
HAL Id: hal-03200931
https://hal.science/hal-03200931

Submitted on 17 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shared-Memory Communication for Containerized
Workflows

Tanner Hobson, Orcun Yildiz, Bogdan Nicolae, Jian Huang, Tom Peterka

To cite this version:
Tanner Hobson, Orcun Yildiz, Bogdan Nicolae, Jian Huang, Tom Peterka. Shared-Memory Commu-
nication for Containerized Workflows. CCGrid’21: The 21th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing, May 2021, Melbourne, Australia. �hal-03200931�

https://hal.science/hal-03200931
https://hal.archives-ouvertes.fr


Shared-Memory Communication
for Containerized Workflows

Tanner Hobson∗, Orcun Yildiz†, Bogdan Nicolae†, Jian Huang∗, Tom Peterka†

∗ University of Tennessee
EECS Department

Knoxville, TN, USA
thobson2@vols.utk.edu and huangj@utk.edu

†Argonne National Laboratory
Mathematics and Computer Science

Lemont, IL, USA
{oyildiz,bnicolae,tpeterka}@anl.gov

Abstract—Scientific computation increasingly consists of a
workflow of interrelated tasks. Containerization can make work-
flow systems more manageable, reproducible, and portable, but
containers can impede communication due to their focus on
encapsulation. In some circumstances, shared-memory regions
are an effective way to improve performance of workflows;
however sharing memory between containerized workflow tasks
is difficult. In this work, we have created a software library
called Dhmem that manages shared memory between workflow
tasks in separate containers, with minimal code change and
performance overhead. Instead of all code being in the same
container, Dhmem allows a separate container for each workflow
task to be constructed completely independently. Dhmem enables
additional functionality: easy integration in existing workflow
systems, communication configuration at runtime based on the
environment, and scalable performance.

Index Terms—shared memory, workflow systems, containers

I. INTRODUCTION

Scientific computing typically makes use of complex work-
flows that are composed of a large number of smaller tasks, each
independently responsible for different types of computations:
collection of input/output, simulations, and analytics. By
splitting the workflow into a set of smaller tasks and managing
the connections between them, different parts of the workflow
can run concurrently at different scales. While individual tasks
specialize, communication is the glue that turns a set of discrete
tasks into a coherent and efficient workflow.

With increasing complexity of the tasks, composing a
workflow is challenging for several reasons. First, each task
may depend on a large number of libraries and runtimes that
are not easy to deploy, nor to reconcile when multiple tasks
need to share the same compute nodes. Second, some tasks
may be implemented using legacy codebases that rely on old
or unmaintained dependencies that are incompatible with the
default installation. Third, the reproducibility of the scientific
results is nontrivial if the ecosystem of libraries and runtimes
is significantly different between runs.

It would be helpful to be able to isolate each task in its
own environment, ideally without sacrificing performance and
scalability. Initially developed in the context of cloud computing
for the purpose of providing lightweight virtualization as an
alternative to virtual machines, containers have recently seen

adoption in HPC workflows as well, due to promising potential
to solve the aforementioned challenge [16].

At its core, a container is an operating system virtualization
approach that enables multiple isolated process groups to share
the same kernel. The kernel exposes a mechanism to isolate
both the environment (namespaces) and the performance, i.e.,
limit access to resources (cgroups). Of particular interest in
the context of workflows is the isolation of the environment
as a container image. While the kernel does not provide
direct support in this regard—it assumes the environment is
available as a mount point—tools such as Docker can be
used to automatically build and share container images as a
set of deterministic scripts that can import and modify other
container images in a layered fashion. Such an approach can
greatly increase the portability and reusability of container
images, which was the main reason for their wide adoption.

Both individual tasks and groups of tasks, i.e. sub-workflows,
can be packaged into container images, which in turn can
be used to deploy a large number of container instances at
scale. However, such an approach also introduces an important
challenge: efficient cross-container communication. Specifically,
if the container instances are co-located on the same node,
then the inputs and outputs of the tasks can be passed between
them through shared memory instead of messages in order
to reduce communication overheads. However, containers do
not share the same virtual address space. Therefore, a naive
solution that simply serializes the data structures into shared
memory is not significantly more efficient than sending the
serialized data structures as a message. Furthermore, the
locality of the containers also influences the performance
of the synchronization: instead of messages, there are other,
potentially more efficient alternatives: position-independent
data structures, inter-process OS primitives.

This paper introduces Dhmem, an abstraction specifically
designed for efficient cross-container communication. The key
idea is to present a uniform data sharing and synchronization
service that transparently implements a dynamic strategy to
choose the optimal data sharing and synchronization primitives
based on task location and isolation requirements. To this end,
it exposes high-level data structures whose representation is
specifically optimized to avoid serialization overheads, even



for tasks running in different co-located containers.
Using this approach, applications are freed from having to

worry about the location of containers, which effectively helps
scientists cross over containerized encapsulations of workflows
as well as other system boundaries. In addition, Dhmem is easy
to adopt because the code changes required to share a data
structure are solely related to changing a type declaration: the
kind of change required is simply to switch from one STL-style
C++ class to another STL-style class. Furthermore, another
advantage unlocked by the use of shared memory (in addition
to lower overhead) is the reduction of the total in-core memory
footprint, a crucial system resource in future exascale systems.
We summarize our contributions as follows:
• We introduce Dhmem, a novel workflow abstraction

specifically built to optimize data sharing between inter-
container tasks, insisting on several key design principles
(Section III-B).

• We present an implementation of the design principles as
a cross-platform C++ library (Section III-C).

• We position Dhmem in the ecosystem of state-of-art HPC
workflow solutions and discuss how it can be integrated
with two of them (Section III-D).

• We perform a series of experiments using benchmarks that
compare Dhmem both with a traditional solution based on
serialized messages that sacrifices performance to achieve
isolation and with a thread-based solution that sacrifices
isolation to achieve performance (Section IV).

II. BACKGROUND & RELATED WORK

Dhmem builds upon several foundations of scientific work-
flow systems ranging from workflow system design, their
definition, and their means of communication. It extends these
foundations through the use of shared memory which has
had success in other areas. Dhmem also builds on container
research.

A. Workflow Systems

Scientific workflow systems manage the composition of
workflow tasks along with their data dependencies. These
dependencies instruct the workflow system how the commu-
nication between tasks should be done. In practice, there are
two main types of workflows: distributed and in situ [22]. This
distinction primarily characterizes whether tasks are collocated
on the same machines or whether a disparate set of compute
resources are to be used.

The communication mechanisms behind distributed and in
situ workflows also differ. Distributed workflow systems often
communicate via files or sockets and separate parts of the
workflow can be run at different times. In situ workflows
instead are always run at the same time and have a dedicated
communication channel between them. Some examples of
each include: (distributed) Pegasus [10] and Parsl [1]; (in situ)
ADIOS [18], Decaf [13], Henson [20], and Damaris [12]. The
former are mostly focused on coordinating data movement
across heterogeneous sets of machines, while the latter can

focus on fast communication within one set of homogeneous
compute machines.

In situ workflow systems, the focus of this paper, communi-
cate by passing messages between tasks through memory or
the system interconnect. Communication can also happen via
shared memory when tasks are on the same node [22]. This
happens automatically and transparently by the library.

The design of Dhmem is agnostic to the choice of workflow
system. In this paper, we illustrate its use in two workflow
systems: Decaf [13] and Henson [20]. Decaf is based on MPI
communication and features transparent data distribution to
workflow tasks. Henson is instead based on dlopen system
calls and runs each task as a coroutine with minimal memory
copying overhead.

B. Containerization
While containerization started with cloud computing [2, 8]

and not with HPC, scientific workloads have started adopting
containers to manage complex toolchains and software depen-
dencies to ease deployment in multiple Linux variants [15].
Widely deployed container systems that have found use in
HPC include Docker [5, 9, 19], Singularity [16, 17, 24], and
Shifter [3, 4].

These improvements are applicable and important for work-
flow systems, e.g., to help leverage both HPC and cloud
resources for in situ processing [7], and to help envision unified
resource management in the context of exascale computing [21].

Although some approaches allow sharing memory across
processes [14], sharing memory across containers is in practice
not done because an entire application is built in a single
container. It is only in the context of coupling multiple
applications in a workflow that the situation arises, and to
the best of our knowledge, our paper is the first to develop a
flexible and reusable solution to this problem.

Existing research in containerized workflows targets dis-
tributed workflows, producing a single, reusable container to
run the scientific codes [25]. In contrast, in situ workflows
usually require special integration into their codebases, so a
single container is less useful. One project that makes use
of containers for in situ workflows is SENSEI [23], which
packages a complex toolchain of scientific codes into one
Singularity container for ease of use.

As most in situ workflow systems are based on MPI, a
compatible container system must support it easily. Currently,
the easiest path to using MPI communication between contain-
ers is via Singularity. Singularity is built and optimized for
scientific tools, compared to Docker which targets enterprise
and businesses. This is due to Singularity’s execution model,
where each container acts as a simple executable, whereas
running Docker containers requires a separate executable.

Dhmem is designed to be agnostic to its environment so that
a task can easily run inside of a container as well as outside.
In either case, the developer’s code is the same.

C. Communication and Shared Memory
Communication for in situ workflow systems is usually based

on message passing interfaces like MPI. This is due to their



encapsulation guarantees that make combining different parts
of a workflow easier, but not necessarily faster.

All message passing communication methods have a draw-
back: the data being transferred must exist in at least two places
at once—one from the sending side, one from the receiving
side—plus any extra copies the library makes internally. This
limitation imposes an upper bound on communication.

An alternative form of communication exists and has been a
part of modern computing systems for decades: shared memory.
Shared memory is exposed via POSIX mmap system calls,
OpenSHMEM libraries [6], MPI one-sided communication [11],
and many other tools. Shared memory enables a form of zero-
copy communication from which workflow systems can benefit.

Two forms of shared memory exist that we call “automatic”
and “directed.” Automatic shared memory has a drawback in
its inability to choose to have some data in its own memory
space. In the automatic method, all memory allocated is
immediately shared with another process. This is the case for
multithreaded programs and workflow systems that dynamically
load executables (e.g. with dlopen). Directed methods, instead,
offer the developer more control over what data are shared,
such as OpenSHMEM’s shmalloc.

More recently, the use of automatic shared memory for
workflow systems has been explored in Process-in-Process [14]
using the dlopen system call. With the newer clone system
call, this general principle could be applied to arbitrary
executables rather than specially compiled libraries like with
dlopen. Regardless of the method, both approaches enable
processes to share the exact same address space, meaning
any newly allocated data are automatically shared and making
individual containers for each workflow task impossible.

Dhmem uses the Boost Interprocess library, making it easier
to manage shared memory resources in a directed way. Boost
Interprocess is built on top of mmap system calls and provides
not just a single shared memory region, like OpenSHMEM does,
but also includes a custom allocator to dynamically allocate
data structures into shared memory. This dynamic allocation
makes integrating Dhmem into an existing workflow that uses
familiar STL data structures easier.

Our objective is to use shared memory in workflow systems
to enable safe, zero-copy, directed communication. The main
research questions, then, are how efficient is communicating
across containers via shared memory, and how can such
functionality be integrated into existing workflows.

III. DESIGN

This section introduces Dhmem, an abstraction and runtime
library for workflows that is specifically designed for efficient
cross-container communication. We detail the design principles,
architecture and implementation details.

A. Deployment model

The use of containers in workflows is illustrated in Figure 1.
Most existing workflow literature follows either (a) or (b).
In (a), no containers are used at all, and everything is based
on how the entire system is structured. In (b), one container

Fig. 1: Containerization of workflows using Singularity for
an example with three tasks (Evaluator, Steer, Visualize).
(a) provides no encapsulation from the host system. (b) provides
some encapsulation from the host system, but none from other
tasks. (c) provides the best encapsulation of the host system
and each other task, but is most efficient using shared memory.

is used for the entire workflow, and every workflow task’s
dependencies need to be installed in that container.

Our use case is based on Figure 1(c), where every workflow
task is in its own container. In this scenario, sharing memory
is made more challenging because of the encapsulation that
containers provide. The benefit is that different workflow tasks
can depend on different and possibly conflicting dependencies,
while being combined together into a single workflow. Dhmem
also provides value in (a) and (b) for MPI-based workflows
when tasks are collocated on the same compute node, thanks
to a series of design principles detailed below.

B. Design principles

Dhmem is based on the following general design principles:
a) Unified, locality and isolation-aware model for data

sharing and synchronization: If two tasks reside on different
compute nodes, then the communication between them neces-
sarily involves the transmission of messages that encapsulate
a serialized version of the data structures to be exchanged.
However, if two tasks reside on the same compute node, a
better solution would be to simply put the data structures
directly into a shared memory space in order to avoid additional
overheads, just like threads. While this is straightforward if
the tasks are implemented as threads (and still possible if
they are implemented as processes that share the same address
space), alternative approaches are needed for tasks running
in co-located containers, because sharing the same address
space is not possible due to isolation constraints. Similarly,
based on location and isolation requirements, tasks may
use messages, inter-process or thread-specific synchronization
primitives. However, this creates a high level of complexity for
workflow developers, both because the locality and the isolation
of the tasks may not be known in advance (e.g. it may be
decided by the scheduler) and because they may not be system-
level experts that can understand and fine-tune their tasks for



all possible combinations. To this end, we propose a unified
model that hides the complexity from the workflow developers,
transparently optimizing the data sharing and synchronization
based on task location and isolation requirements.

b) Position-independent high-level data structures:
Modern HPC workflow systems need to run tasks that consume
and produce complex inputs and outputs. Therefore, in a typical
scenario, the communications between tasks involve complex
data structures that maintain pointers to many contiguous
memory regions scattered across the memory space (e.g., sparse
multi-dimensional data structures, trees, dictionaries, etc.). If
two tasks running in co-located containers need to exchange
such data structures, they cannot simply use a shared memory
segment for this purpose, because it would be mapped at
different virtual addresses, therefore invalidating any pointers.
Given the large size and number of contiguous memory regions,
a naive solution that serializes such data structures into a
shared memory segment introduces a significant overhead due
to the need to assemble and copy all fragments into a single
contiguous region. To address this issue, we propose the use of
position-independent, high-level data structures that are based
on relative offsets instead of pointers. Thanks to this approach,
Dhmem automatically avoids serialization overheads for a
large number of common high-level data structures without
sacrificing isolation constraints.

c) Ease of integration with existing workflow systems:
Dhmem is designed as a standalone service that integrates
into the workflow as a complement, without changing the
core functionality of the workflow itself. It is architected
as combination of a core Dhmem library and a support
library for each different workflow system. The core library
provides base shared memory functionality. This functionality
is used in each of the support libraries to integrate into
workflow systems, thereby extending the available synchro-
nization methods available to Dhmem. This separation of
concerns enables two advantages simultaneously: (1) the core
Dhmem library can be independently optimized and improved,
thereby benefiting all workflow systems for which a support
library exists; (2) containerization can be flexibly added
or removed in any configuration (even dynamically during
runtime) without impacting the structure of the workflow or
the task implementation.

C. Dhmem Core Library

Dhmem’s core library implements everything needed to work
with shared memory regions and data structures. The core
library enables tasks to connect to a shared-memory region,
allocates data structures, and saves/loads process-independent
pointers to those data structures.

Dhmem builds on top of the Boost Interprocess library,
adding discoverability and usability in the context of a workflow.
For example, Boost Interprocess can allocate and reference
data structures by name, and Dhmem helps generate consistent
names and interacts with the structures.

Several programming language constructs are used in
Dhmem, enabling the use of shared-memory structures in a

uniform way. We leverage C++ references to interact with
a variable as if it were stack-allocated, when in reality the
variable is stored in a shared-memory region. In most codes,
this means only the variable definition needs to be updated,
while its use remains the same.

In the simplest case, replacing ordinary data structures with
shared-memory structures is as simple as replacing the std::
prefix with dhmem:: and calling a different constructor as
shown in Listing 1.

1 +dhmem::Dhmem dhmem("shmem_namespace");
2

3 -int n;
4 +int &n = dhmem.simple<int>("my_n");
5 n = 123;
6

7 -std::vector<int> v;
8 +auto &v = dhmem.container <dhmem::vector<int>>("v");
9 v.resize(VSIZE);

10

11 -MPI_Send(v.data(), VSIZE, MPI_INT, 0, 0, comm);
12 +dhmem::handle h = dhmem.save(v);
13 +MPI_Send(&h, 1, MPI_DHMEM_HANDLE , 0, 0, comm);
14

15 -MPI_Recv(v.data(), VSIZE, MPI_INT, 0, 0, comm,
16 - MPI_STATUS_IGNORE);
17 +dhmem::handle h;
18 +MPI_Recv(&h, 1, MPI_DHMEM_HANDLE , 0, 0, comm,
19 + MPI_STATUS_IGNORE);
20 +auto &v = dhmem.load<dhmem::vector<int>>(h);

Lst. 1: Comparison of code changes to use Dhmem. Red lines
prefixed with “-” indicate code before using Dhmem while
green lines prefixed with “+” indicate newly added code.

The remainder of this section details how to add Dhmem to
an existing workflow task, in order from the simplest case to
the more complex edge cases.

Shared Memory Region. The first step to add Dhmem to
a workflow task is to open or create a new shared memory
region. This is accomplished with the Dhmem class which takes
2 or more parameters: the mode for the shared-memory region
and its name.

The name uniquely identifies the memory region on a single
machine and must be the same for all workflow tasks. A
reasonable default is the name of the workflow itself. The
mode tells Dhmem whether to open an existing region, create
a new one, delete an existing one and then create a new one,
or some combination thereof. An example is demonstrated in
Listing 2.

Shared Primitive Variables. The simplest way to use
Dhmem is when allocating primitive variables or arrays of
them. These allocations are most commonly used for sending

1 if (mpi_rank == 0) {
2 dhmem::Dhmem dhmem(create_only , "my_shm", 65536);
3 MPI_Barrier(comm);
4 } else {
5 MPI_Barrier(comm);
6 dhmem::Dhmem dhmem(open_only , "my_shm");
7 }

Lst. 2: Connecting to shared-memory regions with Dhmem.



timestamps or other scalar values, though arrays can be
leveraged to send several values at once. Simple allocations
differ from other allocations by being a fixed size and not
allocating any more data at runtime.

Dhmem exposes simple allocations via its simple function
which takes a template parameter for the type of the data to
allocate. The function also takes a name for this variable that
can be used in other tasks to get a pointer to the same primitive
variable. The type parameter can be simple types (float, int,
etc) or structures of simple types. An example is given in
Listing 3.

1 int &n = dhmem.simple<int>("my_n");
2 n = 3 * n + 1; // usable like any other integer
3

4 struct S { int i; int j; int k; };
5 S &s = dhmem.simple<S>("my_s");
6 s.i = 1; s.j = 2; s.k = 3;
7

8 auto &arr = dhmem.simple<float[512]>("my_arr");
9 arr[0] = 1;

Lst. 3: Demonstration of shared primitive variables.

Shared Data Structures. Resizable arrays or other complex
data structures in shared memory pose challenges because
normal STL structures internally store and use regular pointer
addresses that are not valid across process boundaries. Shared-
memory data structures use position-independent pointers in-
stead. These data structures also need to be able to dynamically
allocate more memory at runtime needing a reference to the
shared-memory allocator.

For most workflow tasks, simply replacing all instances
of STL structures with Dhmem ones and using Dhmem
to do the allocation suffices. In practice, this means re-
placing std::vector with dhmem::vector and new with
dhmem.container<>().

For structs and classes of shared data structures, it
is necessary to forward the memory allocator that Dhmem
provides to the other shared structures. A simplified code
example of both regular vectors and structs of vectors is
shown in Listing 4.

1 dhmem::vector<int> &v =
2 dhmem.container <dhmem::vector<int>>("my_v");
3 v.push_back(5); // allocates more shared memory
4

5 struct S {
6 S(dhmem::allocator <void> alloc)
7 : v1(alloc), v2(alloc) {}
8 dhmem::vector<int> v1, v2;
9 };

10 S &s = dhmem.container <S>("my_s");
11 s.v1.push_back(5);

Lst. 4: Demonstration of shared data structures.

Shared Memory Handles. In Dhmem, there are two ways
of referring to the same data in multiple tasks: by name and
by handle. Handle-based references are used when referencing
variables by names is inconvenient, such as when a workflow
system is already being used to send other data structures.
The handle is just another primitive variable that the workflow
system sends like any other. Handles are essentially offsets

into a shared memory region, though in the future, they could
also contain the name of the shared memory region itself.

Dhmem handles are manipulated via two methods: save
and load. The save method takes an already allocated shared
variable and returns a handle, while load does the inverse. In
both cases, the name of the variable itself is never included
in the handle. In order to facilitate handle usage with MPI,
a special constant MPI DHMEM HANDLE is exported that is
compatible with MPI Send and MPI Recv. An example using
handles is shown in Listing 5.

1 // producer
2 int &n = dhmem.simple<int>("my_n");
3 dhmem::handle h = dhmem.save(n);
4 MPI_Send(&h, 1, MPI_DHMEM_HANDLE , dest, tag, comm);
5

6 // consumer
7 dhmem::handle h;
8 MPI_Recv(&h, 1, MPI_DHMEM_HANDLE , src, tag, comm,
9 MPI_STATUS_IGNORE);

10 int &n = dhmem.load<int>(h);

Lst. 5: Demonstration of Dhmem handle usage.

D. Dhmem Support Libraries

Dhmem supports multiple different workflow systems in its
“support libraries.” In this paper, we demonstrate 3 different
support libraries—Decaf, Henson, and a standalone library
for use outside of a workflow system—although Dhmem is
designed to be easy to integrate into other workflow systems.
For this reason, the core library is larger than any of its support
libraries. In each of the cases, it is important that Dhmem works
together with the workflow system rather than try to completely
reinvent its communication. The most useful Dhmem construct
for support libraries is the Dhmem handle.

In each of the following sections, each supported workflow
system is discussed including how their data model works, how
Dhmem fits into that data model, and what kind of source code
changes are necessary. Each of the following cases require
minimal changes to the workflow task source code. In each of
them, the following steps are needed to integrate Dhmem.

(Step 1) The Dhmem library is built and installed.
(Step 2) The workflow task is linked with the Dhmem library.
(Step 3) The workflow task code allocates a Dhmem object

to create and connect to the shared memory region.
(Step 4) The variables that should be shared are changed

from std:: data structures to dhmem:: data structures and
allocated with Dhmem.

(Step 5) The workflow-specific support libraries are used to
save and load Dhmem handles between tasks.

Steps 1-4 are the same for every workflow, while Step 5
varies according to the workflow system. This is by design
and means that the core usage of Dhmem is transferable
between workflow systems. Because each workflow system
uses a different mechanism for communication between tasks,
each support library needs to accommodate this difference.

1) Decaf Support Library: Decaf [13] is a workflow system
for high-performance, decoupled, in situ scientific workflows.
Its tasks communicate via messages consisting of a hierarchical
name-value mapping. These messages can then be serialized



into a flat memory buffer, sent over MPI, and later deserialized
back into normal data structures.

Decaf’s data model revolves around pConstructData
objects. These objects have a name-value mapping where
each value is a Field object. Fields contain a pointer to
the data and also (de)serialization methods. Some fields are
predefined, such as the SimpleField (for primitive variables)
or ArrayField (for arrays of primitives). Fields are added to
the mapping using the appendData method.

Dhmem can improve Decaf performance due to the nature
and inherent overhead of (de)serialization. In essence, Dhmem’s
Decaf support library serializes shared data structures as handles
rather than as their actual contents. To integrate easily into
Decaf’s API, this special serialization logic is exposed as a
new SharedField, added to Decaf.

An example of integrating Dhmem into Decaf is shown
in Listing 6. It is important to note that from a developer
perspective, Dhmem is entirely optional and used only where
it would improve performance, such as large arrays of data.

1 // send data
2 int &n = dhmem.simple<int>("my_n");
3 SharedField <int> nfield(n, dhmem);
4 pConstructData out_msg;
5 out_msg->appendData("n", nfield);
6 decaf->put(out_msg, "out_port");
7

8 // receive data
9 std::vector<pConstructData > in_msgs;

10 decaf->get(in_msgs, "in_port");
11 SharedField <int> field =
12 in_msgs[0]->getFieldData <SharedField <int>>("n");
13 int &also_n = field.getData(dhmem);

Lst. 6: Using the Dhmem SharedField API. Blue lines indicate
changes from ordinary Decaf code.

2) Henson Support Library: Henson [20] is a workflow
system that loads multiple workflow tasks into the same address
space. Due to tasks being in the same address space, all
tasks must run inside of the same container. Henson does
not communicate via messages, but instead via cooperative
multitasking using coroutines. Each task is loaded by the
Henson process and any allocated data allocated is available
to any other task running under the same process.

Henson’s data model is a one-level name-value mapping
where each value is either a primitive variable or a pointer to
an array. These pointers are passed verbatim between workflow
tasks because they share the same address space. Data in Hen-
son are either saved or loaded via type-dependent methods
like henson save int or henson load pointer. This
mapping is global to the entire workflow so that the same
name refers to the same values throughout.

Henson’s execution model prevents direct usage when every
workflow task is containerized, but Dhmem offers a path for-
ward for Henson tasks to work transparently within containers.
In essence, rather than saving and loading pointers to arrays
of data, Dhmem can save and load handles to shared arrays of
data. For this support library, Dhmem exposes two new meth-
ods: henson save handle and henson load handle. A
simplified example of these new methods is shown in Listing 7.

1 // save data
2 int &n = dhmem.simple<int>("my_n");
3 henson_save_handle("n", n, dhmem);
4

5 // load data
6 int &also_n = henson_load_handle <int>("n", dhmem);

Lst. 7: Using the Henson Support Library API.

3) Standalone Support Library: Dhmem is also intended
to be usable without an underlying workflow system. There
are two supported communication methods: low-level and
MPI. In low-level communication, access to a shared Dhmem
handle is controlled by a shared mutual exclusion lock. In MPI
communication, Dhmem handles are sent using MPI functions.
These two methods can be used either instead of a workflow
system or in addition to one.

Standalone communication involves individual Ports that
control access to a single variable (or a struct of variables).
A Port is allocated based on whether the current process is on
the producing or consuming end. An example is in Listing 8.

1 // send data
2 dhmem::Port port =
3 dhmem.port("n_port", dhmem::producer, dhmem::mpi);
4 int &n = dhmem.simple<int>("my_n");
5 port.send(n);
6

7 // receive data
8 dhmem::Port port =
9 dhmem.port("n_port", dhmem::consumer, dhmem::mpi);

10 int &n = port.recv<int>();

Lst. 8: Using the Standalone Support Library API.

IV. EVALUATION

This section evaluates the performance and scalability of
Dhmem in a series of workflow benchmarks that emphasize
the low data sharing overhead between co-located containers.
We compare our proposal with several state-of-art approaches.

A. Experimental Setup

a) Platform: Our experiments were performed on a single
node of a shared compute-optimized machine, featuring a 16-
core Intel Xeon Gold 6130 processor running at 2.10 GHz
with 128 GB of RAM. In terms of software, this machine is
running Ubuntu 18.04.5 with Linux kernel 4.15.0 and MPI
support is from MPICH 3.3.2.

b) Benchmarks: To minimize the variability of our
experiments and to isolate the aspects we are interested in
evaluating as best as possible, we designed a series of synthetic
benchmarks that focus on common workflow data sharing
patterns, while minimizing the interference from everything
else. These synthetic benchmarks can be parameterized and
automatically generated (Section IV-B). Furthermore, since
the isolation provided by containers is orthogonal to our
evaluation and the overhead of containers is minimal compared
with normal processes, we simplify our setup to use normal
processes that make use of shared memory segments (mapped
at different virtual addresses).



c) Compared approaches and metrics: We compare
our approach with two other approaches: (1) Threads: it
encapsulates tasks into threads, thereby featuring no isolation
(and extra complexity) but in exchange enabling the tasks to
take advantage of a shared virtual address space, where pointers
are passed directly between tasks and a producer-consumer
pattern is implemented with OS-level primitives (mutexes and
condition variables); (2) MPI: it encapsulates tasks run in
separate processes and relies on serialization/deserialization of
the data structures into separate contiguous memory regions
as a means of communication, while using MPI primitives to
synchronize. These approaches are compared in a variety of
scenarios based on the achieved throughput for accessing the
shared data structures, which is calculated as the total size
of the data transferred between the processes divided by the
runtime of the benchmark instance. The higher the throughput,
the better the performance.

B. Synthetic Workflow Generation

To evaluate Dhmem in a variety of workflow configurations,
we developed a synthetic workflow generation script, which
generates C++ source code to start and run the workflow from
a succinct workflow description. The workflow description
is a list of workflow-, task-, and port-level definitions. The
workflow can be configured to use either Dhmem or MPI
and this configuration can apply between any two tasks. In
addition, tasks can be customized based on how much data
they send per iteration and how long each iteration should take.
These parameters allow modeling of a range of workflow tasks
including simulation, analysis, and visualization.

We can synthesize three types of workflow graphs, shown in
Figure 2: simple, pipeline, and scatter-gather. Simple workflows
model simplistic producer-consumer pairs, where one task
produces data that the other task consumes. Pipeline workflows
model long chains of workflow tasks that all produce some data
that the next task processes. Scatter-gather workflows model
a single producer task that sends the same data to several
other intermediate tasks which later send their data to a single
consumer task.

Synthetic workflow options include: the maximum number
of iterations to run (e.g. 1024); the size of the shared memory
region (e.g. 1 GB). Task options include: the time between
sending data (e.g. 1 second); the size of the data sent between
tasks (e.g. 1 MB). Port options include: the communication
method used (e.g. Dhmem or MPI).

Fig. 2: Example types of workflows. Simple, pipeline, and
scatter-gather workflows model real scientific workflows in a
repeatable and testable way.

Dhmem MPI
0

5000

10000

15000

8792

3601

Simple

Dhmem MPI

2069
1141

Pipeline

Dhmem MPI

1044
378

Scatter-Gather

Throughput (MB/s) vs Workflow Type

Fig. 3: Memory throughput for Simple, pipeline, and scatter-
gather synthetic workflows using Dhmem and MPI communi-
cation strategies.

Ci Cf C M
0

2500

Simple

Ci Cf C M

Pipeline

Ci Cf C M

Scatter-Gather

Throughput (MB/s) when
Copying Between Shared Memory

Fig. 4: The memory throughput for workflow tasks whose main
algorithm cannot be modified to use Dhmem. Instead, Dhmem
is used at the boundaries where tasks copy into (Ci), copy from
(Cf), or both (C). These are compared with MPI (M). In each
case, copying data from shared memory yields the best results
as this can happen in parallel with the generation of new data.

C. Results: Dhmem vs MPI

In this test, we compare the memory throughput of synthetic
workflows that communicate using Dhmem or MPI. The main
distinction comes from how the data is allocated and referenced:
using dhmem:: vectors and using std:: vector. This test serves
as a baseline to compare other tests with. Each test is run for
1024 and 2048 iterations and their throughput is calculated
based on the wall clock time, the number of iterations, and
the amount of data sent between tasks. These trials are then
repeated 5 times and their results are averaged.

As can be seen in Figure 3, Dhmem offers a significant
improvement in simpler workflows like simple and pipeline,
and a more modest improvement for complex workflows like
scatter-gather. This is mostly due to the fact that, in the larger
workflows, MPI has to repeatedly send a 10 MB buffer while
Dhmem can simply copy the 8 byte Dhmem handle around.
Although the difference in transmitted data size is large, the
design of the synthetic workflows is such that all data is fully
read and written in each task.

D. Results: Copy-into-Shared

Not all scientific codes can be easily modified to use Dhmem.
In such cases, it still can make sense to use Dhmem at the



0

5000

Throughput (MB/s) vs Workflow Size: Pipeline

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Number of Workflow Tasks

0

5000

Throughput (MB/s) vs Workflow Size: Scatter-Gather

Dhmem
MPI
Threads

Fig. 5: Running workflows under threads provides a good target
for the performance of multiprocess workflows. Compared to
running with threads, Dhmem provides better performance
for scatter-gather workflows and slightly worse for pipeline
workflows.
boundaries between tasks. A minimal example of this idea is to
use STL data structures within the task and afterwards copy the
data into a shared-memory data structure for use in later tasks.
This use case is predicated on the theory that performance can
be improved using shared memory with minimal or even zero
code change within the task. Then, the question is whether
this improves performance compared with simply sending the
data via MPI.

To test this, we consider the following cases: a sending task
copies data into Dhmem (copy into), a receiving task copies
data from Dhmem (copy from), both sending and receiving
tasks copy data to and from Dhmem (copy). This copy is done
by a direct memcpy between the two structures. In effect, this
memcpy is doing the actual communication between tasks.

The results are shown in Figure 4 where the labels represent
copy into (Ci), copy from (Cf), copy (C), and MPI (M). The
copy from results exhibits the best performance. This is because
the workflow cannot progress while data is being copied from
the sending process, but the receiving process can begin copying
from Dhmem. The copying methods get the most utility when
the same data is used by multiple tasks, like in the scatter-gather
use case.

These results indicate that even when Dhmem cannot be fully
integrated into tasks and can only be used at boundaries, certain
workflows can still see improved throughput. These workflows
are typified either by producing large amounts of data that
would be expensive to send using MPI, or by producing data
that is consumed by lots of tasks.

E. Results: Threads vs MPI

Our next study is especially important for workflows that
are considering the advantages of isolation (e.g., isolation is

not mandatory but would simplify development) but need to
understand the performance penalty before committing to such
an approach. To this end, we add a comparison with the Threads
approach, described in Section IV-A. We note that, in practice,
scientific workflows would not use the threads approach to put
the entire workflow within one process. Hence, this threading
comparison serves to better highlight the overhead of shared
memory methods both within and between processes.

For completeness, we also include a comparison with the
MPI approach. We study the scalability of all three approaches
for an increasing number of processes, ranging between 3 and
34. Each trial is run 5 times and the results are averaged.

The results are shown in Figure 5. For up to 10 tasks, Dhmem
offers better performance than both MPI and Threads. This is
a surprising result, because intuitively the Threads approach
should always be the fastest. The explanation lies in the
overhead of the synchronization primitives: Dhmem uses MPI
messages, which are implemented using busy waiting, thereby
being faster than OS primitives, which incur context switches,
as long as spare hardware threads are available. Therefore,
even if position-independent data structures have slightly higher
overhead, this is negated by the lower synchronization overhead.
However, with increasing number of processes, the situation
reverses as expected. Based on these observations, we can
draw two important conclusions: (1) unified data sharing and
synchronization enables Dhmem to apply internal optimizations
that can outperform even thread-based solutions under certain
circumstances; (2) position-independent data structures enables
Dhmem to scale well: it follows the Threads approach closely
and consistently outperforms the MPI approach.

F. Results: Data Size Scalability

To evaluate how Dhmem scales with the amount of data
transferred between tasks, we measured the throughput for
different data sizes. The data is scaled between 1 MB and 1
GB and tested on the 3 workflow types with the pipeline and
scatter-gather configured to use 9 total workflow tasks.

The results are shown in Figure 6 on a log-log scale. In
general, Dhmem consistently outperforms MPI for same-node
communication. As the data size increases, Dhmem becomes
I/O bound by the testing machine. This causes the throughput
for each test to stay the same despite sending more data each
iteration.

Another important conclusion that can be drawn from this
test is the latency of sending and receiving data with Dhmem.
This latency can be summarized as the maximum number of
iterations per second. Across all tests, the maximum iterations
per second for Dhmem compared with MPI is: simple 1537.3 vs
1726.3 (0.89×), pipeline 854.5 vs 702.5 (1.21×), and scatter-
gather 666.8 vs 360.6 (1.85×). These results show that Dhmem
achieves lower latency than MPI for more complex workflows
than for simple workflows.

G. Results: Containers

As Dhmem is built and targeted towards the containerized
use case, it is necessary to compare performance inside a



101 102 103

103

104
Simple

Dhmem
MPI

101 102 103

Pipeline

101 102 103

Scatter-Gather
Throughput (MB/s) vs Data Size (MB)

Fig. 6: Scalability test of Dhmem as data size increases. Eventually workflows become I/O bound and cannot send data faster.

250

500

Containerized Throughput (MB/s) vs Pipeline Length

w/ Containers
w/o Containers

2 4 6 8 10 12 14 16
Number of Extra Processes

250

500

Containerized Throughput (MB/s) vs Scatter-Gather Width

w/ Containers
w/o Containers

Fig. 7: This test compares Dhmem’s performance inside
of containers and its performance on the machine directly.
The performance in the two cases is nearly identical and
demonstrates the ability to Dhmem within containers without
penalties.

container with performance outside of one. In this test, we
reuse the same setup as in Section IV-E which exercises the
different parts of the system the best. The main difference
comes from where the test is run, and how the code is built.

Because Singularity requires an HPC environment, this test
uses a different and slower machine than the other tests. This
machine has a 36-core Intel Xeon E5-2695 processor running
at 2.10 GHz with 128 GB of RAM. The code is first built
as a Docker container image which is then converted into
a Singularity container image on the testing machine and
executed there. These results are then compared with running
on the machine directly.

The results are shown in Figure 7. As shown, Dhmem offers
equivalent performance inside of a container and outside of
one. This is due to its design and focus towards running
in containerized environments. Because the performance is
so similar in the tested cases, the other experiments are

Dhmem Setup Task-Specific
Lines of Code 10 (1.9%) 8 (1.5%)

TABLE I: Number of lines of code changed in order to integrate
Dhmem into an existing Decaf workflow. In this case, a large
floating point array is stored and referenced via shared memory
rather than serialized and transferred using MPI.

representative of the performance in containers as well.

H. Code Impact for an Existing Workflow

In order to evaluate Dhmem’s ease of integration, an existing
workflow system was modified to share large data structures
directly using Dhmem. This workflow is based on the previously
published tessellation and density estimation workflow using
Decaf [13] and is most similar to the pipeline workflow. The
main data the workflow sends between tasks are large sets of
3D points, i.e. floating point data.

This test is primarily focused on developer productivity
and as such is intended to illustrate the ease of modifying
code to use Dhmem. For this reason, the primary metric is
number of lines of changed code. These lines fall into two
categories: Dhmem setup and task-specific setup. The former
encompasses including header files, setting up the Dhmem
shared-memory region, and passing the Dhmem region to each
task. The latter includes creating shared data structures and
sending them between tasks.

The results are shown in Table I. The Dhmem specific code,
which is universal and required in every workflow task, is
and should only ever be around 10 lines. The task-specific
code will depend on exactly what the workflow is doing and
what data needs to be in shared memory. In this workflow, a
large floating point array is stored inside of a dhmem::vector
and totals 1 MB. These results demonstrate that Dhmem can
be integrated into workflows with a minimal amount of code
change.

V. CONCLUSION

Containerization has the potential to make workflows more
manageable, reproducible, and portable; however, container-
ization implies isolation, which may hinder optimized com-
munication and integration that is possible when tasks are
co-located on the same node and thus can take advantage of
shared memory. Hence, we want enable isolation with minimal
loss of performance.



Features. Dhmem offers a unified data sharing and synchro-
nization model that enables tasks to easily share data without
having to worry about isolation and locality, which are the
main factors that affect performance and are used by Dhmem
to transparently apply optimizations.

Benefits. When tasks are encapsulated in containers co-
located on the same node, Dhmem takes advantage of position-
independent data structures to enable performance levels close
to direct sharing in the same address space without sacrificing
isolation. It can even surpass direct sharing using OS-level
synchronization primitives under certain circumstances. It
performs better than message passing approaches that rely
on extra copies and serialization.

Limitations. Position-indepenent high-level data structures
require a specialized implementation that replaces pointers with
offsets. While Dhmem can cover wide range of standard C++
data structures through the Boost library, custom user data
structures that do not respect this model cannot take advantage
of Dhmem’s sharing optimizations and need to fall back to
serialization at the cost of performance.

Future Work. In the future, we plan to extend Dhmem
support for cross-workflow integration. The approach of sharing
data structures between tasks in a workflow extends naturally
to sharing between different types of workflow system with a
minimal amount of interfacing code. Each workflow system
only needs to use Dhmem to enable them to communicate
together. As a second direction, we plan to evaluate Dhmem
for real-world HPC workflows and assess its effect on the
performance.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC02-06CH11357. We gratefully acknowledge the computing
resources provided on Bebop, a high-performance computing
cluster operated by the Laboratory Computing Resource Center
at Argonne National Laboratory.

REFERENCES

[1] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, et al. Parsl: Pervasive
parallel programming in Python. In Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing,
pp. 25–36, 2019.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
ACM SIGOPS operating systems review, 37(5):164–177, 2003.

[3] M. Belkin, R. Haas, G. W. Arnold, H. W. Leong, E. A. Huerta, D. Lesny,
and M. Neubauer. Container solutions for HPC systems: a case study
of using Shifter on Blue Waters. In Proceedings of the Practice and
Experience on Advanced Research Computing, pp. 1–8. 2018.

[4] L. Benedicic, M. Gila, S. Alam, and T. Schulthess. Opportunities for
container environments on Cray XC30 with GPU devices. In Cray Users
Group Conference (CUG16), 2016.

[5] R. Chamberlain and J. Schommer. Using Docker to support reproducible
research. DOI: https://doi. org/10.6084/m9. figshare, 1101910:44, 2014.

[6] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith. Introducing OpenSHMEM: SHMEM for the PGAS community.
In Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, pp. 1–3, 2010.

[7] J. Chen, Q. Guan, Z. Zhang, X. Liang, L. Vernon, A. McPherson, L.-T. Lo,
P. Grubel, T. Randles, Z. Chen, et al. BeeFlow: A workflow management
system for in situ processing across HPC and Cloud systems. In 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pp. 1029–1038. IEEE, 2018.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pp. 273–286, 2005.

[9] J. Cook. Docker for Data Science: Building Scalable and Extensible
Data Infrastructure Around the Jupyter Notebook Server. Apress, 2017.

[10] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. Da Silva, M. Livny, et al. Pegasus, a workflow
management system for science automation. Future Generation Computer
Systems, 46:17–35, 2015.

[11] J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. An
implementation and evaluation of the MPI 3.0 one-sided communication
interface. Concurrency and Computation: Practice and Experience,
28(17):4385–4404, 2016.

[12] M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros, O. Yildiz,
S. Ibrahim, T. Peterka, and L. Orf. Damaris: Addressing performance
variability in data management for post-petascale simulations. ACM
Transactions on Parallel Computing (TOPC), 3(3):1–43, 2016.

[13] M. Dreher and T. Peterka. Decaf: Decoupled dataflows for in situ high-
performance workflows. Technical report, Argonne National Lab.(ANL),
Argonne, IL (United States), 2017.

[14] A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa.
Process-in-process: techniques for practical address-space sharing. In
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, pp. 131–143, 2018.

[15] J. Kowalkowski, A. Lyon, and M. Paterno. Study of a Docker use-case
for HEP. Technical report, Fermi National Accelerator Lab, Batavia, IL,
United States, 2016.

[16] G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific
containers for mobility of compute. PloS one, 12(5):e0177459, 2017.

[17] E. Le and D. Paz. Performance analysis of applications using Singularity
container on SDSC Comet. In Proceedings of the Practice and Experience
in Advanced Research Computing 2017 on Sustainability, Success and
Impact, pp. 1–4. 2017.

[18] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible
IO and integration for scientific codes through the Adaptable IO System
(ADIOS). In Proceedings of the 6th international workshop on Challenges
of large applications in distributed environments, pp. 15–24, 2008.

[19] S. Martı́n-Santana, C. J. Pérez-González, M. Colebrook, J. L. Roda-
Garcı́a, and P. González-Yanes. Deploying a scalable data science
environment using Docker. In Data Science and Digital Business, pp.
121–146. Springer, 2019.

[20] D. Morozov and Z. Lukic. Master of puppets: Cooperative multitasking
for in situ processing. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing,
pp. 285–288, 2016.

[21] S. Perarnau, J. A. Zounmevo, M. Dreher, B. C. Van Essen, R. Gioiosa,
K. Iskra, M. B. Gokhale, K. Yoshii, and P. Beckman. Argo NodeOS:
Toward unified resource management for exascale. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pp. 153–162. IEEE, 2017.

[22] T. Peterka, D. Bard, J. C. Bennett, E. W. Bethel, R. A. Oldfield,
L. Pouchard, C. Sweeney, and M. Wolf. Priority research directions
for in situ data management: Enabling scientific discovery from diverse
data sources. The International Journal of High Performance Computing
Applications, p. 1094342020913628, 2020.

[23] S. Shudler, N. Ferrier, J. Insley, M. E. Papka, and S. Rizzi. Spack
meets Singularity: creating movable in-situ analysis stacks with ease.
In Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, pp. 34–38, 2019.

[24] J. Zhang, X. Lu, and D. K. Panda. Is singularity-based container
technology ready for running MPI applications on HPC clouds? In
Proceedings of the10th International Conference on Utility and Cloud
Computing, pp. 151–160, 2017.

[25] C. Zheng and D. Thain. Integrating containers into workflows: A case
study using Makeflow, Work Queue, and Docker. In Proceedings of the
8th International Workshop on Virtualization Technologies in Distributed
Computing, pp. 31–38, 2015.


