is bounded in the range of −1
to 1. Its use was recently advocated by Cannon and Hsieh
[2008], who showed that in the presence of outliers the
coefficient is superior compared to Pearsons’ product
moment correlation, otherwise it retrieves comparable values.
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