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ABSTRACT

The performance of general circulation models (GCMs) varies across regions and periods. When projecting

into the future, it is therefore not obvious whether to reject or to prefer a certain GCM. Combining the

outputs of several GCMs may enhance results. This paper presents a method to combine multimodel GCM

projections by means of a Bayesian model combination (BMC). Here the influence of each GCM is weighted

according to its performance in a training period, with regard to observations, as outcome BMC predictive

distributions for yet unobserved observations are obtained. Technically, GCM outputs and observations are

assumed to vary randomly around common means, which are interpreted as the actual target values under

consideration. Posterior parameter distributions of the authors’ Bayesian hierarchical model are obtained by

a Markov chain Monte Carlo (MCMC) method. Advantageously, all parameters—such as bias and precision

of the GCM models—are estimated together. Potential time dependence is accounted for by integrating

a Kalman filter. The significance of trend slopes of the common means is evaluated by analyzing the posterior

distribution of the parameters. The method is applied to assess the evolution of ice accumulation over the

oceanic Arctic region in cold seasons. The observed ice index is created out of NCEP reanalysis data. Outputs

of seven GCMs are combined by using the training period 1962–99 and prediction periods 2046–65 and 2082–99

with Special Report on Emissions Scenarios (SRES) A2 and B1. A continuing decrease of ice accumulation is

visible for the A2 scenario, whereas the index stabilizes for the B1 scenario in the second prediction period.

1. Introduction

Today it is well accepted that global climate change

has an effect on the polar regions (cf. Parry et al. 2007).

The characteristics of the feedback is still under in-

vestigation and is related to important questions such as

future sea level rise (cf. Charbit et al. 2008) and the in-

fluence of the polar regions on midlatitude patterns of

atmospheric circulation and precipitation (Stroeve et al.

2007). General circulation model (GCM) projections are

instrumental to exploring the effect of climate change in

the future (see, e.g., Baettig et al. 2007). These models

are run under contemporary conditions and possible fu-

ture scenarios that reflect assumptions about the evolu-

tion of environment and society, especially the potential

change in CO2 emissions and concentrations. In this

work two common greenhouse gas and aerosol emission

scenarios (Nakicenovic and Swart 2000)—Special Re-

port on Emissions Scenarios (SRES) A2 and B1—are

employed for projections. The GCMs are based on com-

plex dynamics and their performance varies across space

and time. It is therefore not obvious whether to reject or
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prefer a certain GCM when projecting into the future.

A simple combination of the different GCM outputs,

which we denote the multimodel ensemble, might av-

erage out extremes. For diverse application fields it has

nevertheless been shown that multimodel ensemble av-

eraging (MEA) or Bayesian model averaging can gen-

erate better projections than each single model (cf.

Raftery et al. 2005; van Loon et al. 2007).

Bayesian inference allows for the incorporation of

expert knowledge and the assessment of parameter un-

certainties. The approach has been increasingly used

in climate change studies (see, e.g., Tol and De Vos 1998;

Rougier 2007). For a general discussion of Bayesian sta-

tistics, refer to Congdon (2003) or Gelman et al. (2004).

Combining multimodel ensembles by using a Bayesian

approach has been pursued by a variety of studies.

Among them, several are related to climate change and

aim at the enhancement of projections. Coelho et al.

(2004) regressed the multimodel ensemble mean on ob-

servations. This does not allow for a differentiation of

bias and variance of the diverse models. Raftery et al.

(2005) regressed observations on a weighted linear com-

bination of model projections. Weights, which indicate

the importance of each model, and regression parame-

ters were estimated in a training period for which ob-

servations were available. Then they were transferred to

a prediction period. Regression on the sum of model

projections may cause overfitting when too many models

are used. Therefore, the number of models and the length

of the training period play an important role in this ap-

proach. Min and Hense (2006) proceeded likewise,

where the weights for the linear combination of model

outputs were obtained from Bayes factors. Tebaldi et al.

(2005) treated observations and model outputs as ran-

dom variables. Both data sources varied around common

means. These means were interpreted as unobserved

values of the assessed variable, the target values. In this

way a connection between model outputs and observa-

tions is established. Tebaldi et al. (2005) explored the

change of mean temperature between the training and

prediction periods. Here stationarity of the variable was

assumed within each period. Berliner and Kim (2008)

followed a similar approach, but they allowed for time-

dependent variables under consideration by applying

a data assimilation framework. The target values were

modeled as autocorrelated hidden states, which are influ-

enced by covariates. They estimated a potential bias of

each model as averaged deviation from these target values.

The study presented here is in line with Tebaldi et al.

(2005) and Berliner and Kim (2008). We allow for a

temporal gap between the training and prediction periods.

That is, contrary to Tebaldi et al. (2005), projections are

not regressed on model outputs of the training period.

Model outputs and observations are assumed to vary

around common means, that is, both have an error. In

the training period, model outputs and observations are

combined to a weighted average, whereas we assume

that observations have no bias. In this way a potential

bias and the variability of each GCM are estimated

in comparison to the observations. This differs from

Berliner and Kim (2008), who did not directly involve

observations to estimate these parameters. A Kalman

filter is integrated in a Markov chain Monte Carlo

(MCMC) routine to estimate the parameters of our

Bayesian hierarchical model (Chib and Greenberg 1996).

This allows for sequential prediction and for updating

steps and the assessment of time-dependent variables,

which are especially required when analyzing the effect

of climate change. The common means of model outputs

and observations are modeled as hidden states compris-

ing a stationary autoregressive and a trend component.

As application we assess the evolution of an ice index.

We proceed as follows: In section 2 the data are de-

scribed and the construction of the ice index for the

oceanic Arctic region is presented. The Bayesian model

combination (BMC) framework is outlined in section 3

and its application to the ice index is illustrated in sec-

tion 4. Last, a summary of our results and a conclusion

are given in section 5.

2. Ice accumulation over the oceanic Arctic region

Sea ice area reductions are related to increases of sur-

face air temperature in the polar regions (Hassol 2004);

such reductions have been well documented by obser-

vational and modeling studies (cf. Zhang and Walsh 2006;

Cavalieri and Parkinson 2008). Temperature-based ice

indices represent primarily sea ice thickness and vol-

ume: the intensity of sea ice accumulation during the

freezing season is a result of heat fluxes between ocean

and air reservoirs through snow-covered sea ice. Sea

ice accumulation has, for example, been estimated by

Anderson (1961) and Maykut (1986), who utilize daily

near-surface temperature fields for this purpose. Sea ice

thickness and volume are important for sea ice–related

feedbacks (Stroeve et al. 2007). They influence, for ex-

ample, ice forming and drifting processes.

Here atmospheric surface temperatures (SATs), 2 m

above the surface, are used to calculate an ice index as

a proxy for the ice accumulation over the oceanic Arctic

region. This ice index has been developed within the

European Union (EU) project Developing Arctic Mod-

eling and Observing Capabilities for Long-term Envi-

ronmental Studies (DAMOCLES; available online at

http://www.damocles-eu.org). We use daily SAT data to

calculate the index, either provided by GCMs or by
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National Centers for Environmental Prediction (NCEP)

reanalysis data. The ice index was designed in the fol-

lowing way: The area over the oceanic Arctic region was

classified regarding its iciness over the freezing season

(September–May). The level of iciness was estimated

by taking at each grid point the sum of degrees below

21.78C over the season. The iciness classes had a width

of 2008C. Data at different grid points represent areas

of distinct size; in this way, area and classes of iciness

are linked. Figure 1 exemplarily shows the levels of ici-

ness of the oceanic Arctic region for the freezing season

2000/01 and NCEP reanalysis data. The winter ice index

was obtained by taking the integral of the classified area,

that is, the black curve in Fig. 1. Here the summands of

the Riemann integral have been weighted with the ici-

ness class levels and the area of the warmest classes,

where the sum of degrees below 21.78C is smaller than

11008C, were disregarded. In this way the focus is set on

the colder levels, and the intensity of freezing conditions

during the polar winter is explored. This ice index, there-

fore, is related to sea ice volume accumulated by the end

of winter rather than to sea ice extent. Further details

are provided in Maksimovich and Gascard (2010). We

analyze the ice index for the historical period 1962–99

and projection periods 2046–65 and 2082–99 and SRES

A2 and B1. NCEP reanalysis data are used to calculate

the observed ice index. Outputs of 13 Intergovernmental

Panel on Climate Change (IPCC) models cover all three

periods and are therefore chosen for our analysis (see

Fig. 3 for model acronyms). Within the historical period,

the models are run with the twentieth-century run (20c3m)

scenario, that is, with increasing greenhouse gases and

anthropogenic sulfate aerosol forcing as observed through

the twentieth century. The model surface temperature

data have been obtained from the Program for Climate

Model Diagnosis and Intercomparison (available online

at www-pcmdi.llnl.gov).

3. Bayesian model combination

Let BMC denote our technique to average over many

competing models by setting up a statistical model. The

quantities of interest are parameters of this model, which

are estimated while evaluating GCM outputs and ob-

servations. The effect of each GCM is weighted according

to its performance in a training period, where observa-

tions are available for comparison. In this way model

uncertainty is incorporated in the calculation of the

BMC projections. Expert knowledge may be integrated

as prior information. The aim of BMC is the improve-

ment of predictive performance. For the analysis we

proceed in two steps, as illustrated in Fig. 2. First, the

BMC framework is inspected on a verification period.

Here the BMC projections are compared to observa-

tions not used in the calibration. The BMC results in

predictive distributions. We take the mean of these dis-

tributions as actual BMC projections. Their uncertainty

is deduced by calculating credibility intervals from the

predictive distributions. In Fig. 2 BMC projections of

the ice index (black line) are depicted together with

GCM projections (gray dots) and observations (thick

black lines). For the verification period shown, the BMC

projections are located much closer to the observations

FIG. 1. Accumulated area over oceanic Arctic region, classified

by iciness. The level of iciness is measured by the sum of degrees

below 21.78C per freezing season (September–May). The ice index

is created as an integral over the black curve, weighted by the classes

of iciness (x axis). Areas below the offset (gray line) are disregarded.

FIG. 2. Outline of the BMC framework: first, the framework is

inspected by projecting from a training period to a verification pe-

riod, where observations are also given (1); then, a training period is

chosen to project to a future period (2). The winter ice index gen-

erated from NCEP reanalysis data (with 66% confidence intervals in

the verification period) is shown as thick black lines, and the BMC

projections (with 66% credibility intervals) as thin black lines.
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than the projections of each single model. A more de-

tailed evaluation of the performance of the BMC is

provided by using scores, see section 4a. In a second

step, we choose a training period to project to future

periods, where no observations are available. The bias

of the GCMs is estimated in the training period and

maintained for the projections. Figure 2 shows, for ex-

ample, that the BMC projections lie below the output

of each single model, just like the observations in the

training period. Our goal is to project the yet unobserved

observations Y0, which we take as mean of the predictive

distribution [Y0jD]. Here the data vector D 5 (X0, X1, . . . ,

XM, Y1, . . . , YM) is given by the vectors of observations

X0 and model outputs in the training period Xi and in the

prediction period Yi. In our example X0 is a winter ice

index created of surface temperature over the oceanic

Arctic region and Xi denotes this ice index computed by

model i over the same region and at the same period.

Bayesian inference presumes that parameters are not

point estimates but have a distribution. For each model

parameter, say, ui, a prior distribution is assumed, which

comprises our knowledge about the uncertainty of the

parameter values. Then we learn from the data D to obtain

the posterior distribution of the parameters, say, [QjD].

This is formalized with Bayes’s theorem (cf. Gelman et al.

2004). Let [DjQ] denote the conditional distribution of

D given Q, that is, the likelihood of the data. We can say

that [QjD] is proportional to the product of likelihood

and prior distribution of the parameters, that is,

[QjD] } [Q][DjQ]. (1)

Integration over all parameters leads to the predictive

distribution of Y0 given D:

[Y
0
jD] 5

ð
Q

[Y
0
jQ][QjD] dQ. (2)

Equation (2) implies the conditional independence of Y0

and D given Q. For further details see Congdon (2003).

a. State-space model

Climate projections for the Arctic often exhibit trends,

which are superimposed by decadal oscillations (Döscher

et al. 2009). To be able to distinguish and track charac-

teristics due to potentially different processes, we model

the evolution of the ice index in time. To do so a se-

quential data assimilation procedure is employed within

our Bayesian framework (cf. DelSole 2007).

We permit a gap of G9 time steps between the training

and prediction periods and introduce G 5 T 1 G9; thus

t 5 G 1 1, . . . , G 1 P is the time index of the prediction

period of length P (see Fig. 2). At each time point t in

1, . . . , T, G 1 1, . . . , G 1 P, there is a prediction and

update step of the parameter distributions. Let Dt de-

note the vector of data per time step,

D
t
5

(X
0

t
, X

1
t
, . . . , X

M
t
) for t 5 1, . . . , T,

(Y
1

t
, . . . , Y

M
t
) for t 5 G 1 1, . . . , G 1 P.

(

(3)

The relations between model outputs and observations

are given by the data equations

X
i
t
5 c

T
1 m

t
1 d

t
1 b

i
1 �

i
t

for t 5 1, . . . ,T, i 5 0, . . . , M and

Y
i
t
5 c

P
1 n

t
1 d

t
1 b

i
1 e

i
t

for t 5 G 1 1, . . . , G 1 P, i 5 1, . . . , M, (4)

with b0 5 0, and Gaussian distributions for the noise,

that is, �
it

; N(0, l�1
i ), e

it
; N[0, (gl

i
)�1]. Here N(m, s2)

denotes normal distribution with mean m and variance

s2 as parameters; li is the precision of model i and is

equal to the reciprocal value of the variance. The pre-

cision of the observations l0 reflects the natural vari-

ability specific to the season and other physical factors.

In our model l0 is externally given and estimated from

the observations. The parameter g allows for a different

model precision for the training and prediction periods.

It is assumed that all models experience the same degree

of change, that is, g is the same for all models. Moreover,

it is presumed that each GCM has a constant bias bi, and

this bias is transferred from the training period to the

prediction period.

The common means of model outputs and observations

are modeled as composition of an intercept, a stationary

autoregressive component, and a trend component.

This gives the common means for the training period

MTt 5 cT 1 mt 1 dt and for the prediction period MPt 5

cP 1 nt 1 dt. Empirical series often exhibit autocorrelated

noise. Here the assumption of uncorrelated noise may

bias the estimate of the magnitude of the systematic

change (cf. Bloomfield 1992). Therefore, we allow for an

autocorrelated part, which is a common approach in time

series analysis (cf. Cohn and Lins 2005; Harvey et al.

2007). The results for the ice index assessment confirm

this choice: we find significant autocorrelation for all

settings analyzed (see section 4d). The stationary au-

toregressive components mt and nt and the linear trend
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components dt and dt are modeled separately. By doing

so, we differentiate systematic changes and other var-

iations of the common mean (see, e.g., West 1997).

The temporal dependence is modeled by the following

state-space equations:

m
t
5 fm

t�1
1 v

m
t

for t 5 1, . . . , T,

d
t
5 d

t�1
1 k

1
1 v

d
t

for t 5 1, . . . , T,

n
t
5 fn

t�1
1 v

n
t

for t 5 G 1 1, . . . , P, and

d
t
5 d

t�1
1 k

2
1 v

d
t

for t 5 G 1 1, . . . , P,

(5)

with v
mt

; N(0, l�1
m ), vdt

; N(0, l�1
d ), v

nt
; N(0, l�1

n ),

and v
dt

; N(0, l�1
d ) being independent and identically

distributed. The state-space parameters are constructed

such that they have the Markov property (Chib and

Greenberg 1996). Here mt and nt are autoregressive (AR)

components of order one [AR(1) processes]. We sup-

pose short-term variability to be an intrinsic character-

istic of the system assessed; therefore, the autoregressive

parameter f is transferred from the training period to

the prediction period. On the other hand, there may be

a gap of several decades between the training and pre-

diction periods. Consequently, transferring trend slope

estimates from the training period to the prediction pe-

riod is not feasible. Here the unknown potential trend

in the prediction period is therefore inferred from the

GCM projections. In this way trend slope and intercept

may differ in both periods; k1 and k2 denote the trend

slopes times Dt, which is the time difference between

two consecutive observations (see, e.g., Dethlefsen and

Lundbye-Christensen 2005).

The parameter vector at time t is given by

Q
t
5

(c
T

, m
t
, d

t
, l

1
, . . . , l

M
, f, k

1
, b

1
, . . . , b

M
, l

m
, l

d
) for t 5 1, . . . , T,

(c
P

, n
t
, d

t
, l

1
, . . . , l

M
, g, f, k

2
, b

1
, . . . , b

M
, l

n
, l

d
) for t 5 G 11, . . . , G 1 P.

�
(6)

Conditional independence from the data of previous time steps given the parameter values is supposed, that is,

[Q
t
jQ

t�1
, D

1
, . . . , D

t�1
] 5 [Q

t
jQ

t�1
] for t 5 1, . . . , T, G 1 1, . . . , G 1 P,

[D
t
jQ

t
, D

1
, . . . , D

t�1
] 5 [D

t
jQ

t
] for t 5 1, . . . , T, G 1 1, . . . , G 1 P. (7)

Thus, the model given by Eqs. (4) and (5) has the form

D
t
5 H

t
Q

t
1 K

t
1 S

t

for t 5 1, . . . , T, G 1 1, . . . , G 1 P and (8)

Q
t
5 F

t
Q

t�1
1 U

t
1 W

t

for t 5 1, . . . , T, G 1 1, . . . , G 1 P, (9)

with St and Wt being the respective error matrices. The

state-space parameters are assumed to be independent;

consequently, both matrices have nonzero values only in

the diagonal; Ht, Kt, Ft, and Ut contain either zeros or

constants and can be deduced from Eqs. (4) and (5).

To keep the number of parameters low, we chose a

simple structure of the state-space variables; however,

more complicated structures can be easily integrated (cf.

Harvey et al. 2007). The distinction between trend and

autoregressive components may be difficult, as outlined

in Kallache et al. (2005). A state-space model, as pre-

sented in Eq. (5), is a possibility to represent time series,

which may consist of those both components. Its ap-

propriateness has been explored by Koop and Van Dijk

(2000), for example. Moreover, we verify the adequate-

ness of our model given by Eqs. (4) and (5); the results are

provided in section 4a.

b. Sequential updating

As common in data assimilation, alternating update

and prediction steps of the state-space variables are

performed. Here this is also done in the prediction pe-

riod, and the GCM outputs are treated as biased obser-

vations. A projection Y
0t

is based on this evolution.

The update formula or filtering formula is given by

[Q
t�1
jD

1
, . . . , D

t�1
] 5

[D
t�1
jQ

t�1
][Q

t�1
jD

1
, . . . , D

t�2
]

[D
t�1
jD

1
, . . . , D

t�2
]

} [D
t�1
jQ

t�1
][Q

t�1
jD

1
, . . . , D

t�2
].

(10)

With respect to Qt, the marginal likelihood of the data

[DtjD1, . . . , Dt21] is a constant, so we neglect this term.

This update step is equivalent to the calculation of the

posterior distribution of the parameters at time step t,

with the prior distribution given as [QtjDt21].

The prediction formula is denoted by

[Q
t
jD

1
, . . . , D

t�1
]

5

ð
Q

t�1

[Q
t
jQ

t�1
][Q

t�1
jD

1
, . . . , D

t�1
] dQ

t�1
, (11)
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and Eqs. (10) and (11) are the Bayesian solution to cal-

culate the state-space model given in Eqs. (8) and (9).

The state-space model consists of linear and Gaussian

equations; therefore, we apply the Kalman filter to ob-

tain the posterior distribution of the parameters. In this

way the integral in Eq. (11) can be derived by charac-

teristics of the normal distribution. Let Qt�1jDt�1 ;

N(Q̂t�1, St�1) with Q̂t�1 and St21 being the expected

value and the variance of Qt21jDt21, and then Q
t
jD

t�1
;

N(F
t
Q̂

t�1
F9

t
, F

t
S

t�1
F9

t
1 W

t
) (see, e.g., Meinhold and

Singpurwalla 1983).1

c. Prior distributions

We choose uninformative priors because of the lack of

prior knowledge. The precisions li, i 5 1, . . . , M and lm,

ld, ln, and ld are assumed to have uniform prior den-

sities U(0, c). A uniform prior for the precision l is

proportional to a uniform prior for the standard de-

viation s (see, e.g., Gelman 2006). Similarly, we choose

g ; U(0, c) as a prior for g. The upper bound c 5

1 000 000 is chosen to be large to include any plausible

prior value and to avoid an impact of this choice on the

results. The uniform distribution is conditionally con-

jugate to the normal distribution. Therefore, this prior

results in a posterior gamma distribution, similar to when

choosing an informative gamma distribution as prior.

However, by using a uniform prior, we avoid distortions

of the posterior (cf. Harvey et al. 2007) and do not have to

specify hyperparameters for a gamma prior, which may

result in an improper posterior density in case these

hyperparameters tend to zero.

For mt and dt a nearly flat prior, that is, a normal

distribution with variance near to infinity, is selected,

and the same applies for nt and dt, respectively. We

model a trend and an autoregressive component. There-

fore, the autoregressive component is assumed to be

stationary, and for the parameter f a uniform prior on

the interval (21, 1) is chosen. The trend slope pa-

rameters k1 and k2, the intercepts cT and cP, and the

model biases b1, . . . , bM have uniform priors on the real

line.

d. Calculation of the posterior distribution

The joint posterior distribution of the parameters

[QjD] is the target density, which we will obtain by

means of Eq. (1) and sequential calculation of the time

dependent parameters.

The likelihood of the data is given by

[DjQ] 5 [X
0
, X

1
, . . . , X

M
, Y

1
, . . . , Y

M
jQ] } P

M

i51

ffiffiffiffiffiffi
gP

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

(T1P)
i

q
exp �

l
i

2
�
T

t51
[X

i
t
� (c

T
1 m

t
1 d

t
1 b

i
)]2

8<
:

*0
B@

1 g �
G1P

t5G11
[Y

i
t
� (c

P
1 n

t
1 d

t
1 b

i
Þ]2

9=
;
+1A3 exp �

l
0

2
�
T

t51
[X

0
t
� (c

T
1 m

t
1 d

t
)]2

8<
:

9=
;. (12)

To consider the dependencies within the parameters, we

separately assess the constant components of the pa-

rameter vector Qstat 5 (cT, cP, g, f, k1, k2, l1, . . . , lM,

b1, . . . , bM, lm, ln, ld, ld) and the state-space compo-

nents mt, dt, nt, and dt. The posterior distribution of the

constant parameters is given by

[Q
stat
jm, d, n, d, D] } [DjQ] 3 [m, d, n, djQ

stat
] 3 [c

T
] 3 [c

P
] 3 [g] 3 [l

1
] 3 . . . 3 [l

M
] 3 [l

m
] 3 [l

d
] 3 [l

n
] 3 [l

d
] 3 [f]

3 [k
1
] 3 [k

2
] 3 [b

1
] 3 . . . 3 [b

M
].

(13)

Inference of the analytic form of the posterior distri-

bution of the parameters cannot be drawn, but the priors

of the stationary parameters are conjugate to the like-

lihood. Thus, the marginal conditional densities of the

parameters are given, and a MCMC simulation through

a Gibb’s sampler is employed to approximate the marginal

posterior distributions of the parameters (cf. Tebaldi

et al. 2005). Further details are provided in the ap-

pendix. The posterior distribution of the intercepts cT

and cP is normal with variance [T(l0 1 �M

i51li)]�1 and

(gP�M

i51li)
�1. The mean of the intercepts is a weighted

average of observations and model outputs, whereas the

precisions li serve as weights:1 The vector F9t is the transpose of Ft.
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The posterior distribution of the state-space parame-

ters [mt, nt, dt, dtjQ, D] at each time step t 5 1, . . . , T,

G 1 1, . . . , G 1 P is obtained by applying the update

and prediction steps of Eqs. (10) and (11) by means of a

Kalman filter–based simulation smoother (Meinhold and

Singpurwalla 1983; De Jong and Shephard 1995; Durbin

and Koopman 2002; Harvey et al. 2007). The Kalman

filter and smoother are run at each Gibb’s sampling it-

eration (i) with the current stationary parameters Q
(i)
stat.

The predictive distribution Y
0t

at time t is derived by

using the corresponding parameter vector Qt for Eq. (2).

This parameter vector is actually calculated by utilizing

all data information D, because a Kalman smoother is

employed for the state-space variables (cf. Dethlefsen

and Lundbye-Christensen 2005).

e. Approximation of the predictive distribution

Let the conditional distribution of Y0 given the pa-

rameters be Y0jQ ; N(cP 1 nt 1 dt, l0
21). The assumption

of a similar variability of the observations in the training

and prediction periods is commonly used (cf. Min et al.

2004; Raftery et al. 2005). Other modeling approaches

would require detailed physical knowledge of the pre-

diction period. We use Monte Carlo integration to cal-

culate the predictive distribution of Y0t
; that is, equation

(2) is interpreted as the calculation of the expectation

of [Y0jQ], which is the predictive distribution (Davison

2003). As an approximation of the posterior predictive

distribution, we get

[Y
0

t
5 y

0
s
jD] 5 R�1 �

R

r51
[Y

0
5 y

0
s
jQ

r
], (15)

where Q1, . . . , QR represent draws from the posterior

probability of the parameters [QjD], which are obtained

by Gibb’s sampling. Equation (15) is evaluated for each

y
0s

, s 5 1, . . . , S, where the set of y
0s

covers the whole

domain of the posterior predictive distribution; R

denotes the number of Gibb’s sampling iterations kept

for evaluation (see the appendix for further details).

4. Ice index assessment

The BMC framework is applied to an ice index rep-

resenting the ice accumulation over the oceanic Arctic

region for a freezing season (see section 2). The index is

derived from surface temperature, a climatic variable,

and is not directly related to sea ice physics.

We combine single runs of several GCMs; thus, the

natural variability of the GCMs themselves is not con-

sidered. However, Gregory et al. (2002) and Zhang and

Walsh (2006) do not find a major influence of internal

model variability on the trends of sea ice extent. Given

the strong decrease of the ice accumulation index for the

prediction periods (see section 4d), we deduce that in-

ternal model variability may also be neglected for the

quantitative interpretation of the ice index assessment

results.

Our results are verified by comparisons with an ice

index created from reanalysis data. Bromwich et al.

(2007) find NCEP reanalysis data to be a suitable tool to

study the Arctic region, despite some deficiencies. Suf-

ficiently accurate observations were not available until

now. Sea ice volume or thickness can only be measured

with large uncertainty, since the data are derived from

submarine sonar measurements, which do not have suf-

ficient coverage (Gregory et al. 2002), or from satellite

measurements (Laxon et al. 2003; Kwok and Rothrock

2009).

a. Verification

For verification, training periods of different lengths

are used, namely, freezing seasons spanning 5 (1977–81),

10 (1972–81), 15 (1967–81), and 20 (1962–81) yr. The

verification period covers from 1992 to 1999 and the

derived predictive distributions are compared to ob-

servations for this period.

We utilize common measures for verification, such as

the mean absolute error (MAE) or the root-mean-square

error (RMSE). Furthermore, we employ the continuous

ranked probability score (CRPS) and the ignorance score

(IS) to evaluate distributions. The CRPS gets better the

closer a verification y is to the center of the predictive

cumulative distribution function F(�). The CRPS is the

integral of the Brier score at all possible threshold values

t for the continuous predictand and is defined as

CRPS(F, y) 5

ð‘

�‘

[F(t)�H(t � y)]2 dt, (16)
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where H(t 2 y) denotes the Heaviside function with

H(t 2 y) 5 0 for t , y and H(t 2 y) 5 1 otherwise (see

Gneiting et al. 2005). To approximate the CRPS, we use

the discretized predictive distribution evaluated at 200

quantiles (cf. Hersbach 2000). The IS is the negative

logarithm of the predictive density f(�) at the verifica-

tion y, that is,

IS(f , y) 5�logf (y). (17)

Both scores indicate a better performance when having

a lower value. All comparisons are done with the aver-

age of these scores over the whole verification period.

To further evaluate the Bayesian framework, we

carried out simulation studies with artificial data (results

not shown). The data were generated from a Gaussian

white noise process or from an AR(1) process and a

linear trend or no trend was added. Then we calibrated

the BMC model in a training period and projected to

a verification period. The scores described in this section

were used as an evaluation criterion. In all cases the

simulation studies showed good performance of the BMC

framework and superiority to just taking the multimodel

ensemble mean.

b. Size of the multimodel ensemble

Thirteen GCMs cover the historical period and the

two projection periods (see section 2). In Fig. 3 the

precision li of all models is shown. The precision sig-

nifies how closely the GCMs vary around the common

means. It is an indicator for the quality of the models,

and the contribution of each model to the constant part

of the common means, cT and cP, is weighted by the

precision, which is apparent in Eq. (14).

Six of the GCMs include natural forcing in their

20C3M runs, such as variations in solar input and vol-

canic forcing. Most of those models have a high pre-

cision (see Fig. 3). However, anthropogenic forcing is

assumed to be the main factor for the increase of north-

ern SAT (Kaufman et al. 2009) and the decrease of Arctic

sea ice extent (cf. Gregory et al. 2002; Johannessen et al.

2004) observed for the last third of the twentieth cen-

tury. It is expected that Arctic sea ice extent will con-

tinue to decline through the twenty-first century also

because of atmospheric greenhouse gas loading (Stroeve

et al. 2007). To evaluate the potential advantage of using

solely GCMs, which include natural forcing, we compare

BMC ice index projection skills of the sets of GCMs with

and without natural forcing (results not shown). The

projection period of 1989–95 is taken, because here

Stroeve et al. (2007) found a stronger downward trend

for sea ice extent, which is not well reproduced by the

IPCC Fourth Assessment Report (AR4) models. Stroeve

et al. (2007) attributed this effect to an intense positive

state of the winter northern annular mode, which in turn

is linked to solar activity (cf. Ruzmaikin and Feynman

2002). Thus, strong differences of the ice index pro-

jections for this period are expected. However, the set

of GCMs that include natural forcing did not amelio-

rate the reproduction of the observed decline of the ice

index for this period. This indicates that other model

characteristics—for example, the implementation of sea

ice, ocean and atmospheric physics, and the coupling

between those modules—might have a stronger influence

on the ice index evolution than the inclusion of natural

forcing. Thus, we consider all 13 GCMs as valid candi-

dates for our analysis.

Figure 3 reveals that some models have a very low

precision, which points at reducing the number of GCMs.

To decide whether to delimit the number of models for

the projection, we compare the prediction scores of the

set of all models and a selection of seven models with

good precision (the precision box plot of the selection is

accented gray in Fig. 3). The prediction scores of the

smaller set of models are on a par with the set of all

models for all verification settings except the one with

15 yr of training length (see Fig. 4). Therefore, we chose

to utilize the selection of seven models with the best

precision in the further analysis.

c. Length of the training period

The influence of the length of the training period is

evaluated by comparing prediction scores for different

training period lengths and a verification period from

1992 to 1999 (see section 4a). Results are depicted in Fig. 4.

In Figs. 4a,b the RMSE and MAE for the BMC pro-

jections and the MEA are shown. Apparently, the BMC

projections outperform projections made by just taking

the multimodel ensemble average. The CRPS and IS

scores for different training period lengths are depicted

FIG. 3. Box plots of GCM precisions li, which are estimated by

using the historical period 1962–99. The models with high precision

are accented in gray. Models that include natural forcing in their

20C3M run are listed in bold italic.
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in Figs. 4c,d, respectively. They reveal that a longer

training period does not necessarily result in better

scores. However, the longest training period leads to

comparatively good results. We also could not find any

physical reasons to dismiss parts of the historical data,

and no signs of overfitting because of too much infor-

mation were apparent. Therefore, we chose the whole

historical period (1962–99) as the training period for the

projections. Here also the scores of the set of seven

models with high precision, which we choose for the

analysis, are on par with the BMC projections of all the

models.

d. Results

Projections are carried out for the A2 and B1 sce-

narios. Scenario A2 is a rather pessimistic scenario; a

regionalized, heterogeneous world with high population

growth and energy use and slow technological evolution

is assumed, which results in high CO2 concentrations

hitting about 840 ppm at the end of the twenty-first

century. By contrast B1 expects low population growth

and energy use and a medium technical evolution, and is

therefore a low-emission scenario. In Fig. 5 exemplarily

marginal posterior parameter distributions for the pro-

jection to years 2082–99 and the A2 scenario are shown.

The posterior parameter distributions are a means to

test for significance. The slope of the trend in the train-

ing period (Fig. 5a) and prediction period (Fig. 5b) differ

in size, but both are significant; that is, zero is not in-

cluded in the slope distributions. With a length of ap-

proximately 20 years, the prediction periods are relatively

short. Therefore, the term significance is related to the

existence of a trend in presence of noise rather than

pointing to an irreversible downward trend. For the B1

scenario, no significant trend could be found for the

years 2082–99. The parameter f, shown in Fig. 5c,

reflects the autocorrelation present in the data, and in

Fig. 5d a model bias is depicted. The BMC projections are

the basis for the examination of the future ice accumu-

lation over the oceanic Arctic region. This might give

insight into the minimal ice accumulation of the oceanic

Arctic ice at the end of the summer, in case the relation

to SAT temperature is the same for the end of the

twentieth and twenty-first centuries, which is assumed

when projecting the ice index. This index allows for

a qualitative assessment of the ice accumulation, since

quantitatively the ice amount estimated from NCEP re-

analysis data differs from the actual amount of ice. Figure 6

shows projections for years 2046–65 and 2082–99 and

the A2 (Fig. 6a) and B1 (Fig. 6b) scenarios. Apparently,

the variability of the mean of the predictive distribu-

tions, which we take as point projection, is very low. This

might be a side effect of Kalman filtering. However, the

projection is expected to occur within the bandwidth of

the whole predictive distribution. Thus, the variability of

the observations is more or less preserved for the pro-

jections. The first projection period shows a comparable

decline of the ice index for both scenarios. Under the A2

scenario, this tendency of reduction of the ice accumu-

lation over the oceanic Arctic region in the freezing

season continues in the years 2082–99, whereas for the

B1 scenario, interestingly, a stabilization of the ice ac-

cumulation is indicated. Correspondingly, Zhang and

Walsh (2006) and Gregory et al. (2002) find a decreasing

trend for sea ice extent for those scenarios and the

twenty-first century. However, they do not analyze the

evolution of this trend.

To evaluate the choice of the state-space model, we

compare our results in Fig. 7. Here the evolution of the

FIG. 4. (a) RMSE, (b) MAE, (c) IS, and (d) CRPS for the BMC

projections using the seven models with the highest precision

(black solid line), the BMC projections using all the models (black

dashed line), and the MEA projections (gray line) for training

periods using freezing seasons spanning 5 (1977–81), 10 (1972–81),

15 (1967–81), and 20 (1962–81) yr. The verification period is from

1992 to 1999.
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distribution of the common means MTt is shown for the

training period (Fig 7a) and MPt for the prediction pe-

riod 2082–99 for the B1 scenario (black lines; Fig. 7b).

Furthermore, the following state-space models are as-

sessed: The common means being composed of intercept

and trend (gray lines), of intercept and AR component

(black dashed lines), and of a constant intercept only

(gray dashed lines). The width of the densities reflects

the uncertainty of the estimate of the common means,

not the variability of the projected observations. We find

that the projected common means are estimated with

approximately the same accuracy as the common means

in the training period; all distributions span about 4 3

109 km2 8C. Furthermore, the less complex state-space

models are capable of estimating the projected common

means with comparable good accuracy. Similar results

are obtained for the other three projection periods (not

shown). In Fig. 8 results for the four state-space models

are compared for the A2 scenario projection period

2046–65. In Fig. 8a the densities of the difference of the

common means in the training and projection periods

are shown (the densities of the nonstationary state-space

models have been averaged over the training period and

the prediction period, respectively). This important fig-

ure indicates the expected average change of the ice

index. In line with Fig. 7, it is nearly the same for all four

state-space models. The mean of the densities is at about

216 3 109 km2 8C; that is, a decrease of the ice index of

26% is expected. We find for the B1 scenario and this

period an expected change of 22.9%, and for the second

FIG. 5. Posterior distribution of the trend slope in the (a) training period k1 and (b) prediction period k2,

(c) AR(1) parameter f, and (d) estimated bias b1 of Canadian Centre for Climate Modelling and Analysis

(CCCma) Coupled General Circulation Model, version 3.1 [CGCM3.1(T47)] for the projection to years 2082–99

under the A2 scenario.
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prediction period 2082–99 expected changes of 28.4%

for the B1 scenario and 45.7% for the A2 scenario,

which indicates nearly a halving of the ice volume. In

Fig. 8b the evolution of the projected observations Y0

are shown. Here the advantage of including a trend

component becomes obvious (in case the GCM pro-

jections reflect the right trend behavior). The inclusion

of an AR component (black dashed line) does not lead

to deviations of the projections of a constant common

mean (gray dashed line). However, the nonzero estimate

FIG. 6. Ice index generated from NCEP reanalysis data (black line, with 66% confidence interval) and BMC

projections of the ice index (black dots, with 66% credibility interval) into future periods 2046–65 and 2082–99 for

the (a) A2 and (b) B1 scenarios.

FIG. 7. Evolution of the distribution of the common means: (a) MTt in the training period and (b) MPt in the

prediction period 2082–99 of the B1 (black lines) scenario. In addition, results for other state-space models are

shown, including the common means composed of intercept and trend (gray lines), of intercept and AR component

(black dashed lines), and of an intercept (gray dashed lines). For clarity some of the common mean distributions in

the training period are indicated by black triangles and exemplarily only one distribution is depicted for the other

nonstationary state-space models.
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of the AR parameter f hints at the necessity of including

an AR component. This component causes differences in

the trend behavior (a comparison of black and gray lines),

as discussed earlier.

In case constant common means are assumed, the

approach of Tebaldi et al. (2005) is recovered (results

are depicted as dashed gray lines in Figs. 7, 8). Thus, the

main difference to this approach consists of nonstationary

projections. Furthermore, we do not explicitly introduce

any dependence between GCM outputs in the training

and prediction periods.

To investigate the robustness of our results with re-

spect to the different training periods, we compare the

projections of training periods 1962–79 (T1), 1971–89

(T2), and 1981–99 (T3) to the period 1946–65 for the A2

scenario. In Fig. 9a the mean of the GCM biases for the

different training periods and their average are shown.

The dispersal of the bias among the models is similar for

all the training periods evaluated, and the averaged

biases are very close together. The training period 1981–

99 has the highest averaged model bias, which may be

related to the fact that IPCC GCM runs do not re-

produce well the decrease of sea ice extent within this

period (Stroeve et al. 2007). The average precision of all

models is on par for nearly all training periods; it is

slightly worse for 1971–89 (results not shown). However,

these differences do not strongly influence the projec-

tion results: Figure 9b exemplarily shows the distribu-

tion of the common mean for year 2054. In our model we

assume the same bias for the training and projection

periods. The bias correction is largest for the training

period 1981–99; therefore, those projections lie below

the other projections. The width of the density of the

common mean is largest for the training period 1962–79,

which hints at a larger spread of the model outputs

during that period. The use of a longer training period

(gray lines) does not lead to a coarser density of the

common mean estimate. Nevertheless, a longer training

period allows for a better estimation of the constant

parameters such as model biases, which are meant to

represent average values. In Fig. 9c the evolution of the

common means are depicted. We find comparable trend

tendencies within the projection period for all the train-

ing periods assessed. All in all the projection results show

to be robust. This is due to the little differences in model

bias and precision for the training periods chosen.

In Fig. 10 the BMC projections are depicted in com-

parison to the total global cumulative CO2 emissions (cf.

Nakicenovic and Swart 2000). A direct link between

global emission amounts and the ice index, which rep-

resents dynamics on the comparatively small oceanic

Arctic region, might not exist. However, for the first

projection period, the emission paths for both scenarios

overlap significantly, whereas for the second prediction

period already a clear separation appears visible. This

fits well with the evolution of the ice index for both

scenarios. Furthermore, the potential stabilization of the

ice accumulation decrease for the B1 scenario and the

second prediction period is accompanied by a deceler-

ated increase of the cumulative CO2 emissions: In the

B1 scenario an actual reduction of the global annual

CO2 emissions is achieved from 2050 on, whereas this

annual contribution never ceases to increase for the

A2 scenario. This seems to have an effect on the SAT

FIG. 8. (a) Expected average change of the ice index and (b) evolution of the projected observations Y0 for years

2046–65 under the A2 scenario. Results for the different state-space models are depicted, i.e., common means

comprising all three components (black lines), intercept and trend (gray lines), intercept and AR component (black

dashed lines), and intercept (gray dashed lines).

5432 J O U R N A L O F C L I M A T E VOLUME 23

Unauthenticated | Downloaded 04/17/21 05:55 AM UTC



and therefore on the ice accumulation over the oceanic

Arctic.

5. Conclusions

In this paper we present a Bayesian method to enhance

projections. Information from a multimodel ensemble is

combined within a statistical framework. The parame-

ters of the statistical model are estimated by regarding

observations and multimodel outputs as random vari-

ables, which float (with a potential bias) around a common

mean. This allows assess to model-specific deficiencies,

namely, variability and bias. It is advantageous that all

parameters are estimated together, which reduces esti-

mation errors. Although we start from diffuse priors,

informative posterior distributions are derived for all

parameters. The methodology is applied to an ice index

representing the ice accumulation over the oceanic

Arctic region during cold seasons. Under the A2 sce-

nario, we find a continuing decrease of the ice index,

whereas for the B1 scenario, stabilization appears visible

by the end of the twenty-first century. The stabilization

hints at the retention of a minimum of ice rebuilding

capacity in the freezing season for this scenario, which is

important for questions related to adaptation and resil-

ience (cf. Chapin et al. 2006; Laidler 2006).

Information from the entire training and prediction

period is utilized for the BMC projections, whereas for

simple averaging, only GCM outputs at one time step

are relevant. Furthermore, here the models are not com-

bined additively. In this way we do not have to adjust the

length of the training period to the amount of infor-

mation available. The Bayesian combination of multi-

model ensembles were shown to potentially ameliorate

projection skills in comparison to single-model projections

or to the average of ensemble projections. A possible

extension is the integration of expert knowledge on the

GCM outputs by means of the priors.

FIG. 9. Comparison of projections to period 2046–65 of the A2 scenario with training periods 1962–79 (black lines), 1971–89 (black

dashed lines), 1981–99 (black dotted lines), and with the entire historical training period (gray lines). Shown are (a) model biases and the

average model bias, (b) the density of the common mean at year 2054, and (c) the evolution over the common means over time.

FIG. 10. BMC projections of the ice index into future periods

2046–65 and 2082–99 for the A2 (dark gray line and gray-shaded

credibility intervals) and B1 (black line and black-shaded credi-

bility intervals) scenarios with the axis on the right-hand side. For

comparison total global cumulative CO2 emissions for the A2 (gray

lines) and B1 (black lines) scenario groups are shown [Source: data

tables, appendix VII of Nakicenovic and Swart (2000)].
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APPENDIX

MCMC Routine for Model with Time-Dependent
Parameters

A MCMC routine is used to generate pseudorandom

drawings from the posterior distribution of the state-

space components Q (cf. Harvey et al. 2007). To obtain

the joint posterior [QjD], we divide a Gibb’s sampling

procedure in several blocks: First, the state-space pa-

rameters mt
(i), dt

(i), nt
(i), and dt

(i) are obtained by Kalman

filtering and smoothing; then, marginal conditional like-

lihoods of the stationary parameters are evaluated. Next,

for the parameter f, a Metropolis–Hastings step is inte-

grated in the Gibb’s procedure. The algorithm converges

to the joint posterior distribution of the parameters (cf.

Chib and Greenberg 1996).

The vector of initial values for the stationary pa-

rameters Q
(0)
stat 5 (c

(0)
T , c

(0)
P , g(0), f(0), k

(0)
1 , k

(0)
2 , l

(0)
1 , . . . ,

l
(0)
M , b

(0)
1 , . . . , b

(0)
M , l(0)

m , l(0)
n , l

(0)
d , l

(0)
d ) is provided. Then,

the MCMC routine is run to produce a sequence of draws

Q(i), i 5 1, . . . , R. We utilize a burn in the period of 5000

steps, set R 5 100, and keep the parameter values only every

50th iteration to avoid correlations between the Q(i21)

and Q(i). In each iteration step, we proceed as follows:

1) To draw m(i), n(i), d(i), and d(i) out of [m(i), d(i), n(i),

d(i)jQstat, D] given the most recent iterate of Q
(i�1)
stat ,

a Kalman smoother proposed by Dethlefsen and

Lundbye-Christensen (2005) is employed (see also

Durbin and Koopman 2002). We restrict the trend

components to have mean 0; a potential deviation

from this is captured by the intercepts cT and cP.

2) We sample Qstat in block from [Q
(i)
statjm(i), d(i), n(i),

d(i), D] by using the Gibb’s sampler. The constant

parameters have independent priors and their pos-

terior distribution is given by Eq. (13). We only use

information of the training period to estimate the

precision of the models li and their bias bi. There-

fore, we obtain
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The marginal posterior distribution of the change

in precision g is given by

g:U(0,c)0G
MP12
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2
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>;.

(A2)

For the precisions of the state-space model,
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holds, and the posterior marginal distributions of k1

and k2 are given by

k
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3) The autoregressive parameter f is drawn from

[fjk
1
, k

2
, b

1
, . . . ,b

M
, c

T
, c

P
, g, l

1
, . . . ,l

M
, l

m
, l

d
,

l
n
,l

d
,m,d,n,d,D]} [DjQ][m,d,n,djQ

stat
][f]

} [m,d,n,djQ
stat

][f]. (A5)

As posterior marginal distribution, we obtain

f:U(�1,1)0N
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CCCCA, (A6)

whereas f is sampled from a truncated normal. The

state-space variables depend on f, and the relation

is more complex than for the other parameters.

Therefore, we include a Metropolis–Hastings step to

sample f: a proposal value f* is obtained from a

symmetric proposal distribution, and Eq. (A6) is

evaluated for f(i21) and f*. If [f*j�] . [f(i21)j�], the

proposal f* is accepted, that is, f(i) 5 f*; otherwise,

f* is accepted with probability [f*j�]/[f(i21)j�].
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