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Research Article

Impact of UV Radiation on the Raman Signal of Cystine:
Implications for the Detection of S-rich Organics on Mars

V. Megevand,1,2 J.C. Viennet,1 E. Balan,1 M. Gauthier,1 P. Rosier,1 M. Morand,1 Y. Garino,1

M. Guillaumet,1 S. Pont,1 O. Beyssac,1 and S. Bernard1

Abstract

Traces of life may have been preserved in ancient martian rocks in the form of molecular fossils. Yet the
surface of Mars is continuously exposed to intense UV radiation detrimental to the preservation of organics.
Because the payload of the next rovers going to Mars to seek traces of life will comprise Raman spec-
troscopy tools, laboratory simulations that document the effect of UV radiation on the Raman signal of
organics appear critically needed. The experiments conducted here evidence that UV radiation is directly
responsible for the increase of disorder and for the creation of electronic defects and radicals within the
molecular structure of S-rich organics such as cystine, enhancing the contribution of light diffusion pro-
cesses to the Raman signal. The present results suggest that long exposure to UV radiation would ultimately
be responsible for the total degradation of the Raman signal of cystine. Yet because the degradation induced
by UV is not instantaneous, it should be possible to detect freshly excavated S-rich organics with the Raman
instruments on board the rovers. Alternatively, given the very short lifetime of organic fluorescence
(nanoseconds) compared to most mineral luminescence (micro- to milliseconds), exploiting fluorescence
signals might allow the detection of S-rich organics on Mars. In any case, as illustrated here, we should not
expect to detect pristine S-rich organic compounds on Mars, but rather by-products of their degradation. Key
Words: Astrobiology—Organic degradation—Raman spectroscopy—Search for Mars’ organics—Simulated
martian UV radiation. Astrobiology 21, xxx–xxx.

1. Introduction

Today, the surface of Mars resembles a hyper-arid
desert. This is in stark contrast to what is recorded in the

late Noachian to early Hesperian rocks of the Southern
Hemisphere: valley networks, paleolakes, and canyons all
point to Mars being more habitable in its geological past
(Fassett and Head, 2008; Grotzinger et al., 2014; Words-
worth, 2016; Ramirez and Craddock, 2018). Because Mars
currently lacks global plate tectonics, a unique record of
ancient biological processes has thus possibly remained in the
subsurface of Mars in the form of molecular fossils
(McMahon et al., 2018). Identifying on Mars the geological
formations that potentially preserved organic biosignatures
and studying them with appropriate instrumentation, both in
situ and after their return to Earth, are now strategic priorities.
This is why both NASA and ESA-Roscosmos are sending
rovers to Mars (the NASA Mars 2020 Perseverance rover will
land on Mars in February 2021, and the ESA-Roscosmos

ExoMars Rosalind Franklin rover will take off in 2022), with
the primary goal of searching for ancient traces of life likely
under the form of organic compounds (Farley and Williford,
2017; Vago et al., 2017).

Historically, no organic compounds were detected in
martian soils by the pyrolysis gas chromatograph mass
spectrometer (GCMS) on board the Viking landers besides
small Cl-rich compounds which were interpreted back then
as contamination (Biemann et al., 1976, 1977). About 30
years later, the Phoenix lander reported the widespread
presence of perchlorates (Hecht et al., 2009), leading
Navarro-González et al. (2010) to suggest that the Cl-rich
compounds detected by the Viking landers were produced
by reactions of martian organic materials with perchlorates
during the pyrolytic measurements. This view has since
been supported by laboratory experiments (Steininger et al.,
2012; Glavin et al., 2013; Miller et al., 2015; François et al.,
2016; Guzman et al., 2018) and confirmed by the detection
of Cl-rich organics by Sample Analysis at Mars (SAM), the
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pyrolysis GCMS on board Curiosity (Leshin et al., 2013;
Ming et al., 2014; Freissinet et al., 2015; Eigenbrode et al.,
2018; Szopa et al., 2020). In addition, diverse pyrolysis
products, including S-rich organics, were recently detected
by SAM (Eigenbrode et al., 2018), confirming the presence
of organic compounds in the subsurface of Mars.

Still, the surface of Mars is known to be hostile for or-
ganic molecules: it is bombarded by ionizing radiation that
can alter organic compounds (Fornaro et al., 2018; Fox
et al., 2019). The thin CO2 atmosphere of Mars absorbs
most X-rays and far-UV radiation, but it lets mid- and near-
UV photons in the range 190–410 nm, g-rays, solar ener-
getic protons, and galactic cosmic rays reach the surface
(Patel et al., 2002; Dartnell et al., 2007; Hassler et al.,
2014). Even though UV photons do not penetrate that much
below the surface (Carrier et al., 2019), they can degrade
organic compounds in timescales shorter than higher-energy
particles capable of penetrating up to 2 m (days vs. hundreds
of millions of years; Fornaro et al., 2018; Fox et al., 2019).
Although UV radiation can be responsible for the production
of photoresistant compounds in some cases (such as ben-
zenehexacarboxylic acid-trianhydride; Stalport et al., 2009),
a number of studies, mostly relying on gas chromatography–
mass spectrometry or Fourier transform infrared spectros-
copy (FTIR), or both, have shown that the exposure to UV
radiation leads to the rather fast photodecomposition of or-
ganic compounds (ten Kate et al., 2005; Stalport et al., 2009,
2019; Hintze et al., 2010; ten Kate, 2010; Poch et al., 2013,
2014; Fornaro et al., 2018), which implies that the quest for
organics relies on their preservation in deeper levels of the
regolith. To this purpose, upcoming missions to Mars will
embark Raman spectroscopy instruments (Abbey et al.,
2017; Rull et al., 2017; Wiens et al., 2017; Sapers et al.,
2019; Beyssac, 2020) combined with excavating tools. In
the present study, we thus examine how S-rich organics such
as cystine would react when freshly excavated and exposed
to UV radiation, with a focus on the modifications of the
Raman and luminescence signals.

2. Materials and Methods

2.1. Irradiation experiments

For the present study, we exposed pure cystine
(SCH2CH(NH2)CO2H)2, Sigma-Aldrich, purity ‡98%, to
UV radiation. Cystine is a dimer of amino acids and is
composed of two cysteines linked by a disulfide bond. S-rich
organics have been found on Mars (Eigenbrode et al., 2018),
and amino acids are common in chondrites (Kvenvolden
et al., 1970; Martins et al., 2007, 2015), which justifies the
selection of cystine for these experiments.

We used a mechanical press to form stubs of compressed
polycrystalline samples (40 mg of cystine was pressed at 2
tons onto a stub 1 cm in diameter, leading to a final thick-
ness of about 0.5 mm). Irradiation experiments were con-
ducted in a dedicated Mars chamber built by the Cellule
Projet @ Institut de Minéralogie, de Physique des Matéri-
aux et de Cosmochimie (IMPMC) in which samples are
exposed to UV radiation under controlled pressure and
temperature conditions.

Here, experiments were conducted at 0�C under a primary
vacuum. ten Kate et al. (2006) demonstrated that a martian
atmosphere (6 mbar of CO2) has no influence on the UV-

induced degradation of amino acids. Thus, a martian-like
CO2 atmosphere was not introduced into the chamber to
prevent absorption of UV by CO2 and contamination from
air. Samples were exposed to UV produced by a 150 W
Xenon lamp (�LOT-ORIEL). Of note, this is the exact same
lamp on which the Mars Organic Molecule Irradiation and
Evolution (MOMIE) setup relies (Stalport et al., 2009, 2019;
Poch et al., 2013, 2014). This lamp delivers a UV spectrum
(190–400 nm) with a pattern similar to that of the martian
surface radiation spectrum (Patel et al., 2002; Dartnell et al.,
2007; Hassler et al., 2014) but with a higher flux (Stalport
et al., 2009, 2019; Poch et al., 2013, 2014), which thereby
accelerates processes compared to true martian conditions.

The Raman signatures and fluorescence lifetimes of
cystine samples were measured before and after 10, 100, and
1000 min of exposure to UV radiation directly in the Mars
chamber, that is, under the conditions of the irradiation
experiments. After 1000 min of irradiation, samples were
removed from the chamber and measured with attenuated
total reflectance Fourier transform infrared (ATR-FTIR) and
electron spin resonance (ESR) spectroscopies. The com-
parison with spectra of pristine cystine allowed for docu-
mentation of the impact of UV radiation of the chemical
structure and radical content of this S-rich dimer of amino
acids. Note that the contribution of the volume of irradiated
cystine to the measured signals differed from one technique
to another, challenging a straightforward comparison be-
tween the data.

2.2. Time-resolved Raman spectroscopy

The remote configuration of a customized time-resolved
Raman and luminescence spectrometer built at IMPMC
was used for the present study (Fau et al., 2019). Relying on
a conventional Schmidt-Cassegrain telescope (Celestron-
C8* 202 mm diameter Schmidt plate), this instrument
allows for Raman signal collection of pristine and irradi-
ated samples without removing them from the chamber in
which the irradiation experiments are conducted. The laser
is a nanosecond-pulsed 532 nm diode-pumped solid-state
(DPSS) laser (1.2 ns full width at half maximum [FWHM],
1 mJ per pulse) with a 10–2000 Hz repetition rate. The fine
control and synchronization of both time delay and gating
time of the camera allows sub-nanosecond time resolution
experiments.

For the present study, the laser was collimated at the
sample surface (at 8 m from the telescope Schmidt plate) on
a spot of *6 mm diameter, corresponding to a preservative
irradiance of about *1010 W $ m-2 (Fau et al., 2019). The
Raman signal was collected by the telescope from a surface
with a slightly lower diameter than the co-aligned incident
laser beam. A Notch filter was used to cut off the Rayleigh
scattering below *90 cm-1, and the signal was collected by
an optical fiber and sent into a modified Czerny-Turner
spectrometer (Princeton IsoPlane 320) coupled with a Prin-
ceton PIMAX4 intensified charge-coupled device (ICCD)
camera. This spectrometer has three motorized gratings that
can be selected depending on the spectral window and
spectral resolution requested for the analysis.

We collected Raman and fluorescence signals using a 1.2 ns
ICCD gate centered on the laser pulse. To maximize the signal-
to-noise ratio, we accumulated the signals corresponding to
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500,000 laser shots. The fluorescence lifetime of cystine
samples (i.e., the characteristic time spent by fluorescing
centers to return from excited states to ground states; Be-
yssac 2020; Pasteris and Beyssac 2020) was investigated by
collecting the background signal obtained and using a 1.2 ns
ICCD gate for different delays after the laser pulse with a
time resolution of 0.1 ns.

2.3. ATR-FTIR measurements

ATR-FTIR spectra of cystine samples were collected
directly on the stubs, before and after exposure to UV ra-
diation for 1000 min, over the 500–4000 cm-1 range with a
1 cm-1 resolution using a Nicolet 6700 FTIR spectrometer
fitted with a KBr beam splitter and a detector for Fourier
transform spectroscopy (DTGS)-KBr detector operating at
IMPMC (Li et al., 2014; Bernard et al., 2015). The spectra
shown here correspond to the average of 100 scans obtained
in an attenuated total reflectance (ATR) geometry using a
Specac Quest ATR device fitted with a diamond internal
reflection element.

2.4. ESR measurements

ESR spectroscopy, also called electron paramagnetic
resonance (EPR), allows for investigation of the presence of
unpaired electrons and provides detailed information on
structure bonding of paramagnetic species in samples ex-
posed to ionizing radiation. ESR investigations were con-
ducted at ambient temperature on powdered pristine cystine
and cystine irradiated for 1000 min, using a BRUKER ESP
300E spectrometer operating at IMPMC (Sorieul et al.,
2005). Samples were filled in a pure silica tube (Suprasil
grade), and the microwave power was set at 1 mW, while the
amplitude and frequency of the magnetic field modulation
were 0.5 mT and 100 kHz, respectively. The signal was
collected over the 0.3200–0.3800 T range. The effective
g-factor of the observed signals was determined by using the
relation: hn= gbH where n is the microwave frequency, H
the magnetic field, h the Planck constant, and b the Bohr
magneton. A diphenyl-picryl-hydrazyle (DPPH, g = 2.0037 –
0.0002) standard was used for calibration.

3. Results

3.1. Raman spectroscopy and fluorescence

The Raman spectrum of pristine cystine exhibits a large
number of bands that result from the stretching, bending,
and rocking of O-C = O, C-S, C-H, and N-H bonds (Fig. 1).
In particular, it displays a quite intense band at 499 cm-1

(Fig. 1) that results from the stretching of disulfide bridges
(S-S bonds), an important component of the structure of
proteins (Annis et al., 1997). The exposure to UV does not
lead to the appearance of any new Raman band. With in-
creasing exposure to UV radiation, the continuous back-
ground contribution increases (by a factor of 5 after
1000 min of exposure to UV), while the intensities of the
Raman bands of cysteine decrease (down to 1/3 of the initial
intensities after 1000 min of exposure to UV) (Fig. 1). Such
decrease in intensity appears similar for all modes, even
though S-S bonds are known to be less strong/resistant than
C-C and C-H bonds (Annis et al., 1997; Nagy, 2013). Given
the short time gate used in these experiments, the back-

ground signal may correspond to light diffusion processes
related to disorder and/or to the intrinsic fluorescence of the
cystine samples investigated. The intrinsic fluorescence of
organic compounds (molecular fluorescence) represents a
quantum process where an absorbed light quantum is re-
emitted as light, generally at a different frequency (Weiss,
1943). In contrast to the signal that corresponds to light
diffusion, which is contemporaneous of the laser pulse and
can thus be modeled by a Gaussian function as a function of
time, a fluorescence signal can be modeled by an expo-
nential law as a function of time (Berezin and Achilefu,
2010). Here, the measured signal can be decomposed into a
sum of a Gaussian function and an exponential function:

I tð Þ¼ I0:1e
� t

s1

� �2

þ I0:2e
� t
s2 (1)

with I0.1 and I0.2 the maximal intensity at t = 0 and t1 and t2

the lifetimes of the light diffusion and of the fluorescence
signals. In such a scheme, the contribution of light diffusion

to the measured signal corresponds to I0:1e
� t

s1

� �2

=I tð Þ.
Results show that, with increasing duration of exposure to
UV radiation, the contribution of light diffusion to the signal
increases significantly (from 60% of the total signal for the
pristine cystine up to 93% for the cystine irradiated for
1000 min), indicating an increasing disorder (Fig. 2). In
contrast, the signal that corresponds to the intrinsic fluo-
rescence of cystine remains the same regardless of the ex-
posure to UV radiation (Fig. 2), with a lifetime of about
4.4 ns, a value similar to that of other amino acids like
tyrosine and tryptophan (Berezin and Achilefu, 2010). The
fluorescence that contributes to the signal is likely emitted
by the pristine cystine that lies below the irradiated sample
surface (cf, Section 4.1).

3.2. Complementary characterization using ATR-FTIR
and ESR spectroscopy

Irradiated cystine samples were removed from the
chamber after exposure to UV to be measured by FTIR and
ESR spectroscopies. The FTIR spectrum of pristine cystine
exhibits a number of sharp and intense peaks below
1800 cm-1 as well as some large and less intense bands
above 2000 cm-1, attributed to the stretching, bending, and
rocking of S-S, O-C = O, C-S, C-H, and N-H bonds (Fig. 3;
Li et al., 2014; Bernard et al., 2015). All these features are
still present in the spectrum of cystine irradiated for
1000 min, and no new feature is noticed (Fig. 3). Still, ex-
posure to UV radiation impacted the shape of the absorption
features: irradiated cystine exhibits less intense but broader
signals than pristine cystine (Fig. 3). For instance, the in-
tensity of the peak at 539 cm-1, attributed to the rocking
mode of O-C = O bonds, is 4 times higher for pristine cys-
tine, while its FWHM is 2 times larger for irradiated cystine.

The ESR spectra of irradiated cystine mostly display two
overlapping anisotropic signals (Fig. 4) similar to those
previously observed by Thomsen and Nielsen (1972) in UV-
irradiated cystine dihydrochloride. Radical I displays the
following principal values of the g-tensor: gx = 2.052,
gy = 2.027, and gz = 2.004; while radical II is characterized
by gx = 2.060, gy = 2.034, and gz = 1.995 (Fig. 4). Although
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radical I was initially ascribed to a monosulfide species,
further investigations (Hadley and Gordy, 1974; Nelson and
Symons, 1975) and modeling (Engström et al., 2000) have
indicated that these two radicals correspond to paramagnetic
disulfide species. The spectrum of pristine cystine displays
similar paramagnetic signals at lower intensity. The shape of
this spectrum, however, differs from that of the irradiated
sample, with an anisotropic broadening of the gx compo-
nents and a more pronounced contribution at gx = 2.065. The
observed changes of g-values could be related to modifica-
tions of the charge state (cationic, anionic, neutral) or geo-
metric configuration of the molecular environment of
disulfide bridges (Engström et al., 2000). The ESR spectrum
thus reveals a slightly different environment and an increase
in the concentration of disulfide paramagnetic species in

irradiated cystine (Fig. 4). Quantifying these concentration
changes is unfortunately not possible here because the vol-
ume of sample effectively affected by the UV radiation
remains difficult to determine.

4. Discussion

4.1. Impact of exposure to UV radiation

The Raman and FTIR spectra of cystine irradiated for
1000 min under Mars conditions still exhibit all the features
observed in the Raman and FTIR spectra of pristine cystine
(Figs. 1 and 3). Still, the multi-technique approach adopted
for the present study demonstrates that exposure to UV ra-
diation strongly impacts cystine samples by triggering the
creation of defects and radicals within the molecular

a

b

FIG. 1. Raman spectra centered at 1200 (a) and 3000 (b) cm-1 of pristine cystine and cystine irradiated for 10, 100, and
1000 min. Note that spectra were not shifted in intensity (y axis). The indexation of Raman bands is based on (1) Zhu et al.,
2011; (2) Pawlukojć et al., 2005; (3) Jenkins et al., 2005; and (4) Xie et al., 2009. Color images are available online.
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structure of cystine. The cystine samples turned yellow
during exposure to UV radiation, which suggests the crea-
tion of defects or colored centers, or both, and potentially
explains the evolution of Raman and FTIR signals. These
defects do not seem to be fluorescing centers; in such a case,

one would expect an increasing contribution of fluorescence to
the collected Raman signal with increasing duration of expo-
sure to UV radiation (Winkler et al., 1998; Dumeige et al.,
2004). Plus, concentration quenching would decrease the
lifetime of fluorescence, as reported for both organic and

FIG. 2. Semi-log diagram of the signal intensity as a function of the time after the laser pulse for pristine and irradiated
cystine samples. Data are normalized to their maximum intensity, and t = 0 is defined for the maximum intensity of the
signal. Dotted lines represent the model described in Eq.1. Fitted t1 values are 2 ns for pristine cystine and cystine irradiated
for 10 min and 1.6 ns for cystine irradiated for 100 and 1000 min. Fitted t2 values are 4.4 ns for pristine cystine and cystine
irradiated for 10 min and 4.3 ns for cystine irradiated for 100 and 1000 min. Color images are available online.

FIG. 3. ATR-FTIR spectra of pristine cystine and cystine irradiated for 1000 min. Note that spectra were not shifted in
intensity (y axis). The indexation of infrared bands is based on (1) Zhu et al., 2011; (2) Pawlukojć et al., 2005. Color images
are available online.
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inorganic materials (Chen and Knutson, 1988; Ju et al.,
2013; Meza et al., 2014; Green and Buckley, 2015; Fau
et al., unpublished data), which is not the case here. Still, the
broadening of Raman and FTIR bands is consistent with a
higher concentration of point defects in irradiated cystine
compared to pristine cystine (Fig. 3). Such broadening was
previously reported in a number of materials exposed to
ionizing radiation (e.g., Fourdrin et al., 2009). Consistently,
the differences between the ESR spectra of pristine and ir-
radiated cystine demonstrate that exposure to UV radiation
was responsible for the creation/formation of a new popu-
lation of radicals associated to disulfide bridges. Whether
the radicals detected by ESR are the defects responsible for
the broadening of Raman and FTIR bands remains difficult
to determine, recalling that only the paramagnetic fraction
of a defect population can be detected when using ESR.
Obviously, quantitatively documenting the response of
cystine to exposure to UV radiation will require monitoring
the mass loss as a function of the dose.

4.2. Need for additional aging experiments

Our results suggest that long exposure to UV radiation
would ultimately be responsible for the total degradation of
the Raman signal of cystine. It follows that the detection of
S-rich organics at the surface of Mars may be problematic,
especially considering the many unknowns that remain. Here,
we exposed crystalline cystine to UV radiation, but the re-
sponse of amorphous cystine may be different. Also, as
previously demonstrated, different organics do not react in
similar ways when exposed to UV (ten Kate et al., 2005;
Stalport et al., 2009, 2019; Hintze et al., 2010; ten Kate,
2010; Poch et al., 2013, 2014; Fornaro et al., 2018). The
effect of exposure to UV radiation on the Raman signal of
other organic compounds thus will need to be further inves-
tigated. The same is true for the impact of other types of

radiation. In fact, g-rays, solar energetic protons, and galactic
cosmic rays are not absorbed by the thin CO2 atmosphere of
Mars and can penetrate the martian subsurface to several
meters of depth, potentially altering organic compounds
(Kminek and Bada, 2006; Dartnell et al., 2007; Hassler et al.,
2014; Fox et al., 2019). In addition, because minerals may
play a key role in the UV-induced degradation of organics
(Poch et al., 2015; dos Santos et al., 2016; Ertem et al., 2017;
Fornaro et al., 2018), it appears crucial to investigate the
effects of mineral matrices typical of martian soils. Finally,
many other aging processes likely act simultaneously at the
surface of Mars, including oxidation (Lasne et al., 2016) and
degradation induced by fluid circulation (Viennet et al.,
2019). The impact of all these processes will have to be taken
into account for the proper interpretation of future data.

4.3. Detection of S-rich organics on Mars
using Raman

Here, we demonstrate that the detection of S-rich organics
using Raman is achievable in freshly excavated martian
samples, even though such samples would be quickly de-
graded by UV radiation. Note that the Raman instruments
on board Perseverance and Rosalind Franklin will rely on
different setups and strategies (Abbey et al., 2017; Rull
et al., 2017; Wiens et al., 2017; Sapers et al., 2019; Beyssac,
2020). The RLS instrument on board Rosalind Franklin is
a continuous Raman system that relies on a 532 nm laser,
the SuperCam instrument on board Perseverance is a time-
resolved Raman luminescence spectrometer that uses a
pulsed 532 nm laser, and the SHERLOC instrument on
board Perseverance will be a deep UV Raman and fluores-
cence spectrometer (Abbey et al., 2017; Rull et al., 2017;
Wiens et al., 2017; Sapers et al., 2019; Beyssac, 2020).
Here, we show that the Raman spectrum of cystine that has
been exposed to UV radiation for a relatively short period of

FIG. 4. ESR spectra of pristine cystine and cystine irradiated for 1000 min. Indexations correspond to the principal values
of the g-tensor. Color images are available online.
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time still exhibits the Raman spectral features of pristine
cystine as well as a fluorescence signal that remains similar
in intensity and lifetime. These results thus suggest that it
should be possible to detect freshly excavated S-rich or-
ganics on Mars, that is, S-rich organics only exposed to UV
for a short time, when using any of the Raman instruments
on board the upcoming rovers, provided that such S-rich
organics are present in concentrations above the detection
limits and that the fluorescence of the mineral matrix does
not dominate the signal. In addition, given the very short
lifetime of the intrinsic molecular fluorescence of S-rich
organics such as cystine (nanoseconds) compared to most
mineral luminescence (micro- to milliseconds), SuperCam
and SHERLOC may also be able to detect S-rich organics
on Mars by exploiting fluorescence signals. In any case, we
should not expect to detect pristine S-rich organic com-
pounds on Mars, but rather by-products of their degradation.
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Abbreviations Used

ATR¼ attenuated total reflectance
ESR¼ electron spin resonance

FTIR¼Fourier transform infrared
FWHM¼ full width at half maximum
GCMS¼ gas chromatograph mass spectrometer
ICCD¼ intensified charge-coupled device

IMPMC¼ Institut de Minéralogie, de Physique des
Matériaux et de Cosmochimie

SAM¼Sample Analysis at Mars
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