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We show that undirected Kautz graphs (Theorem 3.1) and modified Kautz graphs (Theorem 4.2)
have their connectivities equal to their minimum degrees. In view of their other properties, these
results show that Kautz graphs are very good fault-tolerant networks.

1. Introduction

An important consideration in the design of communication networks as well
as distributed computer systems is the interconnection network. This network
is usually modeled by a graph or a digraph in which the vertices represent the
switching elements or processors. Communication links are represented by edges
if they are bidirectional or by arcs if they are unidirectional. Several factors have
to be taken into account in the design of interconnection networks (see, for instance,
[4, 91):

— Communication delays between processors must be short: the graph must have
a small diameter or mean distance.

— The number of processors directly connected to a given processor is limited: the
graph has a given maximum degree.



— Finally, an interconnection network must be fault-tolerant. Indeed, in a system
consisting of a large number of processors, the probability that a processor or a link
happens to be faulty becomes important. One minimal requirement is that the system
must work even in the case of node or link failures. This means that the associated
graph is sufficiently connected. ‘

Different networks that are good from the view point of first two criteria have been
proposed in the literature. Among them are the Kautz networks (defined later). The
aim of this paper is to show that they have also the best connectivity and are,
therefore, highly reliable. '

Other criteria of reliability have been considered and are surveyed in [3], where the
theorems proved here are stated without proofs.

2. Definitions and notations

We represent the nodes of an interconnection network by the vertices and the links
by the edges (or arcs) of an undirected (or directed) graph G=(V, E). The definitions
not given here can be found in [1]. We make precise some notation in the undirected
case. Similar notation will be used for digraphs.

Let I'(x) denote the set of neighbors of a vertex x.

The degree d(x) of x is the cardinality of I'(x).

The maximum degree A= A4(G) of G is the maximum over all the degrees of the
vertices of G.

The minimum degree 6 =6(G) of G is the minimum over all the degrees of the vertices
of G.

The distance d(x, y) between x and y is the length of a shortest path between x and y.

The diameter D= D(G) of G is the maximum distance over all the pairs of vertices.

We call (4, D)-graph a graph with maximum degree 4 and diameter D.

The number of vertices of a (4, D)-graph is bounded by the Moore bound:

(4—1)P—1

= if 4>2.

n(4,D)=1+4
The (4, D)-problem, which consists in finding a (4, D)-graph with the maximum
number of vertices, has been extensively studied. See [2] for further details.

A graph G is k-connected if there exist k internally vertex-disjoint paths between
any pair of vertices. The connectivity 1c(G) of G is the greatest integer k such that G is
k-connected. Similarly, a graph is [-edge-connected if there exist [ edge-disjoint paths
between any pair of vertices. The edge-connectivity A(G) of G is the greatest integer
! such that G is [-edge-connected.

It is well known that 1(G) < A(G)<6(G).

2.1. Definitions of Kautz graphs

First we give three equivalent definitions of Kautz digraphs.



2.1.1. From an alphabet

The Kautz digraph K (d, D) (defined in [13]) with in- and out-degree d and diameter
D is the digraph whose vertices are labeled with words (xy, ..., Xp), where x; belongs to
an alphabet of d+1 letters, and x;#x;+, for 1 <i<D—1. The vertex (xy,...,Xp) is
joined to the d vertices (xs,...,Xxp,a), where o is any letter different from xp. This
digraph has dP+dP~! vertices.

2.1.2. From line digraph iterations

A definition using line digraph iterations has been given by Fiol et al. [8]. Recall
that the line digraph of a digraph G is the digraph L(G) whose vertices represent the
arcs of G. There is an arc in L(G) from x to y if and only if x represents the arc (u,v) in
G and y represents the arc (v, w) in G for some vertices u, v and w in G. If G is d-regular
and has diameter D, then L(G) is d-regular and has diameter D + 1 (except when G is
a circuit).

Let K}, { be the complete symmetric digraph on d+ 1 vertices (with no loop); then
LP~Y(K¥,,) is the Kautz digraph K(d, D).

2.1.3. Generalization

The third definition is arithmetic and gives rise to a generalization of these digraphs
for every integer n. This generalization of the Kautz digraphs was first studied by
Imase and Itoh [11]. The 11, , digraph has the set of integers modulo n as vertex set.
Its arc set A is defined as follows:

A={(x,y)/y=—dx—a, 1<a<d}.

If n=d®+d”~!, then I1, ,= K(d, D).

1, , has n vertices and is d-regular (provided that n>d). Its diameter is at most
[ loggn’]. If nis d?+dP~7(where p and g are two integers, with g odd and g<p), then
its diameter is [ logsn |—1 (see [11] for a proof).

2.1.4. Undirected case

Undirected Kautz graphs are obtained from the associated digraphs by re-
moving the orientation and the resulting parallel edges. In what follows, we
will denote by UK (d, D) the undirected Kautz graph of diameter D and maximum
degree A=2d, minimum degree 2d—1 (indeed, K(d,D) contains some parallel
edges but no loop). So, UK (d, D) is the graph whose vertices are the words of length
D from an alphabet of d+1 letters, with no two consecutive identical letters, in
which the vertex (x;,...,xp) is joined to the vertices (o, xy,...,Xp-;) and
(%25+..,Xp, B), with a#x, and B#xp.

Although the Kautz graph UK (d, D) has only (4/2)°+(4/2)P~* vertices, which is
somewhat far from the Moore bound, there is, at present, no known family of graphs
with more vertices defined for any maximum degree 4 and any diameter D. In any
case, they have considerably more vertices than the classical hypercubes, used as
interconnection networks of current parallel computers.



Another good family of networks is that of de Bruijn networks, whose definition is
identical, except that the condition a; #a; ., is released. The connectivity of de Bruijn
networks has been determined by Esfahanian and Hakimi [6] and Schlumberger
[17]. The proof given below for Kautz graphs can be easily adapted to prove shortly
that an undirected de Bruijn network has its connectivity equal to its minimal degree
2d—2.

3. Connectivity of Kautz networks

3.1. Directed case

From the second definition (line digraph iterations), it can be shown that the
connectivity of K(d, D) is d. Indeed, the connectivity of L(G) is at least the arc
connectivity of G. This was noted by different authors [7, 12, 15, 16].

3.2. Undirected case

We did not find any result concerning the connectivities of Kautz graphs in the
literature. In the present paper we show that undirected Kautz graphs are also
maximally connected.

Theorem 3.1. The connectivity of the Kautz graph UK(d, D) is 2d—1 if D> 1.

Proof (preliminary remarks). Let x=(xy,...,Xp) be any vertex of a Kautz graph. The
set of left neighbors of x is the set of vertices (x5, ..., Xp, *). It will be denoted by I' " (x).
Similarly, the set of vertices (*,xy,...,xp—) called the right neighbors of x will be
denoted by I' " (x). We call left path (right path) from x to y the shortest path from x to
y (from y to x) in the associated directed graph. Note that if v follows u in a left path
(right path) then vel'*(u) (vel’” (u)). We define the ‘left distance’ dy(x,y) (‘right
distance’ dg(x, y)) from x to y as the length of a shortest left path (right path) from x to
y. Note that it is a nonsymmetric function and that d; (x, y) #dg(y, x). If D >3, a vertex
x=(xy,...,Xp) is said to be binary if and only if x;=x;,,, | <i<D—2. Such a vertex
will be denoted by X;x;. A vertex x=(x,,...,Xp) is said to be ternary if and only if
Xi=Xi+3, 1<i<D-3 and D>4 or x1 #x3 of D=3. Such a vertex will be denoted by
X1X,x3. Let us first give simple useful lemmas concerning the sets of neighbors of
vertices or left and right paths in a Kautz graph.

Lemma 3.2. Let x and y be adjacent vertices in a Kautz graph. Then |F(x)nI(y)|<1.
Moreover, I(x)nI'(y)={y'} if and only if x=X1x2%3 and {y,y'} ={X3X3%1, X3X1X2 }-

Proof of Lemma 3.2. Let x=(x,,...,Xxp). Then

F(x)={(x2,-..,%p, *)}U{(*, %1, ..., Xp-1)} -



Suppose y=(x,,...,Xp,4). Then
' r(y)={(x3a ""xD,l’ *)}U{(*’xz,-“sxD)} J

Recall that in a Kautz graph two consecutive letters in a vertex are different. Then, if
y'el'(x)nI'(y), the only possibility is y=X,X3x; and y' =X3x;x,. [

Lemma 33. If I'"(x)nI'" (x)#0, then x is a binary vertex X;x, and
r+(X)mF_(X)={xel} ‘

Lemma 3.4. Let x be a nonbinary vertex such that uel'*(x) and vel'~(x). Then
r*nrw=r-wnrl()={x}.

Definitions. Let S™(x,t) be the set of vertices v such that the left path from x to
v contains ¢. Similarly, let S~ (x, t) be the set of vertices v such that the right path from
x to v contains t.

Lemma 3.5. Let x and t be any two vertices in G such that dy(x,t)=k. Then
Dk L=k, . 1

+ <_____—
8% 5 01 <

Similarly, if dg(x, t)=k, then
D+1-k __ 1

IS—(x,t)IST'

Proof of Lemma 3.5. The number of vertices v such that d,(t,v)=i is at most d'.
Furthermore, if the left path from x to v contains ¢, then d (t,v)< D —k as dy(x,t)=k.
Therefore, |S*(x,t)| is at most

di=————. O

In what follows, F will be a set of vertices (the set of faulty vertices) such that
|F|<2d—2.
For any vertex x in V(G)—F, we define

S*=I ] 878 .

S (x) represents the set of vertices which cannot be reached from x by the shortest left
path in G—F (including those of F). Similarly,

S ()= S~ (x1).

teF

Let s(x)=inf(|S* (X)],|S™ (x)]).



Lemma 3.6. Let x be any vertex in G such that {{x}uI'*(x)}nF=0. Then
s(x)<2(dP~'-1)

Proof of Lemma 3.6. Let ¢t be any vertex in F. Then d; (x,t)>1. By Lemma 3.5, we
have
dP-1—-1

+ <—
|5 G5l <———

Therefore,
s(X)<|ST(x, )| |[F|<2(d”~ ' =1). O

Proof of Theorem 3.1 (continued). We consider three cases.

Case I; D=3,d=>3.

Let us first choose a vertex z such that {{z}uI'* (z)}nF=0. Such a vertex always
exists. Indeed, we only need to show that the number of vertices n is greater than
(d+1)|F|. But, as D >3, we clearly have

n=d?+d° '>d3+d?>(d+1)2d—2)=(d+ 1)|F)

To prove the theorem, we only need to show that there exists a path between z and
any other vertex in V(G)— F. For that purpose, we will show that, for each vertex x,
there exists a vertex x" such that at least one of the two routes (left and right) from x to
x"avoids F and that at least one of the two routings (left and right) from z to x” avoids
F. With the above definitions, it suffices to prove that n>s(x)+s(z)—|F]|.

Lemma 3.7. If I'* (xX)nF=0 or I (xX)nF =, then there exists a path in G—F between
x and z.

Proof of Lemma 3.7. By Lemma 3.6, we have
s(x)<2(dP"'—1) and s(z)<2(dP~'-1).

Therefore,
s(x)+s(z)<4(d?"'—1)<dP+dP " '=n asd>3. O

Proof of Theorem 3.1 (conclusion). Now let us remark that we only need to prove the
theorem for nonbinary vertices. Indeed, if x is a binary vertex, we can find a nonbinary
vertex u joined to x in G— F. Let u be a nonbinary vertex in I'(x)— F, if any. Otherwise,
FcI'(x). Let x" be the binary neighbor of x (x'¢ F). Then any neighbor of x’ different
from x is suitable (because I'(x)NI'(x')=0 by Lemma 3.2).

So, let x be a nonbinary vertex. It follows from Lemma 3.3 that I'* (x)nI" ™ (x)=0.
Let [=|I"'" (x)nF|and r=|I"" (x)nF|. Without loss of generality, we can suppose that
I<r. From |+r<|F|<2d—2, we obtain [<d—1. <

Subcase a: 1<d—3.

Let ¢ belong to F.



If t belongs to I' " (x), then dy(x,t)=1. By Lemma 3.5
d?—1
+ & —_—

Otherwise, we have d(x,t)>1. By Lemma 3.5,

dP-1-1
+
IS* (x,t)|< 7
Therefore,
dP—1 7 I |
<|ST ()|l — —2—
s(x)<|S™ (x)| ld_1+(2d 2—1) =1

which is maximal for /=d—3. Hence, s(x)<d®—d”~!'—2. Lemma 3.6 applied to
z gives

s(z)<2(dP~1-1).
Hence, we have
s(x)+s(z)<dP+dP~1—4d<n.

Subcase b: 1=d—2.

In this case, |[I'"(x)—F|=2 and |F—T'(x)|<2.

Suppose that there exists a nonbinary vertex u in I'*(x)—F such that
FrwnFnI'(x)=0. Then |Fu)nF|<2. If I'" (w)nF=0 or I'* (u)nF =0, we conclude,
by Lemma 3.7, that there exists a path between u and z in G—F and, therefore,
between x and z. Otherwise, |[I'* (u)nF|=|I'" (u)nF|=1and r=d — 2. Let v belong to
I (x)—F.I'* 0)nI'(x)=0 and, by Lemma 3.4, I'* (v)nI"(u)={x}. As F<T'(x)uI (u),
I't (v)nF =0 and we conclude by Lemma 3.7.

Otherwise, as I'*(x) contains at most a binary vertex and a ternary vertex,
I'*(x)—F must contain one of each type, which implies D=3, x=(x,x3,X3),
I (x)—F={(x2,%3,%1),(X2,%3,%2)} and (x3,x1,X;)eF. Let u=(x3,x3,x;). If
I'" (u)nF =0, we conclude by Lemma 3.7. Otherwise, as I' ™ (u)nI"(x)=0,r<d—1 and
there exists a vertex v in I'" (x)—F. If I'* (0)nF=0, we conclude by Lemma 3.7.
Otherwise, as I'* (v)I'(x)=0 and I'* ()nI'~ (u)={x}, F contains a vertex in I'* (v)
that is neither in I'(x) nor in I'~ (u). Therefore, r=d—2 and we can choose v non-
binary. Hence, I'” (v)nI"* (v)=0. We also have I'" (u)nI"~ (v)=0 by Lemma 3.4 and
I' (W)nI'(x)=0 because v is different from (x3,x;,x,) (recall that (x3,x(,x,)eF).
Hence, I' " (v)nF =0 and we conclude by Lemma 3.7.

Subcase ¢: 1=d—1

We have F < I'(x). By Lemma 3.2, we have |I'(v)nI'(x)| <1 for any vertex v in I'(x).
Therefore, |I'(v)nF|<1 for any vertex v in I'(x).

If there is a nonbinary vertex u in I'(x)—F, then either I'* (WynF=0 or
I'" (u)nF =0. Therefore, we can conclude by applying Lemma 3.7 to u.



Otherwise, there is a binary vertex u in I'(x)—F. From Lemma 3.2 we have
I'(u)nF =0. Consequently, we can apply Lemma 3.7 to vertex u.
Case 2. D=3, d=2.
If D >4, we can proceed as in the previous case by considering now a vertex z such
that
{{z}uIr* (2)ur*(I'*(z))}nF=0.

Such a vertex exists because |F|<2. Indeed,
|F|+ | (F)|+|T* ('t (F))|<14<22 422! as D>4.

Hence, s(z)<2(2D"%2—1) and Lemma 3.7 is still valid because s(x)+s(z)<
202P"1—1)+2(2P"2—1)<2P4+2P-1 So, we conclude if I'*(x)nF=0 or
I'" (x)nF=0. Otherwise, we finish exactly like in subcase ¢ (here [=r=1=d—1). The
case D=3 can be checked easily on the graph itself, which has twelve vertices.

Case 3. D=2

Let x=(x;,x;) and y=(y,y,) be any two nonadjacent vertices in V(G). We will
show directly the existence of 2d — 1 disjoint paths between x and y. If x;, x5, y;, y, are
all distinct, we can consider the following disjoint paths:

[Cx1s%2), (X2, 1), (15¥2)],

(G, %2) (¥2,%1), (1, 02)];

[Ge1sx2), (x2,¥2), (2, %2), (1, 02) ],
[Oe1,x2) (V15%1), (X1, 01) (1, ¥2) ],
[(x1,X2), (x2,X1), (X1, 2), (V2,01 (Y1, ¥2) ],
L1, %2)5 (X2, %), (%, ¥2), (V25 %), (¥1, ¥2) s
(1, X2), (4, X1), (V15 %), G, y1), (91, 92)],

where = is any letter different from x, x,,y; and y,.
Otherwise, we can assume, without loss of generality, that x; =y, and then consider
the following disjoint paths:

[Ceysx2)s (x2592), (¥25%2), (X1, 2) ],
[(xl:XZ)’ (*a X1 ),(xl :yZ)],

where * is any letter different from x,,

[(xl,xZ)a (xz,*),(*,)’z),(h,*), (xl’yZ)]a

where * is any letter different from x,,x,, and y,. [

Remark. This result shows that Kautz graphs are very suitable networks, better in
fact than de Bruijn graphs. For the same maximum degree and diameter, they have
more vertices and a better connectivity (one less than the best possible one). We will



see later that one can construct a 2d-connected graph by adding some edges to
UK (d, D).

4. Modified Kautz graphs

Since Kautz graphs are not regular, some authors attempt to modify them in order
to get regular, maximally connected graphs (that is, graphs of connectivity equal to the
degree).

Kumar and Reddy [14] obtained a 2d-regular graph from the Kautz undirected
graph UK(d, D) by adding a particular matching on the vertices of degree 2d — 1, in
such a way that the subgraph generated by these vertices is a cycle. They showed that
the resulting graph has connectivity 2d. Furthermore, they gave a distributed and
fault-tolerant routing which guarantees a path of length at most D +4t if t <d nodes
are faulty. They presented a routing strategy when t<2d nodes are faulty, which
results in a maximum path length of 3D+ 6 between any two nonfaulty nodes.

In fact, we can show that the graphs obtained from UK(d, D) by adding any perfect
matching between the vertices of degree 2d — 1 have connectivity 2d when D >4 and d > 3.

Theorem 4.1. For d>3 and D >4, any graph obtained from the undirected Kautz graph
_ UK(d, D) by adding any perfect matching avoiding the existing edges on the vertices of
degree 2d — 1 has connectivity 2d.

Proof (preliminary remarks). We use here the same definitions and notation as in the
proof of the previous theorem, except for very few details. In particular, the new
neighbor of a binary vertex x neither belongs to I'* (x) nor to I'"(x). Here F denotes
a set of 2d—1 vertices.

Let us first choose a vertex z such that

{{z}ur* (oI (rt(2))}nF=90.

Such a vertex exists as n>|F|(1+d+d?) as D>4.

To prove the theorem, we only need to show that there exists a path between z and
any other vertex in V(G)— F. In fact, we will show that, for every vertex x, there exists
a vertex x’ such that at least one of the two paths (left and right) from x to x" avoids
F and that at least one of the two paths (left and right) from z to x" avoids F. Similarly
to Lemma 3.7, we have the following lemma.

Lemma 4.2. Suppose I'" (x)NnF=0 or ' (x)nF=0. Then there exists a path between
x and z in G—F.

Proof of Theorem 4.1 (conclusion). We only need to prove the theorem for vertices
that are neither binary nor ternary. Indeed, we show that, in both cases, we can find
a vertex u joined to x in G— F that is neither binary nor ternary.



First suppose that x is ternary (recall that a vertex cannot be ternary as well as
binary). As D>4, x has no binary neighbor. Either I'(x)—F contains a nonternary
vertex u or |I'(x)nF|>2d—2. In this case, let v be a vertex of I'(x)—F. We have
|I'(x)nI'(v)|< 1. I'(v) contains no binary vertex because v is ternary and then has at
most two vertices of F. Therefore, as d >3, I'(v)—F — {x} contains a vertex, that is
neither binary nor ternary. ’

Suppose now that x is binary. Vertex x has no ternary neighbor because D>4.
Either I'(x) — F contains a nonbinary vertex u or |I'(x)nF|>2d —2. In this case, let
v belong to I'(x) — F. I'(v) contains no vertex of I'(x). Hence, I'(v) contains at most one
vertex of F. Furthermore, I"(v) has only two binary vertices. Therefore, there is a vertex
u in I'(v)—F that is neither binary nor ternary (v is binary).

Case 1: 1<d-3.

As
s(x)<(d—3)(ddb:ll.>+(d+2) <dl;__ll_l) and
S(Z)S(Zd"l)(‘dil—__zgﬂ’
dD—l dD—I_l‘
s(x)+s(z><(d—3><d_1 )+<d+2)< i—1 )
dD—-Z_
+(2d—1)(—d—T)<n an>3.
Case 2: |=d-2.

As x has at most one binary neighbor (D>4), we can suppose that there exists
a nonbinary vertex u in I'* (x)— F. If I'* w)nF =0 or I' " (u)nF =0, then we conclude
by Lemma 4.2. Otherwise, [’ (u)nF|>1, |’ (u)nF|>1 and r<d—1.

If r=d—2, we can suppose that both vertices of I'"(x)—F are nonbinary (else,
interchange I' " (x) and I" " (x)). Let us denote them by v and w. By Lemmas 3.3 and 3.4,
the four sets I'” (u)nF, I'* (u)nF, I'" (v)nF and I'"" (w)nF are disjoint and they are
also disjoint with I'(x) (as x is nonternary). Therefore, as | F—I'(x)| =3, one of these
sets is empty and we conclude by using Lemma 4.2.

If r=d—1, let v be the vertex of I' (x)—F. As I'*(v)nI'(u)={x} or
I'*)n(I'(u)nF)=0 (by Lemma 3.4) and I'* (v)nI'(x)=0, we have I'* (0)nF =0.
Therefore, we conclude by applying Lemma 4.2 to v.

Case 3. l=d—1. .

Let u be the vertex of ' (x)—F. If I'* (uynF=0 or I (u)nF =0, we can apply
Lemma 4.2 to u. Otherwise, |I'* (u)nF|=|I" " (u)nF|=1. Therefore, u is binary and
r=d—1. As I'* (v)nF =0, we conclude by applying Lemma 4.2 to the nonbinary
vertex v of ' (x)—F. 0O



5. Conclusion and open problems

In this article, we have shown that Kautz networks (or modified ones) are highly
reliable and, therefore, well suited for future parallel architectures.

For some applications, it is desirable to have graphs not only with a high connect-
ivity but also such that the diameter does not increase too much after the deletion of
edges or vertices, or, in addition, with a large number of vertex-disjoint paths of short
length between any two vertices. In [5] Bond and Peyrat proved that, after the
deletion of at most 2d —2 vertices in UK (d, D), the diameter of the resulting graph is at
most D+ 2. A natural question is to ask whether there are 2d — 1 vertex-disjoint paths
of length at most D+ 2, between any two vertices.

Another question is to consider the same problems for U1, ,, the generalization of
the Kautz graphs which is given for any value of the number of vertices. A first step in
that direction has been made in [10], where Homobono proved that, for D >4 and
n>dP, the connectivity of UIl,, is 2d—1 if d+ 1 divides n, and 2d —2 otherwise.
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