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Abstract 

A one-dimensional transport model for simulating water flow and solute transport in homogeneous-

heterogeneous, saturated-unsaturated porous media is presented. The model is composed of a 

combination of accurate numerical algorithms for solving the non linear Richards’ and advection-

dispersion equations (ADE). The mixed form of Richards’ equation is solved using a standard finite 

element method (FEM) with primary variable switching. The transport equation is solved using 

operator splitting, with discontinuous finite elements method (DFE) for the discretization of the 

advective term. A slope limiting procedure for DFE avoids numerical instabilities but creates very 

limited numerical dispersion for high Peclet numbers. An implicit finite differences scheme (FD) is 

used for the dispersive term. 

The unsaturated flow and transport model (Wamos-T) is applied to a variety of rigorous problems 

including transient flow, heterogeneous medium and abrupt variations of velocity in magnitude and 

direction due to time varying boundary conditions. It produces accurate and mass-conservative 

solutions for a very large range of grid Peclet numbers. Wamos-T model is a good and robust 

alternative for the simulation of mass transport in unsaturated domain. 

 

Keywords : Unsaturated porous media ; Numerical model; Mass transport ; Discontinuous finite 

element ; Operator splitting. 
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1. Introduction 

Transfer of water and solutes under transient unsaturated-saturated conditions plays an important 

role in agriculture and environmental engineering. The unsaturated zone is prone to contamination 

from agriculture where many chemicals such as fertilizers, pesticides, as well as those naturally 

present in irrigation waters, are frequently applied to the field. The unsaturated zone can also be a 

receptacle for controlled waste storage and disposal. When water is applied to the soil surface, 

either by rain or irrigation, it may transport chemical contaminants through the unsaturated zone to 

the underlying groundwater aquifer. Because of the vulnerability of the unsaturated zone to 

contamination and its direct link to aquifers, a clear understanding of chemical transport, including 

proper quantification of relevant transport processes, is therefore important for both agricultural and 

environmental engineers. Mathematical models play a significant role in the analysis of the 

movement and fate of contaminants in porous media because of their contribution to the 

understanding of these processes.  

The Richards equation (Richards, 1931) is often used to describe water movement in unsaturated 

soil, although serious mass balance and convergence problems can appear due to its non linear 

nature. The advection-dispersion equation (ADE) has been widely used to describe solute transport 

in porous media (Bear, 1979). Many algorithms exist in the literature for the numerical solution of 

the ADE. Finite elements and finite differences methods are classically used to solve the advection-

dispersion equation. These methods often exhibit oscillatory behavior and/or excessive numerical 

dispersion near relatively sharp concentration fronts (e.g. Huyakorn and Pinder, 1983). These 

problems becomes serious for advective-dominated transport characterized by small dispersivities. 

One way to partially circumvent numerical oscillations is to use upstream weighting, or to subject 

these classical methods to a local grid Peclet (Pe) and Courant (Cr) numbers restrictions. Perrochet 

and Berod (1993) developed a criterion re C.P  where   is the performance index  2 , which 

permits to minimize or eliminate numerical oscillations. The restriction on the Peclet number is 
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achievable by using a fine spatial discretization which leads to high computational effort 

consideration. Upwind schemes (e.g. Peyret and Taylor, 1983) give first order accurate stable 

solution (with no oscillations), but with numerical diffusion smearing the front.  

Eulerian-Lagrangian methods are an alternative which are less restrictive in space and time 

discretisation. The most popular are the method of characteristic (Garder et al., 1964) or the 

modified method of characteristics (Chiang et al., 1989). Other classes of Eulerain-Lagrangian 

methods have been developed in conjunction with weak formulation like Galerkin Eulerian-

Lagrangian (Neuman, 1981) or Eulerian-Lagrangian localized adjoint (Binning and Celia, 1996).  

The objective of this study is to develop an alternative numerical model that is able to produce 

accurate simulations of transient flow and solute transport in 1-D unsaturated-saturated porous 

media. The flow model is based on the mixed form of Richard’s equation and solved by standard 

finite element method coupled with a primary variable switching technique, which represents a fast 

and robust strategy for unsaturated problems (Diersch and Perrochet, 1999).  

Operator and time splitting (e.g. Dawson and Wheeler, 1992) is used to solve the transport equation. 

It has been quite successful for solving the Navier-Stokes equations. It offers the possibility to adapt 

an accurate numerical technique for each kind of partial differential equation. Therefore, we adapt 

an high-order accurate and nonoscillatory finite element upwind scheme (Siegel et al., 1997 ; Toro, 

1997) for the advective term of the transport equation. These schemes are generally constructed 

through a discontinuous piecewise polynomial representation of the solution (Van Leer, 1977) and 

are stabilized with slope limiters (Chavent and Jaffré, 1986). The dispersive term in the proposed 

model in discretized by finite differences. 

The accuracy of the proposed model is evaluated by comparing its results with analytical solutions 

for saturated flow and with numerical solutions based on finite element model. 

 

2. The mathematical models 

The mathematical models are the standard models described by Richards (1931) and Bear (1979). 
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2.1. The flow equation  

The 1D vertical mathematical model used to describe fluid flow in partially saturated rigid porous 

media is obtained by combining the mass conservation equation with the generalized Darcy’s law 

which leads to the mixed form of the Richards' equation (Richards, 1931): 
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with h, the pressure head (L) ( 0h  in saturated medium and 0h  in unsaturated medium);  hk  

the relative hydraulic conductivity (   1hk0  , 1k   if 0h  ) (L T
-1

); SK  the saturated hydraulic 

conductivity (L T
-1

);  h  the volumetric water content (L
3
L

-3
); z the depth taken positive 

downwards (L) and t the time (T). 

Any initial condition in terms of pressure head or water content can be invoked. Dirichlet (pressure 

head) or Neumann (flux) boundary conditions at the top or bottom of the profile must be associated 

to the partial differential equations.  

This mixed form of the Richards' equation is solved by the standard Galerkin finite element method 

(Pinder and Gray, 1977). A lumped time matrix (Celia et al., 1990; Milly, 1985; Van Genuchten, 

1982) is used to speed up numerical convergence when simulating infiltration into dry porous 

medium, and to guarantee a smooth and non-oscillatory solution profile. The system of equations 

obtained is highly non-linear because of the nonlinear dependency of K and   on h. The most 

popular linearization techniques are the Picard, modified Picard also called fixed point method and 

the Newton methods. The Newton method described in Lehmann and Ackerer (1998) is used, 

improved by the primary variable switching technique suggested by Diersch and Perrochet (1999) 

to linearize the equation. 
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2.2. The transport equation  

In 1-D, the transport of a conservative constituent in a porous medium partially saturated with water 

without sink/source term can be represented by the following equation (Bear, 1979),  
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with z the depth taken positive downwards. In the very standard formulation, it is assumed that the 

dispersion coefficient is given by  mL DqD  where q  is the magnitude of the Darcy’s 

velocity (LT
-1

) and L  is the longitudinal pore-scale dispersivities (L), generally considered to be 

an intrinsic property of the porous media under fully saturated condition. However, the dispersion 

might be a non linear function of the saturation (Maraqa et al., 1997; Forrer et al., 1999; Inoue et 

al., 2000). mD  is the molecular diffusion coefficient in free water (L
2
T

-1
) and   is the tortuosity 

factor, which is evaluated using the relationship of Millington and Quirk (1961) 
2

s

3
7




 , 

s  being 

the saturated water content (L
3
L

-3
). 

Equation (2) is the divergence form of the advection–dispersion equation (ADE). It can be 

converted to the advective form which is considered to be more convenient for finite element 

discretization (Huyakorn et al., 1985). This is accomplished by expanding the advective and the 

mass accumulation terms and using the continuity equation for water flow (here without source/sink 

term): 
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Performing the necessary steps, we obtain 
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3. Numerical solution of the advection–dispersion equation 

To solve the transport equation, operator and time splitting are used. The ADE is split into two 

equations. The first equation describes advection  and the second, dispersion. The advantage is that 

for each time step, a specialized scheme can be used to solve the advective term and a conventional 

algorithm can be used to solve the dispersive term (Hills et al., 1994). The operator splitting is 

applied to equation (4) to avoid assumptions on the time discretization of the water content which is 

required if the splitting is used for equation (2). Equation (4) is rewritten in the following form: 
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and is split in: 
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where   1n,advC  is the concentration after advection for time n+1. Boundary and initial conditions are 

required to solve each partial differential equation. The water content is taken at time n+1 to be 

consistent with Darcy’s velocity q. 

 

3.1. Numerical solution of the advective term  

A discontinuous finite elements scheme (DFE) with slope limiters is used to discretize the advective 

term (Chavent and Jaffré, 1986). This scheme is applied to the divergence form of the advective 

transport. Therefore, equation (6a) is slightly modified to obtain: 
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The one-dimensional space interval  L,0  is discretized with a set of elements  ji z,zE   and 

nodes z1=0<….<zj<…zI+1=L. We denote by Ez  the size of element E. The concentration C is 
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approximated in a space of discontinuous linear functions. The concentration over element E  EC  

is a linear combination of the two bases functions 1Ew  and 2Ew  associated to element E. The linear 

variation in C over E is defined as : 

      1i1iiiE CzwCzwzC            for 1ii zzz   (8) 

where: 
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 , iC  and 1iC   the concentration at node i and i+1 of element 

E, respectively. The function C defined over the whole domain is discontinuous at the nodes of 

discretization, so we denote by in

iC  et out

iC  the inside and outside value of C at node i, with respect 

to element E. A variational form of equation (7) is obtained over element E as follows: 
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where w is one of the basis function defined over E. 

Using the Green formula, the equation becomes: 
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where i,Eq  and 1i,Eq   are the fluxes at node i and i+1 of element E, respectively; E  being the water 

content over the element E. The out-flux is defined positive and the in-flux negative. 

To preserve mass balance, the advective fluxes have to be uniquely defined at the interface of two 

elements. These fluxes are obtained by solving a standard Riemann problem (Gowda and Jaffré, 

1994), the numerical advective flux is calculated with the upstream value of Ci (Figure 1): 

    CC   0q  if 

         CC     0q if  

in

iiiE,i

out

iiE,i




. (11) 

An explicit second order scheme is used for time discretization to improve the accuracy of the 

calculation. Therefore, the computation is done in two steps:  



 9 

1. an intermediate time step at time 21nt   is defined, where the advective fluxes are calculated 

using the concentration values defined inside element E:  
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with n1nn ttt   .  

 

2. The Riemann problem is solved in the second step: 
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 (13) 

 

By using successively 1Ew  and 2Ew  as test functions, a system of two equations and two unknowns 

per element, 1n,in

iC   and 1n,in

1iC 

 , is obtained. DFE method requires the computation of the velocity 

through the element and at each nodes (see equations 12 or 13). The velocity inside the element is 

computed using Darcy’s law, the heads calculated at each node and the hydraulic conductivity. 

Finite element methods do not provide continuous velocities at nodes. We compute an average 

value of the two nodal velocities. This computation can lead to small water balance error at the 

element level (less than 2% for the studied cases). However, these errors have no effect on the 

solute mass balance due to the discretization of the accumulation term.  

After these two steps, the solution *1n
iC  is improved by slope limiting. Because advection does not 

increase the variation of concentration inside the modeled domain, the advection equation is Total 

Variation Diminishing (TVD). Therefore, slope limiters can be used to avoid oscillations. Detailed 

presentation and mathematical justification of TVD methods and slope limiters can be found in the 

book of Toro (1997). 
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The slope limiting process satisfies the following conditions : 

1. mass preservation: 
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2: in order to avoid oscillations   
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Physically, the previous relations specify that 1n,in

iC   and 1n,in

1iC 


 are not greater or smaller than the 

mean concentration in the elements E-1, E, E+1 (Figure 2). If 
*1n

EC 
 is a local maximum or 

minimum, then 
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E
1n,in

i CC   . 

This procedure has been extended in 2 or 3 dimensions (Siegel et al., 1997). In that case, if 
*1n

EC 
 is 

not a local maximum or minimum, the concentration at node i of element E is not uniquely defined. 

An optimization procedure (saddle point method) is used to minimize the following objective 

function J : 
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where p represents the concentrations of the inner node of element E and n the number of nodes of 

element E, i.e. 1n,in
iC   should be as close as possible to *1n,in

iC  .  

 

3.2 Numerical solution of the dispersive term: 

The dispersive term is discretized with an implicit standard finite differences approximation. 

Associated with its boundary conditions, equation (6b) becomes : 
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where Ez  is the element length which is assumed to be constant over the depth for simplicity and 

nt  is the time step.  

E,1E
1n1n )D( 
  is the equivalent dispersion coefficient estimated by the harmonic mean of the 

water content and dispersion coefficient defined at the element level E and E-1.  

Equation (16) is modified in a standard way to describe Dirichlet or Neumann boundary conditions. 

 

4. Test problems 

Test problems were designed to demonstrate the performance of our model in a variety of rigorous 

problems. The numerical results are compared to analytical solutions when they exist, or to 

numerical results obtained by an improved finite element method (Van Genuchten, 1978). This 

method is coded in Hydrus-1D (Simunek et al., 1998), which is a widely used software. Different 

kind of discretizations are available in Hydrus-1D : an improved finite elment method (FEM), an 

upstream weighted formulation and a stabilization option with artificial dispersion (Perrochet and 

Berod, 1993). The two last formulations avoid oscillations but create artificial dispersion, which is 

too important for high grid Peclet numbers. Therefore, all computations are run with FEM. 

The hydrodynamics properties are represented by Mualem (1976) and Van Genuchten equations 

(Van Genuchten, 1980): 
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and 

      2n111nn

s S11SKK
  with 1n   (18) 

where s  (L
3
L

-3
) and r  (L

3
L

-3
) are the saturated and residual water content, respectively, S is 

relative saturation, sK  (LT
-1

) is the saturated hydraulic conductivity, and   (L
-1

) and n (-) are 

empirical constants determining the shape of the functions. 
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Two dimensionless numbers are used to characterize the space and time discretizations:  

- the grid Peclet number, 
D

zq
Pe




  

- the Courant number, rC  or Courant Friedrich Levy number (CFL), 
z

tq
C r




  

Explicit schemes require 1Cr   to avoid oscillations and is also recommended to reduce numerical 

dispersion and/or oscillations in concentration distribution for implicit schemes (e.g. Kinzelbach, 

1986). To provide accurate results, the grid Peclet number should be smaller than 2 for standard 

numerical schemes like finite differences of finite element (e.g. Kinzelbach, 1986). 

 

4.1. Test problem n°1 

The first test case deals with a 1D saturated porous media. The flow field is steady state which 

simplifies the problem, the accumulation term being equal to zero. Darcy’s velocity is constant 

(Table 1). The numerical results of the proposed model, Wamos-T, is compared to the analytical 

solution of Ogata and Banks (1961) and to a finite element model (FEM).  

Three computations have been run with different grid Peclet number (Table 1, Test n°1). The first 

computation runs over 15 minutes, the two others over 20 minutes. The Courant number is less than 

one for all computations. 

The solution based on discontinuous finite elements matches the analytical solution quite well for 

the two first computations. For higher grid Peclet number, the solution remains stable due to the 

slope limiting procedure (Figure 3). However, this procedure generates some numerical diffusion 

(Figure 4). The numerical solution produced by the FEM provides accurate results for low grid 

Peclet number (Table 1, Test n°1 Case 1) and gives good results compare to the analytical solution 

but oscillates for the two other computations (Table 1, Test n°1 Cases 2 and 3) as expected for these 

ranges of Peclet number (Figure 3 and 4). 
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4.2. Test problem n°2 

This test problem deals with infiltration of water and non reactive solute into homogeneous soil 

under fully unsaturated conditions. The objective of this test is to verify the discretization of the 

accumulation term for the DFE method under transient flow field conditions.  

The hydrodynamics and transport parameters and the initial and boundary conditions are 

summarized in Table 1, Test N°2. The simulations are performed over 12 and 24 hours for three 

grid Peclet numbers: Pe=0.20, Pe=10 and Pe=100 (Table 1, Test N°2 Case 1, 2 and 3). 

For the grid Peclet numbers of 0.20 and 10, both models provide similar results. Standard finite 

element models usually oscillates for grid Peclet numbers greater than 5. For the FEM, the 

improvements suggested by Van Genuchten (1978) significantly increases the robustness and 

accuracy of the simulation. For the highest grid Peclet number (Pe=100), the results obtained by 

Wamos-T remains unchanged whereas oscillations appear for FEM (Figure 5). 

 

4.3. Test problem n°3 

In this test problem, we perform the simulation of infiltration of water and non reactive solute into 

heterogeneous soil. The objective is to verify the accuracy of the proposed numerical scheme to 

abrupt changes in water content. The domain is a layered column consisting of alternating layers of 

sand and clay (Hills et al., 1989). Each layer has a thickness of 20 cm, the model is a five layers 

system, with a sand layer on top. This test problem has been suggested by Segol (1993).  

The material properties for the two soils are described by Van Genuchten’s relations. The hydraulic 

and transport parameters and the other simulation parameters are summarized in Table 1, Test N°3. 

The simulations are performed over 5 and 10 days. The water content profiles (Figure 6) obtained 

by both codes are very similar. Both numerical models provide accurate results (Figure 7). We 

observe little oscillations with the FEM, while the Wamos-T profile shows no oscillations. The 

numerical schemes used in Wamos-T provide also accurate results for heterogeneous media. 
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4.4. Test problem n°4 

The model is applied to a problem involving vertical infiltration and evaporation of water with an 

input of a non reactive solute flux during infiltration and a zero solute flux boundary during 

evaporation (Table 1 Test N°4 and Figure 8). Infiltration/evaporation will provide abrupt changes in 

the velocity in orientation and magnitude. The total time of simulation is 12 days. 

The first computation performed with a grid Peclet number of 4 shows very large discrepancies 

between the both numerical models (Figure 9). The results obtained by the DFE method remain 

practically unchanged with grid refinement whereas the results obtained by FEM converge to the 

results obtained with the DFE (Figures 10). 

 

5. Conclusion 

A new one-dimensional numerical model for simulating non reactive solute transport in saturated-

unsaturated porous media is proposed. Operator splitting is used to adapt the numerical scheme to 

the partial differential equation (PDE): discontinuous finite element combined with a slope limiting 

procedure for advection (hyperbolic type of PDE) and finite differences for dispersion (parabolic 

type of PDE). The accuracy and robustness of the model has been demonstrated by comparing the 

results with analytical or numerical solutions for the following cases: 

- saturated steady state flow with dispersive or advective dominated transport; 

- transient unsaturated flow in a homogeneous porous medium; 

- transient unsaturated flow in a heterogeneous domain with abrupt changes in water content; 

- transient unsaturated flow in a homogeneous porous medium with time variable boundary 

conditions. These conditions creates velocity fluctuations in magnitude and direction. 

The accuracy of the solutions obtained with this model for each test cases shows that the 

assumption made in the numerical formulation are verified. The Wamos-T model is a good 

alternative for the simulation of mass transport in unsaturated porous media, especially for grid 

Peclet numbers higher than 10 and for strong variable flow field due to heterogeneity or/or time 
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varying flow boundary conditions. The explicit scheme in the discontinuous finite element need to 

respect the Courant number. For all the presented computations, the time step required for 

convergence for the flow calculation fulfilled the Courant criterion. 
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Table caption 

 

Table 1 : Parameters for the Test Problems 
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Table 1 : Parameters for the Test Problems 

N°1 Saturated flow 

Domaine length L = 50 cm  

Parameters 368.0
s
 , 0D

m
  

 q = 1.0 10
-2

 cm/s  

Case 1 

Case 2 

Case 3 

cm 0.2z and cm 0.1
L

 , Pe=0.2 

cm 2z and cm 1.0
L

  , Pe = 20.0 

cm 2z and cm 01.0
L

 , Pe =200.0 

Initial Condition for transport   00,zC   

Boundary conditions for transport   
0

Ct,0zC  =1 (Upper : Dirichlet) 

  0zC
LZ



 (Lower : zero gradient, no dispersive flux) 

N°2 Inflitration in homogeneous media 

Domaine length L = 50 cm  

Parameters s/cm00922.0K
s
 , 368.0

s
 , 102.0

r
 , 1cm 0335.0  , 2n , 0D

m
  

Case 1 

Case 2 

Case 3 

cm 0.2z and cm 0.1
L

 , Pe=0.2 

cm 1.0z and cm 01.0
L

  , Pe = 10.0 

cm 1z and cm 01.0
L

 , Pe = 100.0 

Initial Condition for flow   cm0.3000,zh   

Boundary conditions for flow   cm75t,0zh   (Upper : Dirichlet) 

  cm300t,Lzh   (Lower : Dirichlet) 

Initial Condition for transport   00,zC   

Boundary conditions for transport   
0

Ct,0zC  =1 (Upper : Dirichlet) 

  0zC
LZ



 (Lower : zero gradient, no dispersive flux) 

N°3 Inflitration in heterogeneous media 

Domaine length L = 100 cm  

Parameters  

Berino loamy sand day/cm541K
s
 , 3658.0

s
 , 0286.0

r
 , 1cm 028.0  , 239.2n , 0D

m
  

Glendale clay loam day/cm1.13K
s
 , 4686.0

s
 , 106.0

r
 , 1cm 0104.0  , 3954.1n , 0D

m
  

 cm 0.5z and cm 1.0
L

 , Pe=10 

Initial Condition for flow   cm10000,zh   

Boundary conditions for flow   day/cm2t,0zq
0

  (Upper : Neuman) 

  cm1000t,Lzh   (Lower : Dirichlet) 

Initial Condition for transport   00,zC   

Boundary conditions for transport   
0

Ct,0zC  =1 (Upper : Dirichlet) 

  0zC
LZ



 (Lower : zero gradient, no dispersive flux) 

N°4 Inflitration and evaporation in homogeneous media 

Domaine length L = 200 cm  

Parameters day/cm75K
s
 , 47.0

s
 , 17.0

r
 , 1cm 010.0  , 0.2n , 0D

m
  

Case 1 

Case 2 

Case 3 

cm 0.4z and cm 1.0
L

 , Pe=4 

cm 0.2z and cm 1.0
L

 , Pe=2 

cm 0.02z and cm 1.0
L

 , Pe=0.2 

Initial Condition for flow   cm1000,zh   

Boundary conditions for flow  

(Figure 11) 
  day/cm1t,0zq

0
  (Upper : Neuman, during infiltration) 

  day/cm5.0t,0zq
0

  (Upper : Neuman, during evaporation) 

  0zh
LZ



 (Lower : free drainage) 

Initial Condition for transport   00,zC   

Boundary conditions for transport  

(Figure 11) 
day/cm0.1Cq

00
  (Upper : Neuman, during infiltration) 

day/cm0.0Cq
00
  (Upper : Neuman, during evaporation) 

  0zC
LZ



 (Lower : zero gradient, no dispersive flux) 
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Figure captions 

Figure 1 : Illustration of the discontinuous limit values of C at nodes zi and zi+1. 

Figure 2: Slope limiting effects : linear discontinuous variation in concentration before ( ) and 

after ( ) slope limiting 

Figure 3: Test case 1: normalized concentration profile after 20 mn with Pe = 20. 

Figure 4 : Test case 1: normalized concentration profile after 20 mn with 200Pe  . 

Figure 5 : Test case 2: normalized concentration profile after 12 and 24 hours with 100Pe   

Figure 6 : Test case 3: water-content profiles at t=5 days. 

Figure 7 : Test case 3: normalized concentration profile after 5 and 10 days with Pe = 10.  

Figure 8 : Test case 4: boundary conditions at the top of the profile. 

Figure 9 : Test case 4: normalized concentration profile after 1, 6 and 12 days with cm4.0z   .  

Figure 10 : Test case 4: normalized concentration profile after 1, 6 and 12 days with 

cm02.0z and cm  2.0z   for FEM and  cm  4.0z  for Wamos-T. 
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Figure 1 : Illustration of the discontinuous limit values of C at nodes zi and zi+1. 
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Figure 2: Slope limiting effects : linear discontinuous variation in concentration before ( ) and 

after ( ) slope limiting 
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Figure 3: Test case1 : normalized concentration profile after 20 mn with Pe = 20. 

 

Figure 4 : Test case 1: normalized concentration profile after 20 mn 200Pe  . 

 

 

 

Depth (cm)

0 10 20 30 40 50

N
o

rm
al

iz
ed

 C
o

n
ce

n
tr

at
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Pe=20

Wamos-T

Analytical Solution

FEM



 24 

 

Figure 5 : Test case 2: normalized concentration profile after 12 and 24 hours with 100Pe   

 

 

Figure 6 : Test case 3: water-content profiles at t=5 days. 
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Figure 7 : Test case 3: normalized concentration profile after 5 and 10 days with Pe = 10. 

 

Figure 8 : Test case 4: boundary conditions at the top of the profile. 
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Figure 9 : Test case 4: normalized concentration profile after 1, 6 and 12 days with cm4.0z   .  

 

Figure 10 : Test case 4: normalized concentration profile after 1, 6 and 12 days with 

cm02.0z and cm  2.0z   for FEM and  cm  4.0z  for Wamos-T. 
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