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, ABSTRACT
‘We outline constructions of packet radio networks (with, time division multiplexing)
that achieve much better parameters than those previously proposed. Given the desired.
diameter and number of slots per time frame, our networks seek to maximize the possible
number of users. We model this as a problem of constructing large graphs or digraphs
with given diameter and chromatic index, and relate it to extant work on large graphs
with given diameter and maximum degree.

Keywords: Packet radio networks, interconnection networks, telecommunication
networks, chromatic index, arc-chromatic index, maximum degree, diameter.

1. Introduction

In a recent article, Prohazka [17] considered the problem of designing packet ra-
dio networks which use time division multiplexing and have a diameter constraint.
In particular, he investigated the maximum possible number of users of such a
network, with diameter D and with f time slots per frame.. Since a user cannot
transmit and/or receive more than one packet at a time, this amounts to assigning
time slots to channels (one channel for each ordered pair of communicating users)
in such a way that the channels involving a particular user in either transmission
or reception are all assigned different time slots. (Frequency division multiplexing
was also used to prevent interference between users, but the number of bands was
assumed sufficiently large to assign different frequency bands to all channels oper-
ating in the same time slot). Other work on packet radio networks may be found
in [21]. '
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The above problem can be modeled by directed graphs: the users correspond to
vertices, the channels to arcs, and assigning time slots corresponds to coloring the
arcs so that incident arcs have different colors. Thus the problem is to determine
the maximum number of vertices of a digraph with diameter D whose arcs can be
colored with f colors.

Prohazka offered some general constructions of such digraphs. The number
of vertices of his digraphs grows asymptotically as, roughly, (f/2)P /2. He also
compiled a table of such digraphs with values of D up to ten and f up to twenty.
We shall obtain digraphs with (f/2)P+(f/2)P~1 vertices, and substantially improve
many values listed in [17]. |

Prohazka’s constructions all have an additional property. Namely, the digraphs
constructed are all symmetric, i.e. all channels are bidirectional. This can be stated
as a separate problem: Find the maximum number of vertices of a graph with
diameter D whose edges can be colored with ¢ colors in such a way that any two
adjacent edges have different colors.

Our purpose in this paper is to point out the similarity of these problems with
those of constructing large digraphs with diameter D and maximum in- and out-
degree d, and large graphs with diameter D and maximum degree A. Since there
is an extensive literature on these subjects, we can exploit thls similarity to derive
our improvements of the results of [17].

The packet radio network is modeled by a digraph G = (V, E) in which the
vertices (elements of the set V') represent the users, and there is an arc (or directed
edge, i.e. an element of the set E) zy from vertex z to vertex y to indicate that
user z can transmit to user y. Thus the arcs represent unidirectional channels; a
bidirectional channel joining  and y may be represented by two arcs zy and yz.
If all channels are bidirectional, the resulting digraph is symmetric, i.e. it has with
each arc zy also the arc yz. In this case we may consider instead an undirected
graph with an edge {z, y} replacing the two arcs zy and yz.

We are only interested in digraphs which are strongly connected, i.e. digraphs in
which there exists a directed path from any vertex z to any vertex y. The length
(number of arcs) of a shortest directed path from z to y is called the distance from z
to y and denoted by d(z, y). The diameter of a digraph G is the maximum distance
d(z, y) over all vertices  and y of G. The outdegree of a vertex z in the digraph
G is the number of arcs zy in G, and is denoted by d*(z). The indegree d~(z) is
defined analogously. Thus d*(z) is the number of channels z can transmit to and
d~(z) the number of channels z can receive from. An arc-coloring of a digraph G
is'a mapping assigning colors (labels) to the arcs of G in such a way that two arcs
having a common vertex obtain different colors. The arc-chromatic indez of G is
the minimum number of colors which make an arc-coloring of G possible.

An (f, D)¢-digraph is a digraph with diameter at most D and arc-chromatic
index at most f. We denote, by nc¢(f, D), the maximum number of vertices of
an (f, D)c-digraph. The problem mentioned in the introduction is to evaluate

nc(f, D).



All of the networks constructed in [17] are bidirectional, i.e. correspond to sym-
metric digraphs. The construction of symmetric (f, D)c-digraphs may be consid-
ered as a separate problem. It is somewhat more convenient to discuss this problem
in the context of undirected graphs, as explained above. All the above definitions
have obvious analogues for undirected graphs: For a connected graph G, the dis-
tance d(z, y) is the length of a shortest path from z to y, and the diameter of G is
the greatest d(=, y) for all pairs of vertices z, y of G. The mazimum degree of G is
the largest number of edges incident with any vertex of G, and the edge-chromatic
indez of G is the minimum number of colors which can be assigned to the edges of
G so that two edges having a common vertex obtain different colors.

A (¢, D)c-graph is a graph with diameter at most D and edge-chromatic index
at most g. We denote by ng(g, D) the maximum number of vertlces in a (¢, D)c-
graph.

- A remark about our notation: The function n¢ refers to the number of vertices
in largest directed graph with given chromatic index and diameter. For the undi-
rected version of the same problem we add the superscript *. We shall have other
versions of these functions later in the paper. In particular, omitting the subscript
C signifies that chromatic index is replaced by maximum degree, e.g. n is the func-
tion corresponding to largest digraphs with given maximum in- and out- degree
and diameter, cf. below. Adding a superscript * concerns again the corresponding
undirected version of the problem. Adding other superscripts (s, b, t) will refer to
other restricted versions of the problem.

2. Graphs

A (A, D)-graph is a graph with diameter at most D and maximum degree at
most A. We denote by n*(A, D) the maximum number of vertices in a (A, D)-
graph. We begin by exploring the relationship between (A, D)-graphs and (¢, D)c-
graphs. Indeed, the construction of large (A, D)-graphs and the evaluation of
n*(A, D) is a challenging problem that has been widely considered in recent years,
see, for example, the survey [3], or the special issue [22]. It is clear that in any
edge-coloring of a graph G, a vertex of degree A needs at least A colors for its
incident edges. Thus the edge-chromatic index ¢ of G is at least the maximum
degree A. On the other hand, a theorem of Vizing (see [9], Chapter 6), ensures
that the edge-chromatic index ¢ is at most A+1 (in other words, any graph G with
maximum degree ¢ — 1 admits an edge-coloring with ¢ colors). Thus we have the
following observations.

Proposition 1. n*(¢ — 1, D) < n(q, D) < n*(g, D). O

Proposition 1 is useful, on the one hand, to obtain an upper bound on ng(g, D)
by using the upper bound on n*(A, D) known as the Moore bound [7]. The Moore
bound is obtained by noting that there are, in a (A, D)-graph, at most A(A—1)*-1
vertices at distance k from any fixed vertex. Thus,

n*(A, D)< 14+A+AA-D)+...+A(A-1)P1,



We conclude that
ng(g, D) < 1+g+4g(g—1)+...+4q(g~ 1)D"1 .

On the other hand, we also use Proposition 1 by appealing to any known con-
struction of large (¢ — 1, D)-graphs to obtain a lower bound on n§(g, D). This
improves practically all the lower-bounds of [17]. For instance, the value ng(10, 10),
bounded below by 206 660 in [17], is at least n*(9, 10) according to Proposition 1.
Thus we may use a construction due to Campbell [10], showing this value to be
bounded by 19 845 936.

Further improvement will occur with many constructions of large (A, D)-graphs
in which we can show an edge-coloring with A (rather than A + 1) colors. An
example of a (A, D)-graph that is colorable with A colors appears in Fig. 1, where
a largest possible (3, 3)-graph on 20 vertices is edge-colored with 3 colors (cf. [3]).
Thus n}, (3, 3) = n*(3, 3) = 20 (to be compared with the bound of 14 in [17], Fig. 4).

Fig. 1. A largest (3, 3)¢-graph, with a 3-coloring of its edges.

A A-coloring always exists for a bipartite (A, D)-graph. It is well known that
the maximum degree and the edge-chromatic index of a bipartite graph are equal [9].
Thus n% (g, D) is at least as large as the number of vertices of any bipartite (¢, D)-
graph. This is often useful to know as many well known network constructions are
bipartite — such as the hypercube, or the star graph [1]. Taking large bipartite
(¢, D)-graphs from [11] or [12], we further improve the lower bounds on many
ng (g, D); for instance, we obtain n} (10, 10) > 47059 200.

It is also shown in [16] that there exist bipartite (¢, D)-graphs with 2(¢/2)P 1+
2(g/2)P 3 vertices. Thus we can conclude that n} (g, D) > 2(q/2)P~1+2(g/2)P 3.



This is an improvement over the asymptotic bounds discussed in Sec. IV of [17],
which are roughly of the order (¢/2)P/? as ¢ tends to infinity. (Cf. also [11] for a
slightly smaller improvement.)

It has been our experience that in most examples of the largest known (A, D)-
graphs, an edge-coloring with A colors is possible. This is the case in particular
for the undirected de Bruijn and Kautz graphs. The latter are (2d, D)-graphs with
dP + dP—1 vertices, obtained by ignoring the arc-directions of the Kautz digraphs
K(d, D) defined in the next section. In particular, we conclude (cf. Corollary 5):

Corollary 2. (¢/2)7 + (¢/2°~ < n3(q, D) < ala— 1P~ + glg — )P~ +...
+i4 s ' O

The lower bound in the above corollary is a substantial improvement of the
constructions in [17]. Even though it is quite far from the theoretical upper bound
(derived from the Moore bound), we are confident that, in full generality, further
improvements will not be easy. The reason for this is that any improved construc-
tions would in particular provide better bounds for the much studied parameter
n*(A, D), via Proposition 1. This does not mean, of course, that particular values
of ng (g, D), or even infinite sequences of such values, could not be better estimated.

In all the cases below, the best known (A, D)-graphs have been shown colorable

with A colors:

e the (2k + 1, 2m)-graphs (k > 2) with k™(k 4+ 1)™ vertices, known as the
sequence graphs (cf. [13], [15]).

o the (p+ 1, 2)-graphs with p? + p + 1 vertices, p a prime power, arising from
the projective planes (cf. [3], [19]). '

e some of the best known (3, D)-graphs, in particular those with D =4 and 38
vertices, D = 5 and 70 vertices [15], D = 16 and 128 vertices, D = 7 and 184
vertices, and D = 8 and 320 vertices [18].

e the (3, D)-graphs, for D = 2¥ —2, with 2-2P vertices obtained by substituting
an edge in each vertex of the de Bruijn graph B(2, D), cf. below (and similar
(A, D)-graphs when A is one plus a power of two) [6].

We conclude this section by noting that it is not always the case that the best
(A, D)-graphs are A-edge-colorable. The unique largest (3, 2)-graph is the (ten-
vertex) Petersen graph, cf. [9]; it is known that it is not 3-edge-colorable. There
is no graph on 9 vertices with all degrees equal to 3, and if a nine-vertex graph
‘has a vertex of degree two or less, then counting like in the Moore bound, starting
from this vertex, we see that it cannot have diameter 2, and hence n*(3, 2) is at
most eight. In fact, there is a (3, 2)c-graph with eight vertices, obtained from
the cycle 0, 1, ..., 7, 0 by adding the edges {0, 4}, {1, 5}, {2, 6}, {3, 7}. Therefore
18, 2) = 8.

3. Digraphs

Let us now consider the construction of (f, D)c-digraphs, i.e. digraphs with
diameter at most D and arc-chromatic index at most f.



Since graphs correspond to symmetric digraphs, we have already constructed
large (f, D)c-digraphs. Let nl(f, D) denote the maximum number of vertices
in a symmetric(f, D)c-digraph. Any (g, D)c-graph yields a symmetric (2¢, D)¢-
digraph by replacing each edge {z, y} by the arcs zy and y=z. Moreover‘, an edge-
coloring of the graph gives rise to an arc-coloring of the digraph with twice as many
colors, Hence nc(2f, D) > n%(2f, D) = nk(f, D).

Moreover, we expect to be able to construct even larger (f, D)c-digraphs when
the symmetry condition is removed. Note that we know from Corollary 2, that,
roughly, n&(2f, D) < fP. It is our objective to construct (non—symmetnc) (f, D)c-
digraphs larger than this upper bound for symmetric digraphs.

Consider first another special class of (f, D)c-digraphs. We shall say that an
(f, D)c-digraph is balanced if both d*(z) < f/2 and d~(z) < f/2 for every vertex
. Let n%(f, D) be the maximum number of vertices in a balanced (f, D)¢-digraph.
A (d, D)-digraph is a digraph G with diameter at most D and maximum in- and.
out- degree at most d. Note that while this notion is analogous with the notion
of a (A, D)-graph, we do not have here the close analogy we had between (A, D)-
graphs and (A, D)c-graphs. Specifically, the reader should be aware that a (2d, D)-
digraph has maximum in- and out- degree 2d, while a (2d, D)c-digraph has, in
particular, each vertex with d* +d~ bounded by 2d. Thus, in some sense; a (d, D)-
digraph is automatically balanced. We write n(d, D) for the maximum number
of vertices of a (d, D)-digraph. (If we were to define the function n®(d, D) as
the maximum number of vertices in a balanced (d, D)-digraph, we would have
n(d, D) = n®(d, D)). We have the following very close relationship of nf(f, D)
and n(d, D). .

Proposition 3. n(f — 1, D) < n%(2f, D) < n(f, D).

Proof. The first inequality follows, as before, from a version of Vizing’s theorem
[9]. In fact, any (f — 1, D)-digraph with edge-directions ignored is an undirected
multigraph with edge multiplicities at most two. The maximum degree in this
multigraph is at most 2f — 2 and Vizing’s theorem implies that the edges of the
multigraph, and hence also the arcs of the digraph, can be colored with 2f colors.
Thus any (f — 1, D)-digraph is also a balanced (2f, D)c-digraph. The second
inequality is trivial. It simply says that in a balanced (2f, D)¢-digraph both in-
and out- degrees are at most f. O

In view of Proposition 3, we can again use the known constructions of large
(d, D)-digraphs. The best general construction among these is the following (we
assume d > 2): The de Bruijn digraph B(d, D) has as'its vertices all strings of length
D over the alphabet {0, 1, ..., d—1}; there is an arc from a vertex ajasas...ap to
all vertices agag...apa withain {0, 1, ..., d—1}. The Kautz digraph K(d, D) has
as its vertices all those strings of length D over the alphabet {0, 1,..., d} in which
consecutive characters are distinct; there is an arc from a vertex ajagas...ap to all
vertices asag ...apa with afrom {0, 1, ..., d} and distinct from ap. It is easy to see
(cf. [4], [14], 20]) that both B(d, D) and K(d, D) are (d, D)-digraphs. Moreover,



the digraph B(d, D) has d” vertices and the digraph K(d, D) has d” + dP-1

vertices. We immediately obtain, via the proof of Proposition 3, large (balanced)

(2d + 2, D)¢-digraphs. However, we were able to prove (see [5]) that B(d, D) and

K(d, D) are in fact (2d, D)c-digraphs:

Proposition 4. Both B(d, D) and K(d, D) (for D > 2) have arc-chromatic index

2d. . O
From this we find a good estimation of the maximum number of vertices in

a balanced (f, D)c-digraph: Consider the Moore bound for n(d, D), obtained by
noting that in a (d, D)-digraph there are at most d* vertices of distance k from a

fixed vertex.
Corollary 5. f2 + fP-1 <nq(2f, D) < fP + fP-14...+ 1. %

It follows, e.g. that the Kautz digraph K (3, 3) on 36 vértices (cf. Fig. 2) yields
nc(6,3) > 36. This improves on the value 14 obtained by Prohazka and on the
value 20 obtained for n};(3, 3) in the preceding section.
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Fig. 2. The (6, 3)¢-digraph K (3, 3), with a 6-coloring of the arcs.



Proposition 4 is a special case of a more general result on line digraphs [5].
Using this general result and the family constructed in [14], J. Bond [8] has recently
obtained a slight improvement of Corollary 5 in the case of 2d = 4. (As always,
this was done by finding a 4-arc-coloring of a large (2, D)-digraph). In fact he has
shown that if D > 6, then ng(4, D) > 25.2P—%, rather than > 24.2P-* implied by
Corollary 5.

We now return to the general problem of large (not necessarily balanced)
(f, D)c-digraphs. This problem also has an analogous problem concerned with
the degree; however, that problem does not seem to have been previously studied.
Let n*(d, D) denote the maximum number of vertices of a digraph of diameter D
such that the total degree d*(z) + d~(z) of each vertex z is at most d.

Note that any (d, D)-digraph has maximum total degree bounded by 2d. More-
over, as the digraph is strongly connected, if d*(z) +d- (z) < 2d then 1 < dt(z) <
2d—1 and 1 < d™(z) < 2d — 1. Therefore

n(d, D) < n*(2d, D) < n(2d -1, D) .

The close relationship between n(d, D) and nc(f, D) is made explicit in the fol-
lowing proposition, proved along the lines of the proof of Proposition 3.

Proposition 6. n*(f — 2, D) < n¢(f, D) < n*(f, D). O

One can argue in a spirit similar to proving the Moore bound, that n*(2f, 2) <
f%+ f. Thus combining Propositions 3 and 6, and Corollary 5 we obtam the precise
value of the parameter ng(2f, 2).

Corollary 7. ng(2f,2) = f2+ f. O

4, Conclusions

We described several constructions (and referred to many others) of large graphs
with given diameter and maximum degree A which can be edge-colored with A
colors. As a consequence we obtained the following lower bounds on nj (A, D):

o n5(3,2)=8

o n5(3, 3) = 20, n&(3, 4) > 32, nC(3 5) > 56, n5(3, 6) > 128, ng(3, 7) > 184
and ng (3, 8) > 320
ng(10, 10) > 47059 200
n(3, 2% — 2) > 22"-1
n%(2f, D) > fP + fP-1
ng(2f +1, 2m) > f™(f+1)™
ng(P+1,2) >2p’ +p+1.

For the corresponding problem on digraphs we have nc(2f, D) > n%(f, D), and
in addition:

° nc(6, 3) > 36
o n¢(2f, D) > fP + fP-1



o ng(4, D) > 25.2P-4

o nc(2f,2)=f2+f.

From a practical perspective, we suggest the following technique to construct large
(¢, D)c-graphs for given values of ¢ and D. Consider first the largest known (g, D)-
graphs. If any such graph can be shown to admit an edge-coloring with ¢ colors,
one should use it. Otherwise consider (¢, D)-graphs for which a g-edge-coloring is
known and which still have a relatively large number of vertices. In any case, we
can use, for instance, the largest known bipartite (¢, D)-graph. Similar comments
apply in the case of (f, D)¢-digraphs.

Finally, we note that the best constructions we obtained for the case of general
digraphs are better than the theoretical upper bounds for symmetric digraphs —
compare the lower bound in Corollary 5 with the rough upper bound n}(2f, D) <
fP mentioned at the beginning of Sec. 4. Thus there is a heavy penalty for requiring
radio packet networks to be symmetric. On the other hand, it appears that requiring
them to be balanced is not an obstacle, and in fact all of the best constructions
happen to be balanced. ‘

Wevthank J. Bond, M. A. Fiol, C. Delorme, and P. Solé for their interest in, and
contributions to, this paper.

References

[1] S. B. Akers and B. Krishnamurthy, A group-theoretic model for symmetnc intercon-
‘nection networks, IEEE Trans. Comput. 38 (1989) 555-566.

[2] D. Ameter and Max Degree; Graphs and Interconnection Networks, in preparation.

[3] J.-C. Bermond, C. Delorme and J.-J. Quisquater, Strategies for interconnection net-
works: Some methods from graph theory, J. Parallel Distri. Comput. 3 (1986) 433-449.

[4] J.-C. Bermond and C. Peyrat, The de Bruijn and Kautz networks: a competition for the
hypercube?, Hypercube and Distributed Computers, Proc. First European Colloquium
on Hypercubes, Rennes, Oct. 1989 (Elsevier Science, 1989) 279-293. '

[5] J.-C. Bermond and P. Hell, Even factorisations and the chromatic 1ndex of the Kautz
and de Bruijn networks, submitted to J. Graph Theory

[6] J.-C. Bermond and P. Hell, in preparation.

[7] N. Biggs, Algebraic Graph Theory, Cambridge Tracts in Math. 67 (Cambridge Uni-
versity Press, 1974).

[8] J. Bond, personal communication.

[9] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (North Holland,
1976).

[10] L. Campbell, Dense group networks, to appear in DAMIN, the Special Issue of Discrete
Applied Mathematics on Interconnection Networks.

[11] C. Delorme, Large bipartite graphs with given degree and diameter, J. Graph. Theory

9 (1985) 325-334.

[12] C. Delorme and J.-J. Quisquater, Some new compound graphs, to appear in DAMIN,
the Special Issue of Discrete Applied Mathematics on Interconnection Networks.

[13] M. A. Fiol, J. L. A. Yebra and J. Fabrega, Sequence graphs and interconnection
networks, Ars Combinatoria 16A (1983) 7-13.

[14] M. A. Fiol, J. L. A. Yebra and I. Alegre, Line digraph iterations and the (d, k)-digraph
problem, IEEE Trans. Comput. 33 (1984) 400-403.



[15] M. A. Fiol, personal communication.

[16] M. A. Fiol and J. L. A. Yebra, Dense bipartite subgraphs, J. Graph Theory, to appear.

[17] C. G. Prohazka, Bounding the maximum size of a packet radio network, JEEE Trans.
Comput. 37 (1988) 1184-1190.

[18] J.-J. Quisquater, manuscript, 1990.

[19] P. Solé, personal communication, 1990.

[20] M. R. Samatham and D. K. Pradhan, The de Bruijn multiprocessor network: A ver-
satile parallel processing and sorting network for VLSI, IEEE Trans Comput. 38, 4
(1989) 567-581.

[21] D. Towsley and C. G. Prohazka, Topology design for time slotted packet radio net-
works, 1981 IEEFE -Int. Symp. on Information Theory. Abstracts of Papers, Santa
Monica, CA, USA, Feb. 1981 (IEEE, 1981) 121.

[22] DAMIN, Special Issue of Discrete Applied Mathematics on Interconnection Networks,
Ed. J.-C. Bermond, to appear.



