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Abstract

The paper investigates the Hoeffding-Sobol decomposition of homoge-
neous co-survival functions. For this class, the Choquet representation is
transfered to the terms of the functional decomposition, and in addition
to their individual variances, or to the superset combinations of those.
The domain of integration in the resulting formulae is reduced in com-
parison with the already known expressions. When the function under
study is the stable tail dependence function of a random vector, ranking
these superset indices corresponds to cluster the components of the ran-
dom vector with respect to their asymptotic dependence. Their Choquet
representation is the main ingredient in deriving a sharp upper bound for
the quantities involved in the tail dependograph, a graph in extreme value
theory that summarizes asymptotic dependence.

Keywords. Hoeffding–Sobol decomposition, Co-survival function, Spec-
tral representation, Stable tail dependence function, Multivariate extreme value
modelling.

1 Introduction

Let f : r0, 1sd Ñ R be a function in L2pr0, 1sd, λq where λ “
śd

i“1 λi is a product
of probability measures on r0, 1s. One way to understand the structural form
of the d-variables function f is to decompose it into functions of increasing
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complexity. This is precisely what allows the functional analysis of variance
(FANOVA). It relies on the Hoeffding-Sobol decomposition

fpxq “
ÿ

uĎt1,...,du

fupxq (1)

where

fupxq “
ÿ

vĎu

p´1q|uzv|
ż

fpxqdλ´vpxq (2)

for dλupxq “
ś

iPu dλipxiq and ´v “ t1, . . . , duzv. See [5, 18, 19]. The term
fu only depends on the components of x associated with u. The constant term
fH is equal to

ş

fdλ and the global variance is given by σ2 “
ş

pf ´ fHq
2dλ.

Set σ2
u “

ş

f2
udλu and σ2

H “ 0. Then, from orthogonality arguments (see,
for instance, [2]), the term fu is centered (except for the empty set) and the
FANOVA expression relies on the equality

σ2 “
ÿ

uĎt1,...,du

σ2
u .

Interest in the individual variances σ2
u, and more particularly their ratio to the

total variance σ2
u{σ

2, traces back to [18] and [12]. The current research prob-
lems in Global Sensitivity Analysis (GSA) are varied in nature. Our concern
in this paper is not improvements for estimation, cost-saving, construction of
surrogate models, or other practical but no less crucial aspects or perspectives
; see rather [11, 13] and references contained therein for an overall and recent
assessment. The main goal here is to reveal simplified theoretical expressions for
the quantity σ2

u within a specific class of functions. Knowing such quantities σ2
u

allows to order the importance of the input variables x1, . . . , xd with respect to
the global variance of f , the function under study. Reducing the number of vari-
ables of interest in f is one of the main consequences of this hierarchical ranking.

In this paper we will concentrate on homogeneous co-survival functions.
Classical examples to keep in mind are the power mean values, defined for t ě 1

by ψtpxq :“
´

řd
i“1 x

t
i

¯1{t

for x P r0,8rd. More generally, if there exists µ a non-

negative Radon measure on r0,8sdzt8u such that ψpxq “ µpty P r0,8sd|y ğ
xuq for all x P Rd

` then ψ : Rd
` Ñ R` is said to be a co-survival function. The

class of co-survival functions additionnaly assumed to be homogeneous, is in a
one-one correspondence (modulo value at p1, . . . , 1q) with probability measures
ν on the unit cube C “ tw “ pw1, . . . , wdq P r0, 1s

d|maxpw1, . . . , wdq “ 1u.
Indeed, the spectral representation

ψpx1, . . . , xdq “ ψp1, . . . , 1q

ż

C

maxpx1w1, . . . , xdwdqdνpwq (3)

is stated in [16, Theorem 2]. Some details are given in Section 2 to make the
paper almost self-contained.
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In extreme value theory, stable tail dependence functions (stdf), usually
denoted by `, play a central role to describe the asymptotic dependence between
components of a random vector X “ pX1, . . . , Xdq. Assuming the existence of
a multivariate domain of attraction for the componentwise maxima of X is a
classical starting point. This is equivalently written as

lim
tÑ8

t
`

1´ F pF´1
1 p1´ x1{tq, . . . , F

´1
d p1´ xd{tqq

˘

“ `px1, . . . , xdq

in terms of F , F1, . . . , Fd the cumulative distribution functions of X, X1, . . . , Xd.
More details on multivariate extreme value theory can be found, e.g., in [7, 4,
1, 3, 10]. As pointed out in [16], the stdfs are particular cases of homogeneous
co-survival functions. The corresponding probability measures ν in (3) must
satisfy d constraints induced by the fact that a stdf equals 1 at unit vectors. A
graph based on the Hoeffding-Sobol decomposition of a stdf, called the tail de-
pendograph, has been introduced in [10]. It reveals the asymptotic dependence
structure of the random vector X through the structural analysis of the func-
tion `. Tail superset indices, which are the superset combination of individual
variances, are of prime interest in the tail dependograph. Their pairwise values
define the thickness of the edges.

The aim of this paper is twofold. On the one hand, we shall establish a
simplified expression for the individual variances σ2

u, as for their superset com-
binations, when the function under study is a homogeneous co-survival function.
Their resulting Choquet representation thus provide new test cases for GSA. On
the other hand, we will apply these results to stdfs so that upper bounds for
the tail superset indices will be obtained. Proving this majorization initially
motivated the current study.

The paper is organized as follows. We first investigate the class of homoge-
neous co-survival functions: in Section 2, the expression of the FANOVA effect
ψu and the corresponding variance σ2

u are written as integrals of rank-one ten-
sors (which are products of univariate functions in each of the input parameters,
as defined by [8]). The numerical performance of our results is analysed at the
end of this part. As an application, the study focuses on stdfs in Section 3. The
new expressions allow to derive some sharp upper bounds for the tail superset
indices. All proofs are postponed to Section 4. Finally, the last lines summarize
conclusions and references.

Notation. Let _ and ^ stand respectively for the maximum and the minimum.
Set x` “ x _ 0. The indicator 1A equals 1 on A and 0 on Ac. Set 1 “

p1, . . . , 1q P Rd. The vector zu is the concatenation of zi for i P u so that
pzu,x´uq “

ř

iPu ziei `
ř

iRu xiei in the canonical basis pe1, . . . , edq. Binary
operations are understood componentwise, e.g. x ¨w “ px1w1, . . . , xdwdq, x _
w “ px1 _ w1, . . . , xd _ wdq, s{w “ ps{w1, . . . , s{wdq and 1sěxu

“
ś

iPu 1sěxi

for s P r0, 1s. Throughout the paper rx,8sc :“ ty P r0,8sd|y ğ xu. Let λ “
śd

i“1 λi be an arbitrary product of probability measures on r0, 1s. For positive
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v and w, when s and t lie in r0, 1s, let Kipw, v; s, tq “ λipr0, ps{wq^pt{vq^1sq “
ş1

0
1ps{wq^pt{vqěx dλipxq and let Kipw; sq stand for Kipw,w; s, sq. The notation

ψ is used for a homogeneous co-survival function whereas ` represents a stdf.

2 FANOVA of homogeneous co-survival func-
tion

In this section, the functional decomposition is explored under a new setting by
considering homogeneous co-survival functions. Before stating our main result,
we give a description of the class under study. It is worth noticing that focusing
on the unit hypercube r0, 1sd is not restrictive by homogeneity assumption.

2.1 Choquet representation of homogeneous co-survival
functions

Similar to distribution functions, also co-survival functions are essentially char-
acterized by a special multivariate monotonicity property. First, we introduce
a notation. Let A1, . . . , Ad be non-empty sets, A “ A1 ˆ ¨ ¨ ¨ ˆ Ad, and let
f : AÑ R be any function. Then for x, z P A we put

Dx
z f :“

ÿ

uĎt1,...,du

p´1q|u|fpzu,x´uq .

Moreover, for a non-empty subset u Ĺ t1, . . . , du and for x´u P
ś

jP´uAj , let
us define on

ś

jPuAj

fp¨,x´uqpzuq :“ fpzu,x´uq .

If Aj Ď R for all j, the function f is called 1d´alternating1 if Dx
z f ď 0 for x ď z

(both in A), and if this inequality also holds whenever some of the variables are
fixed, for the function of the remaining variables, i.e. if for each non-empty
subset v Ĺ t1, . . . , du, for each y P

ś

jP´v Aj and any xv ď zv both in
ś

jPv Aj ,
we have

Dxv

zv fp¨,yq ď 0 .

See [17] for a detailed presentation of this concept.

Let f : Rd
` Ñ R` be the co-survival function of µ, a non-negative Radon

measure on r0,8sdzt8u, i.e. for any x P Rd
`

fpxq “ µprx,8scq .

If the reader is not familiar with Radon measures, one should only keep in mind
that this assumption ensures that f is well defined and finite for any x P Rd

`.

1This notion was first introduced in [15] under the name fully d-max-decreasing.
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By Theorem 3 in [16] one knows that it is equivalent to assuming f 1d-alternating,
left continuous, and fp0q “ 0. Moreover, for any 0 ď x ă z in Rd

`

Dx
z f “ ´µprx, zrq

by an application of the inclusion/exclusion principle. Now, if f is addition-
ally assumed to be homogeneous, that is fptxq “ tfpxq for any positive t and
vector x then the measure µ is homogeneous: µptAq “ tµpAq for any positive
t and measurable subset A (and reciprocally). Note that any homogeneous 1d-
alternating function f : Rd

` Ñ R is automatically continuous, non-negative,
with fp0q “ 0.

An important example of a homogeneous measure is given by the image λw
of the Lebesgue measure λ on R` under the mapping s ÞÑ s{w, where w P C.
The co-survival function of λw is then

λwprx,8s
cq “ λpts P R`|s{w ğ xuq

“ λpts P R`|Di ď d, s{wi ă xiuq

“ λpts P R`|s ă max
i“1,...,d

pxiwiquq

“ maxpx ¨wq .

These functions will play a decisive role in the following, since they are the
“building stones” of all homogeneous co-survival functions. More precisely, con-
sider the set of all normalized functions discussed above

K :“ tψ : Rd
` Ñ R|ψ is 1d-alternating, homogeneous and ψp1q “ 1u .

Then K is obviously convex and compact (with respect to pointwise conver-
gence). It turns out that K is even a simplex, with

tx ÞÑ maxpx ¨wq|w P Cu “ expKq

as its set of extreme points, and this set is closed (so compact as well) ; see
[16, Theorem 4 (ii)]. In other words, K is a so-called Bauer simplex, i.e. for
each ψ P K the representing probability measure on expKq guaranteed by Krein–
Milman’s theorem, is unique. The resulting integral representation is also called
Choquet representation. So, for each 1d-alternating and homogeneous ψ on Rd

`,
ψ ı 0, there is a unique probability measure ν on C such that

ψpxq “ ψp1q

ż

C

maxpx ¨wqdνpwq, x P Rd
` .

It is easily seen that ψ is the co-survival function of the measure µ :“ ψp1q
ş

C
λwdνpwq.
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2.2 Expression of Sobol effects and associated variances

The main result of this paper is stated below. It says that Sobol effects ψu (as
their variances) have rather simpler expressions in comparison with (2) when ψ
is a homogeneous co-survival function. Indeed, they are expressed as integrals
on C ˆ r0, 1s of rank-one functions. Recall that 1 “ p1, . . . , 1q in Rd.

Theorem 1. Let ψ be a homogeneous co-survival function (3) associated with
a spectral probability measure ν on C. Then, the term ψu in the Hoeffding-Sobol
decomposition with respect to λ satisfies on r0, 1sd

ψupxq “ ´ψp1q

ż

C

#

ż 1

0

ź

iPu

p1sěxiwi
´Kipwi; sqq

ź

iRu

Kipwi; sq ds

+

dνpwq

for any non-empty subset u of t1, . . . , du and

ψH “ ψp1q

˜

1´

ż

C

#

ż 1

0

d
ź

i“1

Kipwi; sqds

+

dνpwq

¸

.

Its corresponding variance
ş

ψ2
u has the following expression

σ2
u “ ψp1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iRu

Kipwi; sqKipvi; tq
ź

iPu

pKipwi, vi; s, tq ´Kipwi; sqKipvi; tqq .

Furthermore,

σ2 “ ´pψp1q ´ ψHq
2 ` ψp1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
d
ź

i“1

Kipwi, vi; s, tq .

The link of Sobol effects ψu and their variances σ2
u with the spectral mea-

sure ν has been made explicit. The main ingredients for proving the previous
theorem is to remark that the spectral representation of ψ can be written as
an integral of rank-one tensors. Then, all Sobol effects ψu and corresponding
variances σ2

u inherit the same form by application of the Fubini-Tonelli theorem.
As can be seen through Formula (2), the variance σ2

u is usually computed as
an alternating combination of cumulated variances. It thus suffers from accu-
mulation of estimation error, overall as d becomes larger. Theorem 1 offers a
setting where the numerical complexity of σ2

u is the same as that of σ2 or other
well-known quantities discussed in Subsection 2.3.

Example 1. If the measure λ corresponds to the product of Lebesgue measures
dλpxq “ dx1 ¨ ¨ ¨ dxd then Kipw, v; s, tq “ ps{wq ^ pt{vq ^ 1. Under this measure
λ, consider ψpxq “ maxpxq, a particular extreme point. By Theorem 1, with
the probability measure ν “ δ1 on C, one obtains ψH “ d{pd` 1q, σ2 “ d{ppd`
1q2pd` 2qq,

ψupxq “ ´

ż 1

0

ź

iPu

p1sěxi
´ sq sd´|u| ds
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and

σ2
u “ 2

ż 1

0

td´|u|p1´ tq|u|
"
ż t

0

sdds

*

dt “
2p2d´ |u| ` 1q! |u|!

pd` 1qp2d` 2q!
.

Example 2. Consider an extreme point of the convex and compact set K (men-
tioned in Subsection 2.1) precisely ψpxq “ maxpx ¨wq with w P C. It is worth
noticing that Theorem 1 furnishes the expressions of the variances σ2 and σ2

u as
integrals on r0, 1s2 of a product of d univariate functions. In comparison with
their original definitions, already mentioned in the introduction, this provides
an important gain: The number of integrals is reduced (it is no longer an al-
ternating sum) and the domain of integration is smaller. Under a precise value
of w, the calculations would give exact expressions after very tedious efforts.
One could numerically approximate them by Monte Carlo procedures on r0, 1s2

instead.
With λ as the two dimensional Lebesgue measure, we focus here on these extreme
points in the bivariate setting. For w “ pw, 1q, we obtain

ψH “ 1{2` w2{6 and σ2 “ 1{12´ w2{6´ w4{36` w3{6 ,

with the following decomposition of σ2

σ2
t1u “ w4{45, σ2

t2u “ ´w
2{6`2w3{15´w4{36`1{12, σ2

t1,2u “ w3{30´w4{45 .

2.3 Consequences for cumulated variances

It turns out that several combinations of variances are of prime interest in order
to characterize the importance of a subset u of variables. Justifications can be
found in [18, 9] in the case of

I2
u “

ÿ

vĎu

σ2
v “

ż

r0,1s2d´|u|
ψpxu,x´uqψpxu, z´uqdλpxqdλ´upzq ´ ψ

2
H (4)

and

τ2
u “

ÿ

vXu‰H

σ2
v “ σ2 ` ψ2

H ´

ż

r0,1sd`|u|
ψpxu,x´uqψpzu,x´uqdλpxqdλupzq . (5)

We see immediately that 0 ď I2
u ď τ2

u ď σ2 and I2
u ` τ2

´u “ σ2. Finally, [6]
examined the meaning of the sum over the supersets of u

Υ2
u “

ÿ

vĚu

σ2
v . (6)

Ranking based on the superset quantities Υ2
u takes into account the importance

of xu but additionnaly that of any vector containing these |u| variables. For-
mulae depending on the spectral measure are now derived for these three types
of cumulated variances. The next corollary asserts that they are also written as
integrals of rank-one tensors.
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Corollary 1. Let ψ be a homogeneous co-survival function (3) associated with
a spectral probability measure ν on C. Then,

I2
u “ ´pψp1q´ψHq

2`ψp1q2
ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iPu

Kipwi, vi; s, tq
ź

iRu

Kipwi; sqKipvi; tq

τ2
u “ ψp1qp2ψH ´ ψp1qq ` ψp1q

2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

˜

ź

iPu

Kipwi, vi; s, tq ´
ź

iPu

Kipwi; sqKipvi; tq

¸

ź

iRu

Kipwi, vi; s, tq

Υ2
u “ ψp1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iRu

Kipwi, vi; s, tq
ź

iPu

pKipwi, vi; s, tq ´Kipwi; sqKipvi; tqq

The Choquet representation above will play a crucial role in the proof of the
upper bound stated in the extreme value theory setting at the end of the paper.

Example 3. Consider again Example 1. One obtains easily

I2
u “ 2

ż 1

0

td´|u|
"
ż t

0

sdds

*

dt´ p1´ ψHq
2 “

|u|

pd` 1q2p2d´ |u| ` 2q
,

τ2
u “ σ2 ` ψ2

H ´ 2

ż 1

0

t|u|
"
ż t

0

sdds

*

dt “
d

d` 2
´

2

pd` 1qpd` |u| ` 2q
,

and

Υ2
u “ 2

ż 1

0

p1´ tq|u|
"
ż t

0

sdds

*

dt “
2 d! |u|!

pd` |u| ` 2q!
.

In the opinion of the authors the current example (as its first part Example 1)
looks promising for being a convenient test function. It provides a simple but
non trivial function which has known individual variances as well as cumulated
and global ones, for any dimension d.

In [9, Theorem 1] the following identity is shown

Υ2
u “ 2´|u|

ż

r0,1sd`|u|
pDxu

zu ψp¨, z´uqq2dxudz (7)

where ψp¨, z´uq : r0, 1su Ñ R is defined by ψp¨, z´uqpxuq :“ ψpxu, z´uq. The
gain of the expression of Υ2

u claimed in Corollary 1 can be questioned with
regard to the dimension of the domain of integration. Similar comments hold
for I2

u and τ2
u with reference formulae (4) and (5). But, it does not exist a

direct formula of σ2
u, i.e. based on ψ, except from inversion of (6) for instance.

It yields

σ2
u “

ÿ

vĚu

p´1q|vzu|Υ2
v “

ÿ

vĚu

p´1q|vzu|2´|v|
ż

r0,1sd`|v|
pDxv

zv ψp¨, z´vqq2dxvdz . (8)
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Comparing the already known formula (8) with our result associated with σ2
u

in Theorem 1 makes the interest of our expressions more obvious. In Theo-
rem 1 indeed, it is no longer expressed as an alternating sum of integrals. We
have reduced the dimension of integration. Nevertheless, to be also numerically
convincing, a wide comparison between the estimation of σ2

u derived from (8)
and from Theorem 1 will now be offered. The same comparison is done for the
estimation of Υ2

u, Formula (6) competing with the one from Corollary 1.

2.4 Numerical illustrations

For the sake of simplicity, we assume here that the distribution of the entries
are known and fixed as uniforms. Our goal is to compare the effectiveness of the
new formulae, obtained for homogeneous co-survival functions, with the already
known and general ones. Both are integrations approximated by Monte Carlo
procedures, but neither the domain of integration nor the complexity of the
integrand are the same. Our choices must assess impartiality. One possibility
is to compare the estimation obtained after a given common executing time.
However, this depends strongly on the way the integrands are coded. We thus
decide to fix the Monte Carlo size N on the unit interval.

We will first restrict ourselves to the case of the max function

ψpxq “ maxpxq

for which the exact values are known (see Examples 1 and 3). This corresponds
to a one-point measure. The comparison will therefore be broken down accord-
ing to the value of d and the size of u with respect to d. Completely arbitrarily
we set the following values d “ 5 or d “ 10 ; then u “ t1, 2u or u “ t1, . . . , du.
Both σ2

u and Υ2
u will be estimated. The measures are based on the absolute

mean error obtained over n replicates and defined as

AME :“
1

n

n
ÿ

i“1

|θ̂i,N ´ θ0|

where θ0 is the true value and θ̂i,N is the i-th estimate. The number of replicates
here is n “ 50.
The level of accuracy is the same on each column of Table 1 in order to fa-
cilitate the comparison. Two values for N have been handled: N “ 100 and
N “ 10, 000. However, for the largest value, the time limit has been reached
using the already known formula.
In Table 2 only one estimation has not been obtained because of time ex-
ceedance. Again, the level of accuracy is the same on each column to facilitate
the comparison.

Let us now consider another homogeneous co-suvival function associated
with a discrete probability measure ν “

řm
k“1 pkδwk

where each wk lies in C

9



d “ 5 d “ 10
u “ t1, 2u u “ t1, . . . , du u “ t1, 2u u “ t1, . . . , du

Formula (8) N “ 100 48.25ˆ 10´5 2.6ˆ 10´5 17.52ˆ 10´5 24.86ˆ 10´9

Theorem 1 N “ 100 8.34ˆ 10´5 1.22ˆ 10´5 1.19ˆ 10´5 6.22ˆ 10´9

Formula (8) N “ 10, 000 ´ ´ ´ ´

Theorem 1 N “ 10, 000 0.86ˆ 10´5 0.11ˆ 10´5 0.1ˆ 10´5 0.75ˆ 10´9

Table 1: AME for the estimation of σ2
u when ψpxq “ maxpxq. Missing value -

refers to exceeding the time limit.

d “ 5 d “ 10
u “ t1, 2u u “ t1, . . . , du u “ t1, 2u u “ t1, . . . , du

Formula (7) N “ 1000 12.15ˆ 10´5 79.41ˆ 10´5 31.18ˆ 10´6 159ˆ 10´10

Corollary 1 N “ 1000 7.15ˆ 10´5 0.40ˆ 10´5 14.71ˆ 10´6 24.39ˆ 10´10

Formula (7) N “ 10, 000 5.43ˆ 10´5 0.26ˆ 10´5 12.07ˆ 10´6 ´

Corollary 1 N “ 10, 000 1.99ˆ 10´5 0.11ˆ 10´5 3.68ˆ 10´6 7.53ˆ 10´10

Table 2: AME for the estimation of Υ2
u when ψpxq “ maxpxq. Missing value -

refers to exceeding the time limit.

and p1 ` . . .` pm “ 1 so that

ψpxq “
m
ÿ

k“1

pk maxpx¨wkq . (9)

Fix arbitrarily m “ 15 and d “ 5. The weights, chosen at random, are

pp1, . . . , pmq “ p0.04, 0.08, 0.12, 0.05, 0.02, 0.10, 0.11, 0.01, 0.12, 0.13, 0.06, 0.03, 0.10, 0.01, 0.02q

and the associated locations pw1, . . . ,wmq are

¨

˚

˚

˚

˚

˝

0.11 1.00 0.52 0.21 0.38 1.00 1.00 0.36 1.00 0.18 0.18 0.20 0.17 0.02 0.31
0.62 0.81 0.59 0.52 1.00 0.56 0.59 0.08 0.15 0.10 0.35 1.00 0.56 0.43 1.00
0.67 0.84 1.00 0.24 0.43 0.69 0.12 0.20 0.09 0.71 0.62 0.31 1.00 0.37 0.04
1.00 0.65 0.64 0.41 0.76 0.74 0.57 1.00 0.49 1.00 1.00 0.54 0.42 1.00 0.44
0.32 0.37 0.03 1.00 0.02 0.11 0.50 0.70 0.18 0.16 0.75 0.03 0.11 0.18 0.29

˛

‹

‹

‹

‹

‚

.

Since the true values are not easily computable, we only provide a graphical
comparison of the resulting boxplots obtained from n “ 50 repetitions.

As expected, this numerical study shows that the estimation from the new
formulae is more accurate. This is nothing more than the illustration of the
domain of integration being reduced. The reader should be aware that recent
studies in GSA provided new methods compared to the classical Monte Carlo

10



(a) (b)5
e
-0
5

6
e
-0
5

7
e
-0
5

8
e
-0
5

9
e
-0
5

(a) (b)

4
.0
e
-0
8

6
.0
e
-0
8

8
.0
e
-0
8

1
.0
e
-0
7

1
.2
e
-0
7

1
.4
e
-0
7

u “ t1, 2u u “ t1, . . . , du

Figure 1: Estimation of σ2
u when ψ is given by (9) for u “ t1, 2u on the left

panel and u “ t1, . . . , du on the right.
The boxplot (a) is associated to the well-known Formula (8) whereas (b) refers

to the new one stated in Theorem 1.
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Figure 2: Estimation of Υ2
u when ψ is given by (9) for u “ t1, 2u on the left

panel and u “ t1, . . . , du on the right.
The boxplot (a) is associated to the well-known Formula (7) whereas (b) refers

to the new one stated in Corollary 1.
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procedure. Going further with a comparison based on pick-freeze method or
any other refinement would clearly exceed our ambitions in this paper.

3 Statistical applications in extreme value the-
ory

In the following, we focus on the Hoeffding-Sobol representation of a stable tail
dependence function (stdf). A homogeneous co-survival function ` is a stdf iff
`pe1q “ . . . “ `pedq “ 1 i.e., it is associated with a probability measure ν on C
satisfying

ż

C

widνpwq “ 1{`p1q @ i “ 1, . . . , d .

Denote by µ the measure such that `pxq “ µprx,8scq. This measure µ is closely
related to the so-called exponent measure µ‹ introduced in [14, Section 5.4.1]
for instance. In fact, for any x P Rd

`

µprx,8scq “ µ‹pr0, 1{xs
cq .

This means that µ‹ is the image of µ under x ÞÑ 1{x, so that µ is directly
homogeneous (as is `) when µ‹ is inversely homogeneous: µ‹ptAq “ t´1µ‹pAq
for any positive t and any measurable set A of r0,8sdzt0u.
Whereas the characterization of stdfs was shown relatively late [16, Theorem
6], their integral representation was known long before: it goes back essentially
to [4]. Most of the use of their integral representation has been done under
the L1 or L2-norm on Rd

`. But as emphasized by de Haan and Resnick, it is
an arbitrary choice. As seen in Section 2, the extreme points of K (functions
x ÞÑ maxpx ¨wq for w P C) combined with the max-norm were natural choices
here.

The main objective of this section is to analyse the theoretical aspect of
the functional decompositon for stdfs with respect to the Lebesgue measure
dλpxq “ dx1 . . . dxd. As mentioned in the introduction, this idea has been intro-
duced in [10] but the focus was on the meaning of Υ2

u in this context, named as
tail superset indices, and on their estimation. To illustrate their importance in
multivariate extreme value modelling, let us focus for instance on the compar-
ison Υ2

ti,jup`q ă Υ2
th,kup`q. This means that the asymptotic dependence between

components Xi and Xj themselves added to the asymptotic dependence between
the pair pXi, Xjq and the d ´ 2 remaining variables is weaker than its equiva-
lent in h, k. Reducing the dimension of the asymptotic dependence structure
consists in selecting subsets u according to their tail superset indices Υ2

u.
Below, we first obtain a simplified expression for these indices by application

of Corollary 1 to `. Then, we deduce an upper bound for the tail superset indices.
The section is ended by a short discussion.
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3.1 Tail superset indices

The tail dependograph introduced in [10] starts from a non-oriented graph whose
vertices represent components of the random vector X in the domain of attrac-
tion of `. The edge between i and j is drawn proportionally to the pairwise
superset indices Υ2

ti,ju of `. This index measures the strength of asymptotic
dependence between the components Xi and Xj , not only in their associated
bivariate model pXi, Xjq, but in the complete model X. A thick line reveals
a strong asymptotic dependence between corresponding components, whereas
at the opposite, such index vanishes when the asymptotic dependence is null.
The present paper thus offers a theoretical expression of the tail dependograph
indices as

Υ2
ti,jup`q “ `p1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

k‰i,j

s

wk
^

t

vk
^ 1

ˆ

s

wi
^

t

vi
^ 1´

"

s

wi
^ 1

*

¨

"

t

vi
^ 1

*˙ˆ

s

wj
^

t

vj
^ 1´

"

s

wj
^ 1

*

¨

"

t

vj
^ 1

*˙

.

Pairwise indices are perhaps the most important since their value on a graph
is easily represented by the thickness of a segment. However, more general
indices can be defined and an application of the previous section also provides
the representation of Υ2

up`q as follows

`p1q2
ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iRu

s

wi
^
t

vi
^1

ź

iPu

ˆ

s

wi
^

t

vi
^ 1´

"

s

wi
^ 1

*

¨

"

t

vi
^ 1

*˙

.

Examples. The asymptotic independence occurs when ``pxq :“
řd

i“1 xi so

that ``p1q “ d and ν “ p
řd

i“1 δei
q{d. All the terms in the integrand of Υ2

ti,jup`
`q

cancel since at least the term depending on i or on j (or both) will be reduced
to (1-1). As a consequence Υ2

up`
`q “ 0 as soon as |u| ě 2.

The asymptotic complete dependence corresponds to `_pxq :“ maxpxq so that
`_p1q “ 1 and ν “ δ1. All indices of interest Υ2

ti,jup`
_q are equal to

Υ2
ti,jup`

_q “

ż 1

0

ds

ż 1

0

dtps^tqd´2 ps^ t´ s ¨ tq
2
“

2

d` 1

ż 1

0

p1´tq2td`1dt “
4

pd` 1qpd` 2qpd` 3qpd` 4q
.

For in between strengths of asymptotic dependence, one can use logistic extreme
value models. Symmetric versions

`pxq “
´

x
1{r
1 ` . . .` x

1{r
d

¯r

for r P p0, 1q are obtained with `p1q “ dr and

νpdwq “
d
ÿ

i“1

qipw´iq1wi“1,w´iPr0,1sd´1dw

13



where for instance

qdpw´dq “ cr

˜

d´1
ÿ

i“1

w
´1{r
i ` 1

¸r´d˜d´1
ź

i“1

wi

¸´p1{r`1q

.

as pointed out in [16]. Unfortunately, the expressions obtained in the present
paper do not allow a real simplification under such models.

3.2 Upper bounds for tail superset indices

Some simple computations allow to obtain the following lower and upper bounds.

Lemma 1. Let ` be a d-variate stable tail dependence function. Then,

d

d` 1
ď `H ď

d

2

and
d

d` 2
ď σ2p`q ` `2H ď

d

12
`
d2

4
,

implying

σ2p`q ď
d p3d3 ` 7d2 ´ 7d` 1q

12pd` 1q2
.

Moreover, for any subset u of t1, . . . , du, set `_,upxq “ maxiPu xi. Then,

I2
up`

_,uq ` p`_,u
H q2 ď I2

up`q ` `
2
H ď

d2

4
`
|u|

12
.

The lower bound is given by

I2
up`

_,uq ` p`_,u
H q2 “

σ2p`_,uq ` p`_,u
H q2

pd´ |u| ` 1q2
`

2`_,u
H pd´ |u|q

d´ |u| ` 1
`

pd´ |u|q2

pd´ |u| ` 1q2

where

`_,u
H “

|u|

|u| ` 1
and σ2p`_,uq “

|u|

p|u| ` 1q2p|u| ` 2q
.

Hence, one can derive lower and upper bounds for I2
u of a stable tail depen-

dence function in any dimension, and for any size of the subset u, whenever `H
is controlled. However, it doesn’t provide a very simple way to deduce bounds
for σ2

u or, more interestingly in the tail dependograph context, for Υ2
u. The

following result answers this question.

Theorem 2. Let ` be a d-variate stable tail dependence function. Then, for
any non-empty u Ď t1, . . . , du

Υ2
up`q ď Υ2

up`
_,uq “

2p|u|!q2

p2|u| ` 2q!

14



where `_,upxuq “ maxiPu xi.
If ` is a d-variate stdf with equality Υ2

up`q “ Υ2
up`

_,uq for a given H ‰ u Ď
t1, . . . , du, then its projection on the variables xu is equal to `pxu,0´uq “

`_,upxuq “ maxiPu xi.

In particular, if ` is a d-variate stdf with equality Υ2
t1,...,dup`q “

2pd!q2

p2d`2q! then

`pxq “ maxpxq.

The proof is postponed to Section 4. However, note that it relies on the
following preliminary result.

Proposition 1. Let f : Rd
` Ñ R be 1d-alternating and let u be a non-empty

subset of t1, . . . , du. Then,

Υ2
upfq ď Υ2

upf
rusq

with f ruspzuq :“ fpzu,0´uq.

The authors conjectured the sharp upper bound in Theorem 2 a long time
ago but the rigorous proof was only made possible after transferring the Choquet
representation of the function ` to its indices as investigated in Section 2. The
optimization problem dealt with in Theorem 2 might be looked at in the broader
perspective of maximizing a convex functional over a compact convex set (which
need not be a simplex). Bauer’s maximum principle ensures that the maximal
value is attained in an extreme point, in our case in an extreme stable tail
dependence function. It does however give no hint to localize such a point
nor to its uniqueness. Our statement in Theorem 2 answers completely the
question: it asserts the existence, the uniqueness and the location (and so finds
the maximal value) of the maximization problem.
The following statement is included in the proof of Theorem 2.

Corollary 2. Let ψ be a homogeneous co-survival function (3) associated with
a spectral probability measure ν on C. Then,

Υ2
t1,...,dupψq ď ψp1q2

˜

ż

C

d
ź

i“1

w
1{d
i dνpwq

¸2
2pd!q2

p2d` 2q!
.

3.3 Practical meaning and use

Taking into account the bounds provided by Theorem 2, the tail superset indices
are normalized after multiplication by 90, so that the corresponding affinity ma-
trix is r90 Υ2

ti,jup`qs1ďi,j,ďd, on which classical clustering algorithms and analyses
can be performed.
However, even if this pairwise normalization is correct, the use of this bound
is more powerful when comparing subsets with different sizes. Indeed, thanks
to the renormalization Υ2

up`q{Υ
2
up`

_,uq due to Theorem 2 all the renormalized
superset tail indices can now be compared even if the subsets u have unequal
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sizes. The effective dimension of the asymptotic dependence structure could be
defined as

∆p`q :“ argmax|u|,uĎt1,...,du

"

p2|u| ` 2q! Υ2
up`q

2p|u|!q2

*

.

In the asymptotic independent case, ∆p``q “ 1 since Υ2
ti,ju always vanishes: the

entire additive component of `` explains the whole variance. In the asymptotic
complete dependent case, ∆p`_q “ d by application of Theorem 2. Now, for
models in between, rules can be easily defined: select a subset u that achieves
the maximization, or remove (in the asymptotic dependence modelling) subsets
associated with small values of the previous brace.

Let us provide an example. Consider ` a trivariate stdf with value at px, y, zq
given by

`px, y, zq “ pp0.36xq
1

0.8 ` p0.35yq
1

0.8 q0.8 ` pp0.37xq
1

0.44 ` p0.38zq
1

0.44 q0.44 ` pp0.32yq
1

0.67 ` p0.30zq
1

0.67 q0.67

` pp0.27xq
1

0.04 ` p0.33yq
1

0.04 ` p0.32zq
1

0.04 q0.04 . (10)

It is an asymmetric extreme value logistic model. Its associated tail dependo-
graph is drawn below

Figure 3: The Tail Dependograph of the stdf (10).

A quick estimation gives Υ2
12 “ 1.700684 ˆ 10´4, Υ2

13 “ 1.625145 ˆ 10´4,
Υ2

23 “ 2.909913 ˆ 10´4 and Υ2
123 “ 1.391676 ˆ 10´4. These values are not

completely comparable since the sizes of the subsets are unequal. Their single
use does not indicate the effective dimension of the function `. Applying our
bound, one obtains Υ2

12p`q ¨Υ
´2
12 p`

_,12q » 0.0153, Υ2
13p`q ¨Υ

´2
13 p`

_,13q » 0.0146,
Υ2

23p`q ¨ Υ
´2
23 p`

_,23q » 0.0262 and Υ2
123p`q ¨ Υ

´2
123p`

_,123q » 0.0779. These cal-
culations reveal that the strength of asymptotic dependence, when modelled by
`, between the three components is closer to the possible maximal value, than
its pairwise equivalent. Thus, the effective dimension of ` is 3 and it is not 2,
according to this criteria. In other words, one should not simplify the represen-
tation of ` by combining only bivariate terms. The knowledge of our bound is
crucial to construct this reasoning.
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4 Proofs

Proof of Theorem 1. The proof relies on the combination of

ψpxq “ ψp1q

ż

C

maxpx ¨wqdνpwq “ ψp1q ´ ψp1q

ż

C

dνpwq

ż 1

0

ds1sěx¨w

for x P r0, 1sd with the equality

ÿ

vĎu

ψvpxq “

ż

r0,1s´u

ψpxqdλ´upxq .

Then, applying the Fubini-Tonelli theorem yields

ÿ

vĎu

ψvpxq “ 2|u|ψp1q ´ ψp1q

ż

r0,1s´u

dλ´upxq

ż

C

dνpwq

ż 1

0

ds1sěx¨w

“ 2|u|ψp1q ´ ψp1q

ż

C

#

ż 1

0

ź

iPu

1sěxiwi

ź

iRu

Kipwi; sq ds

+

dνpwq .

Consequently, if u “ H

ψH “ ψp1q ´ ψp1q

ż

C

#

ż 1

0

d
ź

i“1

Kipwi; sq ds

+

dνpwq

whereas if u ‰ H

ψupxq “
ÿ

vĎu

p´1q|uzv|

#

ÿ

ṽĎv

ψṽpxq

+

“ ´ψp1q

ż

C

#

ż 1

0

ÿ

vĎu

p´1q|uzv|
ź

iPv

1sěxiwi

ź

iRv

Kipwi; sq ds

+

dνpwq

“ ´ψp1q

ż

C

ż 1

0

¨

˝

ÿ

vĎu

p´1q|uzv|
ź

iPv

1sěxiwi

ź

iPuzv

Kipwi; sq

˛

‚

ź

iRu

Kipwi; sq dsdνpwq

“ ´ψp1q

ż

C

#

ż 1

0

ź

iPu

p1sěxiwi
´Kipwi; sqq

ź

iRu

Kipwi; sq ds

+

dνpwq .
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For non-empty u, the term ψu is centered so that its variance σ2
u is also the

second order moment.
ż

r0,1s|u|
ψ2
upxuqdλupxq “ ψp1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iRu

Kipwi; sqKipvi; tq

ż

r0,1s|u|

ź

iPu

p1sěxiwi ´Kipwi; sqq p1těxivi ´Kipvi; tqq dλupxq

“ ψp1q2
ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iRu

Kipwi; sqKipvi; tq

ź

iPu

ż 1

0

p1sěxiwi
´Kipwi; sqq p1těxivi ´Kipvi; tqq dλipxiq

“ ψp1q2
ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iRu

Kipwi; sqKipvi; tq

ź

iPu

pKipwi, vi; s, tq ´Kipwi; sqKipvi; tqq .

The last assertion comes from the computation of
ş

ψ2dλpxq “ σ2 ` ψ2
H. More

precisely,

σ2 ` ψ2
H “ ψp1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

ż

r0,1sd
p1´ 1sěx¨wqp1´ 1těx¨vqdλpxq

“ ψp1qp2ψH ´ ψp1qq ` ψp1q
2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
d
ź

i“1

Kipwi, vi; s, tq

using the fact that ψp1q2
ş

C

ş

r0,1sd

ş

r0,1s
1sěx¨w dνpwqdλpxqds “ ψp1q2´ψp1qψH.

The result follows.

Proof of Corollary 1. Following [18] one knows that

ψ2
H ` I2

u “

ż

r0,1s2d´|u|
ψpxu,x´uqψpxu, z´uqdλpxqdλ´upzq

“ ψp1q2
ż

r0,1s2d´|u|
dλpxqdλ´upzq

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

p1´ 1sěxu¨wu1sěx´u¨w´uqp1´ 1těxu¨vu1těz´u¨v´uq

“ ψp1qp2ψH ´ ψp1qq ` ψp1q
2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

ż

r0,1s2d´|u|
dλpxqdλ´upzq1sěxu¨wu1sěx´u¨w´u1těxu¨vu1těz´u¨v´u

“ ψp1qp2ψH ´ ψp1qq ` ψp1q
2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

ź

iPu

Kipwi, vi; s, tq
ź

iRu

Kipwi; sqKipvi; tq .
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Again, starting from

σ2 ` ψ2
H ´ τ

2
u “

ż

r0,1sd`|u|
ψpxu,x´uqψpzu,x´uqdλpxqdλupzq

“ ψp1q2
ż

r0,1s2d´|u|
dλpxqdλupzq

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

p1´ 1sěxu¨wu1sěx´u¨w´uqp1´ 1tězu¨vu1těx´u¨v´uq

“ ψp1qp2ψH ´ ψp1qq ` ψp1q
2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

ź

iPu

Kipwi; sqKipvi; tq
ź

iRu

Kipwi, vi; s, tq .

Now, applying (7),

Υ2
u “

1

2|u|

ż

r0,1s|u|`d

˜

ÿ

aĎu

p´1q|uza|ψpxa, z´aq

¸2

dλupxqdλpzq (11)

“
1

2|u|

ÿ

a,a1Ďu

p´1q|uza|`|uza
1
|

ż

r0,1s|u|`d

ψpxa, z´aqψpxa1 , z´a1qdλupxqdλpzq

“ ψp1q2
ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

ż

r0,1s|u|`d

dλupxqdλpzq

1

2|u|

ÿ

a,a1Ďu

p´1q|uza|`|uza
1
|p1´ 1sěxa¨wa1sěz´a¨w´aqp1´ 1těxa1 ¨va11těz´a1 ¨v´a1 q

“ ψp1q2
ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

ż

r0,1s|u|`d

dλupxqdλpzq

1

2|u|

ÿ

a,a1Ďu

p´1q|uza|`|uza
1
|1sěxa¨wa1sěz´a¨w´a1těxa1 ¨va11těz´a1 ¨v´a1

since
ř

aĎup´1q|uza| “ 0 as soon as u is non-empty. As usual, we let a∆b “ paY
bqzpaX bq be the symmetric difference of the subsets a and b. As a consequence,

Υ2
u “ ψp1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt

1

2|u|

ÿ

a,a1Ďu

p´1q|uza|`|uza
1
|
ź

iPa∆a1

Kipwi; sqKipvi; tq
ź

iRa∆a1

Kipwi, vi; s, tq

“ ψp1q2
ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ÿ

aĎu

p´1q|a|
ź

iPa

Kipwi; sqKipvi; tq
ź

iRa

Kipwi, vi; s, tq

where the last equality comes from the general fact
ÿ

aĎu,bĎu

p´1q|uza|`|uzb|fpa∆bq “ 2|u|
ÿ

aĎu

p´1q|a|fpaq .
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Finally, one obtains

Υ2
u “ ψp1q2

ż

C

dνpwq

ż

C

dνpvq

ż 1

0

ds

ż 1

0

dt
ź

iRu

Kipwi, vi; s, tq
ź

iPu

pKipwi, vi; s, tq´Kipwi; sqKipvi; tqq .

Proof of Proposition 1. Prior to proving Proposition 1, we review some prelim-
inary results.

Lemma 2. Let A1, . . . , Ad be non-empty sets, A :“ A1ˆ . . .ˆAd, and f : AÑ
R. For x and z both in A and for any subset v Ď t1, . . . , du then

D
pxv,z´v

q

pzv,x´vq
f “ p´1qd´|v|Dx

z f .

In particular,
Dz

xf “ p´1qdDx
z f .

If xi “ zi for some i P t1, . . . , du then Dx
z f “ 0.

Proof of Lemma 2. For x and z both in A write x1 :“ px1, . . . , xd´1q and z1 :“
pz1, . . . , zd´1q.
Define ρ : Ad Ñ R by

ρptq :“ Dx1

z1 fp¨, tq .

Then

Dx
z f “

ÿ

uĎt1,...,du

p´1q|u|fpzu,x´uq

“
ÿ

uĎt1,...,d´1u

p´1q|u|fpzu,x´uq `
ÿ

vĎt1,...,d´1u,u“vYtdu

p´1q|u|fpzu,x´uq

“
ÿ

uĎt1,...,d´1u

p´1q|u|fpzu,x´puYtduq, xdq ´
ÿ

uĎt1,...,d´1u

p´1q|u|fpzu,x´puYtduq, zdq

“ ρpxdq ´ ρpzdq

“ Dxd
zd
ρ .

It implies Dx
z f “ 0 whenever xd “ zd. Moreover, we also see that

D
px1,zdq
pz1,xdq

f “ ´Dx
z f .

The analogue results hold for any coordinate i ď d. The conclusion follows by
obvious iteration.
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Lemma 3. Let A1, . . . , Ad Ď R be non-empty, A :“ A1ˆ . . .ˆAd, and suppose
f : A Ñ R to be 1d-alternating. Then, for any x1 and z1 both in

śd´1
j“1 Aj the

function

rptq :“
ˇ

ˇ

ˇ
Dx1

z1 fp¨, tq
ˇ

ˇ

ˇ

is decreasing on Ad.

Proof of Lemma 3. By Lemma 2, we may assume that x1 ď z1. For s ď t both
in Ad we have

0 ě D
px1,sq
pz1,tq f “ Dx1

z1 fp¨, sq ´D
x1

z1 fp¨, tq

where both terms on the right hand side are non-positive. Hence

0 ě Dx1

z1 fp¨, tq ě Dx1

z1 fp¨, sq

or equivalently rptq ď rpsq.

We now go back to the proof of Proposition 1. By iterating Lemma 3, we
deduce that
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

vĎu

p´1q|uzv|fpxv, z´vq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Dxu

zu fp¨, z´uq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
Dxu

zu fp¨,0´uq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

vĎu

p´1q|uzv|fpxv, zuzv,0´uq

ˇ

ˇ

ˇ

ˇ

ˇ

.

It yields

Υ2
upfq ď

1

2|u|

ż

˜

ÿ

vĎu

p´1q|uzv|fpxv, zuzv,0´uq

¸2

dxudzu “ Υ2
upf

rusq ,

where f ruspzuq “ fpzu,0´uq.

Proof of Lemma 1. Recall that ``pxq and `_pxq now stand for
řd

i“1 xi and
maxpxq respectively. Set also `_,upxq “ maxiPu xi. Stable tail dependence
functions ` have the well-known property

`_ ď ` ď `` . (12)

To prove (12) recall the equality `pxq “ µprx,8scq. Then, the inclusions

rxiei,8s
c Ď rx,8sc “

ď

iďd

ty|yi ă xiu

lead to the result since ` is the identity on each axis. Indeed, ` is homogeneous
and equals one at the canonical basis vectors. The inequality (12) is easily
transfered to first and second order moments

`_H ď `H ď ``H

and
σ2p`_q ` p`_Hq

2 ď σ2p`q ` `2H ď σ2p``q ` p``Hq
2 .
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Precisely, it yields
d

d` 1
ď `H ď

d

2

and
d

d` 2
ď σ2p`q ` `2H ď

d

12
`
d2

4
,

implying

σ2p`q ď
d p3d3 ` 7d2 ´ 7d` 1q

12pd` 1q2
.

From (12), one can also prove that

pmaxiPu xiq
d´|u|`1 ` d´ |u|

d´ |u| ` 1
ď

ÿ

vĎu

`vpxq “

ż

`pxqdx´u ď d{2`
ÿ

iPu

txi ´ 1{2u .

Indeed, the left hand term comes from

Ermaxpm,Y´uqs “

ż 1

0

maxpm, yqpd´ |u|qyd´|u|´1dy

where m “ maxpxuq and Y´u is sampled from identical standard uniform.
Taking moment of order 2, one obtains

I2
up`

_,uq ` p`_,u
H q2 ď I2

up`q ` `
2
H ď I2

up`
`q ` p``Hq

2 .

Precise computations give

I2
up`

`q ` p``Hq
2 “

d2

4
`
|u|

12

and

I2
up`

_,uq ` p`_,u
H q2 “

σ2p`_,uq ` p`_,u
H q2

pd´ |u| ` 1q2
`

2`_,u
H pd´ |u|q

d´ |u| ` 1
`

pd´ |u|q2

pd´ |u| ` 1q2

where

`_,u
H “

|u|

|u| ` 1

and

σ2p`_,uq “
|u|

p|u| ` 1q2p|u| ` 2q

are deduced from Example 1 (just replace d by |u|).

Proof of Theorem 2. Proposition 1 allows us to focus on the majorization asso-
ciated to the largest subset u in t1, . . . , du. Then, for ` a d-variate stdf, we are
just interested in an upper bound for Υ2

t1,...,du. Let us introduce the following

notation hwpxq “ maxpx ¨wq so that the spectral representation can be written
as

`pxq “ `p1q

ż

C

hwpxqdνpwq .
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From linearity, one obtains

Dx
z ` “ `p1q

ż

C

Dx
zhwdνpwq .

Now, recall µw is the image of the Lebesgue measure λ on the half-line R` under
the mapping s ÞÑ s{w, and the fact that hwpxq “ µwprx,8s

cq as discussed in
Subsection 2.1. Consequently,

|Dx
zhw| “ µwprx^ z,x_ zsq “

ż 1

0

1x^zďs{wďx_zds .

Then, from [9, Theorem 1] and what precedes, one can write

Υ2
t1,...,dup`q “ 2´d

ż

r0,1sd

ż

r0,1sd
pDx

z `q
2dxdz

ď 2´d`p1q2
ż

r0,1sd

ż

r0,1sd

ˆ
ż

C

|Dx
zhw|dνpwq

˙ˆ
ż

C

|Dx
zhv|dνpvq

˙

dxdz .

The Fubini-Tonelli theorem leads to
ż

r0,1sd

ż

r0,1sd
|Dx

zhw||D
x
zhv|dxdz

“

ż 1

0

ż 1

0

˜

ż

r0,1sd

ż

r0,1sd
1x^zďs{wďx_z1x^zďt{vďx_zdxdz

¸

dsdt

“ 2d
ż 1

0

ż 1

0

d
ź

i“1

ˆ

s

wi
^

t

vi

˙ˆ

1´
s

wi
_

t

vi

˙

`

dsdt

ď 2d
d
ź

i“1

˜

ż 1

0

ż 1

0

ˆ

s

wi
^

t

vi

˙dˆ

1´
s

wi
_

t

vi

˙d

`

dsdt

¸1{d

“ 2d
d
ź

i“1

ˆ
ż 1

0

ż 1

0

ps^ tq
d
p1´ s_ tq

d
wividsdt

˙1{d

“ 2d

˜

d
ź

i“1

w
1{d
i v

1{d
i

¸

ˆ
ż 1

0

ż 1

0

ps^ tq
d
p1´ s_ tq

d
dsdt

˙

where the inequality comes from the generalization of Hölder’s inequality: for
any positive numbers pi such that 1

p1
` . . .` 1

pn
“ 1

ż

|f1 . . . fn| dµ ď

ˆ
ż

|f1|
p1 dµ

˙1{p1

¨ ¨ ¨

ˆ
ż

|fn|
pn dµ

˙1{pn

. (13)

23



Combining the last results gives us

Υ2
t1,...,dup`q ď `p1q2

˜

ż

C

d
ź

i“1

w
1{d
i dνpwq

¸2
ˆ
ż 1

0

ż 1

0

ps^ tq
d
p1´ s_ tq

d
dsdt

˙

ď `p1q2

˜

d
ź

i“1

ż

C

widνpwq

¸2{d
ˆ
ż 1

0

ż 1

0

ps^ tq
d
p1´ s_ tq

d
dsdt

˙

invoking again (13). Since a stable tail dependence function satisfies `peiq “ 1,
we have

ş

C
widνpwq “ 1{`p1q. Finally

Υ2
t1,...,dup`q ď

ż 1

0

ż 1

0

ps^ tq
d
p1´ s_ tq

d
dsdt “ Υ2

t1,...,duph1q “
2pd!q2

p2d` 2q!

by application of Corollary 1 with ψp1q “ 1, ν “ δ1, and Example 3.
Assume now the second assertion of Theorem 2 and recall that if ` is a d-variate
stdf then `rus is a |u|-variate stdf. Combining the assumption with what precedes
and Proposition 1, we obtain

Υ2
up`

_,uq “ Υ2
up`q ď Υ2

up`
rusq ď Υ2

up`
_,uq

so that Υ2
up`

rusq “ Υup`
_,uq. The problem is now the same as the last statement

of Theorem 2 for d “ |u|. The result will thus follow if one can prove it directly.
Let ` be any stdf where the maximal value is attained. Then the inequalities
after the inequality (13) are in fact equalities, in particular

ż

C

d
ź

i“1

w
1{d
i dνpwq “

˜

d
ź

i“1

ż

C

widνpwq

¸1{d

implying by Lemma 4 (below) that the functions w ÞÑ w
1{d
i , 1 ď i ď d, are

proportional, as are then also w ÞÑ wi. Since
ş

C
widνpwq “ 1{`p1q for each i,

we see that ν-almost surely the components wi are equal, i.e. ν is concentrated
on the diagonal tw|w1 “ w2 “ . . . “ wdu, and the only w P C with this
property is w “ 1. Consequently, ν “ δ1 and `p1q “ 1. In other words,
`pxq “ maxpx1, . . . , xdq.

Lemma 4. Consider in the generalized Hölder inequality (13) the special case
p1 “ . . . “ pn “ 1{n, fi ě 0 and 0 ă

ş

fni dµ ă 8 for all i. Then

ż

f1 . . . fn dµ ď

˜

n
ź

i“1

ż

fni

¸1{n

(14)

with equality if and only if the functions fi are proportional, i.e. fi “ αif1 for
i “ 2, . . . , n where αi ą 0.
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Proof of Lemma 4. If fi “ αif1 for all i (α1 “ 1) then both sides in (14) have
the same value

ş

fn1 dµ ¨
śn

i“1 αi. Supposing now equality in (14), we proceed by
induction. For n “ 2 the inequality (14) is the Cauchy-Schwarz inequality and
it is well known that f1 and f2 are proportional in case of equality. We assume
now the validity of our assertion for some n ě 2 and consider n ` 1 functions
f1, . . . , fn`1. Hölder’s inequality for two functions g, h ě 0 reads

ż

ghdµ ď

ˆ
ż

gpdµ

˙1{pˆż

hqdµ

˙1{q

with p, q ě 1 such that 1{p ` 1{q “ 1, and with equality iff gp and hq are
proportional. It will be applied to g :“ f1 ¨ ¨ ¨ fn, h :“ fn`1, p “ pn` 1q{n and
q “ n` 1

ż

pf1 ¨ ¨ ¨ fnqfn`1dµ ď

ˆ
ż

pf1 ¨ ¨ ¨ fnq
n`1
n

˙
n

n`1
ˆ
ż

fn`1
n`1 dµ

˙
1

n`1

ď

˜

n
ź

i“1

ˆ
ż

fn`1
i dµ

˙
1
n

¸

n
n`1 ˆż

fn`1
n`1 dµ

˙
1

n`1

“

˜

n`1
ź

i“1

ż

fn`1
i dµ

¸
n

n`1

where the second majorization is obtained by applying the induction hypotheses

to f
pn`1q{n
1 , . . . , f

pn`1q{n
n . These two inequalities are by assumption equalities,

and lead to
pf1 ¨ ¨ ¨ fnq

n`1
n “ β1f

n`1
n`1

as well as fn`1
2 “ β2f

n`1
1 , . . . , fn`1

n “ βnf
n`1
1 for positive β1, β2, . . . , βn, i.e.

β
1{pn`1q
1 fn`1 “ pβ2 ¨ ¨ ¨βnq

1{pn`1q
¨ f1 ,

showing f1, . . . , fn`1 to be proportional.

Concluding remarks

The Choquet representation of homogeneous co-survival functions, shown to be
unique in [16], is the source of all results in this paper. Then, the Fubini-Tonelli
theorem appears as the main ingredient in transposing the spectral expressions
to several forms of combined variances.

Illustrated through Monte-Carlo comparisons, the coverage accuracy is sig-
nificantly improved. However, this just illustrates the contraction of the domain
of integration.

As a natural example, the function that summarizes the tail dependence
structure in extreme value theory, namely the stable tail dependence function,
received successfully the application of the new results. Furthermore, the gen-
eralization of Hölder’s inequality associated with more tricky justifications from
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multivariate monotonicity yielded a sharp upper bound to the quantity of in-
terest.

Finally, it may be worth pursuing the consequences for measuring the effec-
tive asymptotic dependence dimension of a random vector.
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