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One-dimensional simulation of solute transfer in saturated -unsaturated porous media using the discontinuous finite elements method
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A one-dimensional transport model for simulating water flow and solute transport in homogeneousheterogeneous, saturated-unsaturated porous media is presented. The model is composed of a combination of accurate numerical algorithms for solving the non linear Richards' and advectiondispersion equations (ADE). The mixed form of Richards' equation is solved using a standard finite element method (FEM) with primary variable switching. The transport equation is solved using operator splitting, with discontinuous finite elements method (DFE) for the discretization of the advective term. A slope limiting procedure for DFE avoids numerical instabilities but creates very limited numerical dispersion for high Peclet numbers. An implicit finite differences scheme (FD) is used for the dispersive term.

The unsaturated flow and transport model (Wamos-T) is applied to a variety of rigorous problems including transient flow, heterogeneous medium and abrupt variations of velocity in magnitude and direction due to time varying boundary conditions. It produces accurate and mass-conservative solutions for a very large range of grid Peclet numbers. Wamos-T model is a good and robust alternative for the simulation of mass transport in unsaturated domain.

Introduction

Transfer of water and solutes under transient unsaturated-saturated conditions plays an important role in agriculture and environmental engineering. The unsaturated zone is prone to contamination from agriculture where many chemicals such as fertilizers, pesticides, as well as those naturally present in irrigation waters, are frequently applied to the field. The unsaturated zone can also be a receptacle for controlled waste storage and disposal. When water is applied to the soil surface, either by rain or irrigation, it may transport chemical contaminants through the unsaturated zone to the underlying groundwater aquifer. Because of the vulnerability of the unsaturated zone to contamination and its direct link to aquifers, a clear understanding of chemical transport, including proper quantification of relevant transport processes, is therefore important for both agricultural and environmental engineers. Mathematical models play a significant role in the analysis of the movement and fate of contaminants in porous media because of their contribution to the understanding of these processes.

The Richards equation [START_REF] Richards | Capillary conduction of liquids through porous medium[END_REF] is often used to describe water movement in unsaturated soil, although serious mass balance and convergence problems can appear due to its non linear nature. The advection-dispersion equation (ADE) has been widely used to describe solute transport in porous media [START_REF] Bear | Hydraulics of groundwater[END_REF]. Many algorithms exist in the literature for the numerical solution of the ADE. Finite elements and finite differences methods are classically used to solve the advectiondispersion equation. These methods often exhibit oscillatory behavior and/or excessive numerical dispersion near relatively sharp concentration fronts (e.g. [START_REF] Huyakorn | Computational methods in subsurface flow[END_REF]). These problems becomes serious for advective-dominated transport characterized by small dispersivities.

One way to partially circumvent numerical oscillations is to use upstream weighting, or to subject these classical methods to a local grid Peclet (P e ) and Courant (C r ) numbers restrictions. [START_REF] Perrochet | Stability of the standard Crank-Nicholson-galerkin Scheme Applied to the diffusion-convection Equation: Some New Insights[END_REF] developed a criterion   r e C

. P where  is the performance index  
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, which permits to minimize or eliminate numerical oscillations. The restriction on the Peclet number is achievable by using a fine spatial discretization which leads to high computational effort consideration. Upwind schemes (e.g. [START_REF] Peyret | Computational Methods for fluid flow[END_REF] give first order accurate stable solution (with no oscillations), but with numerical diffusion smearing the front.

Eulerian-Lagrangian methods are an alternative which are less restrictive in space and time discretisation. The most popular are the method of characteristic [START_REF] Garder | Numerical calculations of multidimensional miscible displacement by the method of characteristics[END_REF] or the modified method of characteristics [START_REF] Chiang | A modified method of the characteristics technique and mixed finite element method for simulation of ground water solute transport[END_REF]. Other classes of Eulerain-Lagrangian methods have been developed in conjunction with weak formulation like Galerkin Eulerian-Lagrangian [START_REF] Neuman | A eulerian-lagrangian numerical scheme for the dispersion convection equation using conjugate space time grids[END_REF] or Eulerian-Lagrangian localized adjoint [START_REF] Binning | A finite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multiphase flow systems[END_REF].

The objective of this study is to develop an alternative numerical model that is able to produce accurate simulations of transient flow and solute transport in 1-D unsaturated-saturated porous media. The flow model is based on the mixed form of Richard's equation and solved by standard finite element method coupled with a primary variable switching technique, which represents a fast and robust strategy for unsaturated problems (Diersch and Perrochet, 1999).

Operator and time splitting (e.g. [START_REF] Dawson | Time splitting methods for advection-diffusion-reaction equations arising in contaminant transport[END_REF]) is used to solve the transport equation.

It has been quite successful for solving the Navier-Stokes equations. It offers the possibility to adapt an accurate numerical technique for each kind of partial differential equation. Therefore, we adapt an high-order accurate and nonoscillatory finite element upwind scheme [START_REF] Siegel | Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics : a practical introduction[END_REF] for the advective term of the transport equation. These schemes are generally constructed through a discontinuous piecewise polynomial representation of the solution [START_REF] Van Leer | Towards the ultimate conservative scheme : IV. A new approach to numerical convection[END_REF] and are stabilized with slope limiters [START_REF] Chavent | Mathematical models and finite element for reservoir simulation[END_REF]. The dispersive term in the proposed model in discretized by finite differences.

The accuracy of the proposed model is evaluated by comparing its results with analytical solutions for saturated flow and with numerical solutions based on finite element model.

The mathematical models

The mathematical models are the standard models described by [START_REF] Richards | Capillary conduction of liquids through porous medium[END_REF] and [START_REF] Bear | Hydraulics of groundwater[END_REF].

The flow equation

The 1D vertical mathematical model used to describe fluid flow in partially saturated rigid porous media is obtained by combining the mass conservation equation with the generalized Darcy's law which leads to the mixed form of the Richards' equation [START_REF] Richards | Capillary conduction of liquids through porous medium[END_REF]:
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with h, the pressure head (L) ( 0 h  in saturated medium and 0 h  in unsaturated medium);   h k the relative hydraulic conductivity (

  1 h k 0   , 1 k  if 0 h  ) (L T -1 ); S K the saturated hydraulic conductivity (L T -1 );   h 
the volumetric water content (L 3 L -3 ); z the depth taken positive downwards (L) and t the time (T).

Any initial condition in terms of pressure head or water content can be invoked. Dirichlet (pressure head) or Neumann (flux) boundary conditions at the top or bottom of the profile must be associated to the partial differential equations.

This mixed form of the Richards' equation is solved by the standard Galerkin finite element method [START_REF] Pinder | Finite Element Simulation in Surface and Subsurface Hydrology[END_REF]. A lumped time matrix [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF][START_REF] Milly | A mass-conservative procedure for time-stepping in models of unsaturated flow[END_REF][START_REF] Van Genuchten | A comparison of numerical solution of the one dimensional unsaturated-saturated flow and mass transport equations[END_REF] is used to speed up numerical convergence when simulating infiltration into dry porous medium, and to guarantee a smooth and non-oscillatory solution profile. The system of equations obtained is highly non-linear because of the nonlinear dependency of K and  on h. The most popular linearization techniques are the Picard, modified Picard also called fixed point method and the Newton methods. The Newton method described in Lehmann and Ackerer (1998) is used, improved by the primary variable switching technique suggested by Diersch and Perrochet (1999) to linearize the equation.

The transport equation

In 1-D, the transport of a conservative constituent in a porous medium partially saturated with water without sink/source term can be represented by the following equation [START_REF] Bear | Hydraulics of groundwater[END_REF],
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(2) with z the depth taken positive downwards. In the very standard formulation, it is assumed that the dispersion coefficient is given by

      m L D q D
where q is the magnitude of the Darcy's velocity (LT -1 ) and L  is the longitudinal pore-scale dispersivities (L), generally considered to be an intrinsic property of the porous media under fully saturated condition. However, the dispersion might be a non linear function of the saturation [START_REF] Maraqa | Effects of degree of water saturation on dispersivity and immobile water in sandy soil columms[END_REF][START_REF] Forrer | Longitudinal and lateral dispersion in unsaturated field soil[END_REF][START_REF] Inoue | Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments[END_REF]. m D is the molecular diffusion coefficient in free water (L 2 T -1 ) and  is the tortuosity factor, which is evaluated using the relationship of [START_REF] Millington | Permeability of porous solids[END_REF] 2 s

3 7     , s  being the saturated water content (L 3 L -3 ).
Equation ( 2) is the divergence form of the advection-dispersion equation (ADE). It can be converted to the advective form which is considered to be more convenient for finite element discretization [START_REF] Huyakorn | Finite Element Matrix and Mass Balance Computational Schemes for Transport in Variably Saturated Porous Media[END_REF]. This is accomplished by expanding the advective and the mass accumulation terms and using the continuity equation for water flow (here without source/sink term):
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Performing the necessary steps, we obtain
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Numerical solution of the advection-dispersion equation

To solve the transport equation, operator and time splitting are used. The ADE is split into two equations. The first equation describes advection and the second, dispersion. The advantage is that for each time step, a specialized scheme can be used to solve the advective term and a conventional algorithm can be used to solve the dispersive term [START_REF] Hills | Application of flux-corrected transport to the Las Cruses Trench site[END_REF]. The operator splitting is applied to equation ( 4) to avoid assumptions on the time discretization of the water content which is required if the splitting is used for equation (2). Equation ( 4) is rewritten in the following form:
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and is split in:
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where 1 n , adv C  is the concentration after advection for time n+1. Boundary and initial conditions are required to solve each partial differential equation. The water content is taken at time n+1 to be consistent with Darcy's velocity q.

Numerical solution of the advective term

A discontinuous finite elements scheme (DFE) with slope limiters is used to discretize the advective term [START_REF] Chavent | Mathematical models and finite element for reservoir simulation[END_REF]. This scheme is applied to the divergence form of the advective transport. Therefore, equation (6a) is slightly modified to obtain:
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The one-dimensional space interval   
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where:

  i 1 i 1 i i z z z z z w      ,   i 1 i i 1 i z z z z z w      , i
C and 1 i C  the concentration at node i and i+1 of element E, respectively. The function C defined over the whole domain is discontinuous at the nodes of discretization, so we denote by in i C et out i C the inside and outside value of C at node i, with respect to element E. A variational form of equation ( 7) is obtained over element E as follows:
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where w is one of the basis function defined over E.

Using the Green formula, the equation becomes:
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where i , E q and 1 i , E q  are the fluxes at node i and i+1 of element E, respectively; E  being the water content over the element E. The out-flux is defined positive and the in-flux negative.

To preserve mass balance, the advective fluxes have to be uniquely defined at the interface of two elements. These fluxes are obtained by solving a standard Riemann problem [START_REF] Gowda | A discontinuous finite element method for scalar nonlinear conservation laws[END_REF], the numerical advective flux is calculated with the upstream value of C i (Figure 1):

C C 0 q if C C 0 q if in i i i E,i out i i E,i     . ( 11 
)
An explicit second order scheme is used for time discretization to improve the accuracy of the calculation. Therefore, the computation is done in two steps:

1. an intermediate time step at time 2 1 n t  is defined, where the advective fluxes are calculated using the concentration values defined inside element E:
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2. The Riemann problem is solved in the second step:
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By using successively 1 E w and 2 E w as test functions, a system of two equations and two unknowns per element,

1 n , in i C  and 1 n , in 1 i C  
, is obtained. DFE method requires the computation of the velocity through the element and at each nodes (see equations 12 or 13). The velocity inside the element is computed using Darcy's law, the heads calculated at each node and the hydraulic conductivity.

Finite element methods do not provide continuous velocities at nodes. We compute an average value of the two nodal velocities. This computation can lead to small water balance error at the element level (less than 2% for the studied cases). However, these errors have no effect on the solute mass balance due to the discretization of the accumulation term.

After these two steps, the solution * 1 n i C  is improved by slope limiting. Because advection does not increase the variation of concentration inside the modeled domain, the advection equation is Total Variation Diminishing (TVD). Therefore, slope limiters can be used to avoid oscillations. Detailed presentation and mathematical justification of TVD methods and slope limiters can be found in the book of [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics : a practical introduction[END_REF].

The slope limiting process satisfies the following conditions :

1. mass preservation:
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Physically, the previous relations specify that

1 n , in i C  and 1 n , in 1 i C  
are not greater or smaller than the mean concentration in the elements E-1, E, E+1 (Figure 2).

If * 1 n E C  is a local maximum or minimum, then * 1 n E 1 n , in i C C    .
This procedure has been extended in 2 or 3 dimensions [START_REF] Siegel | Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements[END_REF]. In that case, if * 1 n E C  is not a local maximum or minimum, the concentration at node i of element E is not uniquely defined.

An optimization procedure (saddle point method) is used to minimize the following objective function J :
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where p represents the concentrations of the inner node of element E and n the number of nodes of element E, i.e. 

Numerical solution of the dispersive term:

The dispersive term is discretized with an implicit standard finite differences approximation.

Associated with its boundary conditions, equation (6b) becomes :
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where E z  is the element length which is assumed to be constant over the depth for simplicity and n t  is the time step.

E , 1 E 1 n 1 n ) D (    
is the equivalent dispersion coefficient estimated by the harmonic mean of the water content and dispersion coefficient defined at the element level E and E-1.

Equation ( 16) is modified in a standard way to describe Dirichlet or Neumann boundary conditions.

Test problems

Test problems were designed to demonstrate the performance of our model in a variety of rigorous problems. The numerical results are compared to analytical solutions when they exist, or to numerical results obtained by an improved finite element method [START_REF] Van Genuchten | Mass transport in saturated-unsaturated porous media : one dimensional solutions[END_REF]. This method is coded in Hydrus-1D (Simunek et al., 1998), which is a widely used software. Different kind of discretizations are available in Hydrus-1D : an improved finite elment method (FEM), an upstream weighted formulation and a stabilization option with artificial dispersion [START_REF] Perrochet | Stability of the standard Crank-Nicholson-galerkin Scheme Applied to the diffusion-convection Equation: Some New Insights[END_REF]. The two last formulations avoid oscillations but create artificial dispersion, which is too important for high grid Peclet numbers. Therefore, all computations are run with FEM.

The hydrodynamics properties are represented by [START_REF] Mualem | A vew model for predicting hydraulic conductivity of unsaturated porous media[END_REF] and Van Genuchten equations [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF]:
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where s  (L 3 L -3 ) and r  (L 3 L -3 ) are the saturated and residual water content, respectively, S is relative saturation, s K (LT -1 ) is the saturated hydraulic conductivity, and  (L -1

) and n (-) are empirical constants determining the shape of the functions.

Two dimensionless numbers are used to characterize the space and time discretizations:

-the grid Peclet number, D z q P e    -the Courant number, r C or Courant Friedrich Levy number (CFL), z t q C r     Explicit schemes require 1 C r  to avoid oscillations and is also recommended to reduce numerical dispersion and/or oscillations in concentration distribution for implicit schemes (e.g. [START_REF] Kinzelbach | Groundwater modelling. An introduction with sample programs in BASIC[END_REF]. To provide accurate results, the grid Peclet number should be smaller than 2 for standard numerical schemes like finite differences of finite element (e.g. [START_REF] Kinzelbach | Groundwater modelling. An introduction with sample programs in BASIC[END_REF].

Test problem n°1

The first test case deals with a 1D saturated porous media. The flow field is steady state which simplifies the problem, the accumulation term being equal to zero. Darcy's velocity is constant (Table 1). The numerical results of the proposed model, Wamos-T, is compared to the analytical solution of [START_REF] Ogata | A solution of differential equation of longitidunal dispersion in porous media[END_REF] and to a finite element model (FEM).

Three computations have been run with different grid Peclet number (Table 1, Test n°1). The first computation runs over 15 minutes, the two others over 20 minutes. The Courant number is less than one for all computations.

The solution based on discontinuous finite elements matches the analytical solution quite well for the two first computations. For higher grid Peclet number, the solution remains stable due to the slope limiting procedure (Figure 3). However, this procedure generates some numerical diffusion (Figure 4). The numerical solution produced by the FEM provides accurate results for low grid Peclet number (Table 1, Test n°1 Case 1) and gives good results compare to the analytical solution but oscillates for the two other computations (Table 1, Test n°1 Cases 2 and 3) as expected for these ranges of Peclet number (Figure 3 and4).

The model is applied to a problem involving vertical infiltration and evaporation of water with an input of a non reactive solute flux during infiltration and a zero solute flux boundary during evaporation (Table 1 Test N°4 andFigure 8). Infiltration/evaporation will provide abrupt changes in the velocity in orientation and magnitude. The total time of simulation is 12 days.

The first computation performed with a grid Peclet number of 4 shows very large discrepancies between the both numerical models (Figure 9). The results obtained by the DFE method remain practically unchanged with grid refinement whereas the results obtained by FEM converge to the results obtained with the DFE (Figures 10).

Conclusion

A new one-dimensional numerical model for simulating non reactive solute transport in saturatedunsaturated porous media is proposed. Operator splitting is used to adapt the numerical scheme to for Wamos-T.

  0 0 , z C  Boundary conditions for transport   0 C t , 0 z C   =1 (Upper : Dirichlet)   0 z C L Z     (Lower :

  the partial differential equation (PDE): discontinuous finite element combined with a slope limiting procedure for advection (hyperbolic type of PDE) and finite differences for dispersion (parabolic type of PDE). The accuracy and robustness of the model has been demonstrated by comparing the results with analytical or numerical solutions for the following cases: -saturated steady state flow with dispersive or advective dominated transport; -transient unsaturated flow in a homogeneous porous medium; -transient unsaturated flow in a heterogeneous domain with abrupt changes in water content; -transient unsaturated flow in a homogeneous porous medium with time variable boundary conditions. These conditions creates velocity fluctuations in magnitude and direction.The accuracy of the solutions obtained with this model for each test cases shows that the assumption made in the numerical formulation are verified. The Wamos-T model is a good alternative for the simulation of mass transport in unsaturated porous media, especially for grid Peclet numbers higher than 10 and for strong variable flow field due to heterogeneity or/or time varying flow boundary conditions. The explicit scheme in the discontinuous finite element need to respect the Courant number. For all the presented computations, the time step required for convergence for the flow calculation fulfilled the Courant criterion.
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Table 1 :

 1 Parameters for the Test Problems

	N°1	Saturated flow
	Domaine length	L = 50 cm							
	Parameters		368 . 0 s 		,	D m 	0
		q = 1.0 10 -2 cm/s
	Case 1		L		0 . 1	cm	and	z 		0.2	cm	, Pe=0.2
	Case 2 Case 3	 	L L	 	cm cm , Pe = 20.0 2 2   z  z  and and cm cm 01 1 . . 0 0 , Pe =200.0
	Initial Condition for transport	C	  0 0 , z 						
	Boundary conditions for transport	C	 z			, 0		t	 0 C 	=1 (Upper : Dirichlet)
		  C	z 	 Z		L		0	(Lower : zero gradient, no dispersive flux)
	N°2	Inflitration in homogeneous media
	Domaine length	L = 50 cm							
	Parameters	0 K s 	.	00922	cm	/	s	,		0 s 	.	368	,		0 r 	.	102	,	0335 . 0  	1  cm	,	2 n ,	D m 	0
	Case 1		L		0 . 1	cm	and	z 		0.2	cm	, Pe=0.2
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This test problem deals with infiltration of water and non reactive solute into homogeneous soil under fully unsaturated conditions. The objective of this test is to verify the discretization of the accumulation term for the DFE method under transient flow field conditions.

The hydrodynamics and transport parameters and the initial and boundary conditions are summarized in Table 1, Test N°2. The simulations are performed over 12 and 24 hours for three grid Peclet numbers: Pe=0.20, Pe=10 and Pe=100 (Table 1, Test N°2 Case 1, 2 and3).

For the grid Peclet numbers of 0.20 and 10, both models provide similar results. Standard finite element models usually oscillates for grid Peclet numbers greater than 5. For the FEM, the improvements suggested by [START_REF] Van Genuchten | Mass transport in saturated-unsaturated porous media : one dimensional solutions[END_REF] significantly increases the robustness and accuracy of the simulation. For the highest grid Peclet number (Pe=100), the results obtained by Wamos-T remains unchanged whereas oscillations appear for FEM (Figure 5).

Test problem n°3

In this test problem, we perform the simulation of infiltration of water and non reactive solute into heterogeneous soil. The objective is to verify the accuracy of the proposed numerical scheme to abrupt changes in water content. The domain is a layered column consisting of alternating layers of sand and clay [START_REF] Hills | Modeling One-dimensional infiltration into very dry soils, 2. Estimation of soil water parameters and Model Predictions[END_REF]. Each layer has a thickness of 20 cm, the model is a five layers system, with a sand layer on top. This test problem has been suggested by Segol (1993).

The material properties for the two soils are described by Van Genuchten's relations. The hydraulic and transport parameters and the other simulation parameters are summarized in Table 1, Test N°3.

The simulations are performed over 5 and 10 days. The water content profiles (Figure 6) obtained by both codes are very similar. Both numerical models provide accurate results (Figure 7). We observe little oscillations with the FEM, while the Wamos-T profile shows no oscillations. The numerical schemes used in Wamos-T provide also accurate results for heterogeneous media.