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The paper investigates the Hoeffding-Sobol decomposition of homogeneous co-survival functions. For this class, the Choquet representation is transfered to the terms of the functional decomposition, and in addition to their individual variances, or to the superset combinations of those. The domain of integration in the resulting formulae is reduced in comparison with the already known expressions. When the function under study is the stable tail dependence function of a random vector, ranking these superset indices corresponds to cluster the components of the random vector with respect to their asymptotic dependence. Their Choquet representation is the main ingredient in deriving a sharp upper bound for the quantities involved in the tail dependograph, a graph in extreme value theory that summarizes asymptotic dependence.

Introduction

Let f : r0, 1s d Ñ R be a function in L 2 pr0, 1s d , λq where λ " ś d i"1 λ i is a product of probability measures on r0, 1s. One way to understand the structural form of the d-variables function f is to decompose it into functions of increasing 1 complexity. This is precisely what allows the functional analysis of variance (FANOVA). It relies on the Hoeffding-Sobol decomposition f pxq " ÿ uĎt1,...,du

f u pxq (1) 
where f u pxq "

ÿ vĎu p´1q |uzv| ż f pxqdλ ´v pxq (2) 
for dλ u pxq " ś iPu dλ i px i q and ´v " t1, . . . , duzv. See [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF][START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF][START_REF] Van Der | 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]. The term f u only depends on the components of x associated with u. The constant term f H is equal to ş f dλ and the global variance is given by σ 2 " ş pf ´fH q 2 dλ. Set σ 2 u " ş f 2 u dλ u and σ 2 H " 0. Then, from orthogonality arguments (see, for instance, [START_REF] Efron | The jackknife estimate of variance[END_REF]), the term f u is centered (except for the empty set) and the FANOVA expression relies on the equality σ 2 " ÿ uĎt1,...,du

σ 2 u .
Interest in the individual variances σ 2 u , and more particularly their ratio to the total variance σ 2 u {σ 2 , traces back to [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] and [START_REF] Owen | The dimension distribution and quadrature test functions[END_REF]. The current research problems in Global Sensitivity Analysis (GSA) are varied in nature. Our concern in this paper is not improvements for estimation, cost-saving, construction of surrogate models, or other practical but no less crucial aspects or perspectives ; see rather [START_REF] Ökten | Randomized quasi-monte carlo methods in global sensitivity analysis[END_REF][START_REF] Razavi | The future of sensitivity analysis: An essential discipline for systems modeling and policy support[END_REF] and references contained therein for an overall and recent assessment. The main goal here is to reveal simplified theoretical expressions for the quantity σ 2 u within a specific class of functions. Knowing such quantities σ 2 u allows to order the importance of the input variables x 1 , . . . , x d with respect to the global variance of f , the function under study. Reducing the number of variables of interest in f is one of the main consequences of this hierarchical ranking.

In this paper we will concentrate on homogeneous co-survival functions. Classical examples to keep in mind are the power mean values, defined for t ě 1 by ψ t pxq :" ´řd i"1 x t i ¯1{t for x P r0, 8r d . More generally, if there exists µ a nonnegative Radon measure on r0, 8s d zt8u such that ψpxq " µpty P r0, 8s d |y ğ xuq for all x P R d `then ψ : R d `Ñ R `is said to be a co-survival function. The class of co-survival functions additionnaly assumed to be homogeneous, is in a one-one correspondence (modulo value at p1, . . . , 1q) with probability measures ν on the unit cube C " tw " pw 1 , . . . , w d q P r0, 1s d | maxpw 1 , . . . , w d q " 1u. Indeed, the spectral representation ψpx 1 , . . . , x d q " ψp1, . . . , 1q

ż C maxpx 1 w 1 , . . . , x d w d qdνpwq (3) 
is stated in [START_REF] Ressel | Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions[END_REF]Theorem 2]. Some details are given in Section 2 to make the paper almost self-contained.

In extreme value theory, stable tail dependence functions (stdf), usually denoted by , play a central role to describe the asymptotic dependence between components of a random vector X " pX 1 , . . . , X d q. Assuming the existence of a multivariate domain of attraction for the componentwise maxima of X is a classical starting point. This is equivalently written as lim tÑ8 t `1 ´F pF ´1 1 p1 ´x1 {tq, . . . , F ´1 d p1 ´xd {tqq ˘" px 1 , . . . , x d q in terms of F , F 1 , . . . , F d the cumulative distribution functions of X, X 1 , . . . , X d . More details on multivariate extreme value theory can be found, e.g., in [START_REF] Huang | Statistics of bivariate extremes[END_REF][START_REF] De Haan | Limit theory for multivariate sample extremes[END_REF][START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF][START_REF] Fougères | Bias correction in multivariate extremes[END_REF][START_REF] Mercadier | The tail dependograph[END_REF]. As pointed out in [START_REF] Ressel | Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions[END_REF], the stdfs are particular cases of homogeneous co-survival functions. The corresponding probability measures ν in (3) must satisfy d constraints induced by the fact that a stdf equals 1 at unit vectors. A graph based on the Hoeffding-Sobol decomposition of a stdf, called the tail dependograph, has been introduced in [START_REF] Mercadier | The tail dependograph[END_REF]. It reveals the asymptotic dependence structure of the random vector X through the structural analysis of the function . Tail superset indices, which are the superset combination of individual variances, are of prime interest in the tail dependograph. Their pairwise values define the thickness of the edges.

The aim of this paper is twofold. On the one hand, we shall establish a simplified expression for the individual variances σ 2 u , as for their superset combinations, when the function under study is a homogeneous co-survival function. Their resulting Choquet representation thus provide new test cases for GSA. On the other hand, we will apply these results to stdfs so that upper bounds for the tail superset indices will be obtained. Proving this majorization initially motivated the current study.

The paper is organized as follows. We first investigate the class of homogeneous co-survival functions: in Section 2, the expression of the FANOVA effect ψ u and the corresponding variance σ 2 u are written as integrals of rank-one tensors (which are products of univariate functions in each of the input parameters, as defined by [START_REF] Konakli | Global sensitivity analysis using low-rank tensor approximations[END_REF]). The numerical performance of our results is analysed at the end of this part. As an application, the study focuses on stdfs in Section 3. The new expressions allow to derive some sharp upper bounds for the tail superset indices. All proofs are postponed to Section 4. Finally, the last lines summarize conclusions and references.

Notation. Let _ and ^stand respectively for the maximum and the minimum. Set x `" x _ 0. The indicator 1 A equals 1 on A and 0 on A c . Set 1 " p1, . . . , 1q P R d . The vector z u is the concatenation of z i for i P u so that pz u , x ´uq " ř iPu z i e i `řiRu x i e i in the canonical basis pe 1 , . . . , e d q. Binary operations are understood componentwise, e.g. x ¨w " px 1 w 1 , . . . , x d w d q, x _ w " px 1 _ w 1 , . . . , x d _ w d q, s{w " ps{w 1 , . . . , s{w d q and 1 sěxu " ś iPu 1 sěxi for s P r0, 1s. Throughout the paper rx, 8s c :" ty P r0, 8s d |y ğ xu. Let λ " ś d i"1 λ i be an arbitrary product of probability measures on r0, 1s. For positive v and w, when s and t lie in r0, 1s, let K i pw, v; s, tq " λ i pr0, ps{wq ^pt{vq ^1sq " ş 1 0 1 ps{wq^pt{vqěx dλ i pxq and let K i pw; sq stand for K i pw, w; s, sq. The notation ψ is used for a homogeneous co-survival function whereas represents a stdf.

FANOVA of homogeneous co-survival function

In this section, the functional decomposition is explored under a new setting by considering homogeneous co-survival functions. Before stating our main result, we give a description of the class under study. It is worth noticing that focusing on the unit hypercube r0, 1s d is not restrictive by homogeneity assumption.

Choquet representation of homogeneous co-survival functions

Similar to distribution functions, also co-survival functions are essentially characterized by a special multivariate monotonicity property. First, we introduce a notation. Let A 1 , . . . , A d be non-empty sets, A " A 1 ˆ¨¨¨ˆA d , and let f : A Ñ R be any function. Then for x, z P A we put

D x z f :" ÿ uĎt1,...,du p´1q |u| f pz u , x ´uq .
Moreover, for a non-empty subset u Ĺ t1, . . . , du and for x ´u P ś jP´u A j , let us define on ś jPu A j f p¨, x ´uqpz u q :" f pz u , x ´uq .

If A j Ď R for all j, the function f is called 1 d ´alternating1 if D x z f ď 0 for x ď z (both in A), and if this inequality also holds whenever some of the variables are fixed, for the function of the remaining variables, i.e. if for each non-empty subset v Ĺ t1, . . . , du, for each y P ś jP´v A j and any x v ď z v both in [START_REF] Ressel | Copulas, stable tail dependence functions, and multivariate monotonicity[END_REF] for a detailed presentation of this concept.

ś jPv A j , we have D x v z v f p¨, yq ď 0 . See
Let f : R d `Ñ R `be the co-survival function of µ, a non-negative Radon measure on r0, 8s d zt8u, i.e. for any x P R d f pxq " µprx, 8s c q .

If the reader is not familiar with Radon measures, one should only keep in mind that this assumption ensures that f is well defined and finite for any x P R d `.

By Theorem 3 in [START_REF] Ressel | Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions[END_REF] one knows that it is equivalent to assuming f 1 d -alternating, left continuous, and f p0q " 0. Moreover, for any 0 ď x ă z in R d Dx z f " ´µprx, zrq by an application of the inclusion/exclusion principle. Now, if f is additionally assumed to be homogeneous, that is f ptxq " tf pxq for any positive t and vector x then the measure µ is homogeneous: µptAq " tµpAq for any positive t and measurable subset A (and reciprocally). Note that any homogeneous 1 dalternating function f : R d `Ñ R is automatically continuous, non-negative, with f p0q " 0.

An important example of a homogeneous measure is given by the image λ w of the Lebesgue measure λ on R `under the mapping s Þ Ñ s{w, where w P C. The co-survival function of λ w is then λ w prx, 8s c q " λpts P R `|s{w ğ xuq

" λpts P R `|Di ď d, s{w i ă x i uq " λpts P R `|s ă max i"1,...,d px i w i quq " maxpx ¨wq .
These functions will play a decisive role in the following, since they are the "building stones" of all homogeneous co-survival functions. More precisely, consider the set of all normalized functions discussed above K :" tψ : R d `Ñ R|ψ is 1 d -alternating, homogeneous and ψp1q " 1u .

Then K is obviously convex and compact (with respect to pointwise convergence). It turns out that K is even a simplex, with tx Þ Ñ maxpx ¨wq|w P Cu " expKq as its set of extreme points, and this set is closed (so compact as well) ; see [START_REF] Ressel | Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions[END_REF]Theorem 4 (ii)]. In other words, K is a so-called Bauer simplex, i.e. for each ψ P K the representing probability measure on expKq guaranteed by Krein-Milman's theorem, is unique. The resulting integral representation is also called Choquet representation. So, for each 1 d -alternating and homogeneous ψ on R d `, ψ ı 0, there is a unique probability measure ν on C such that ψpxq " ψp1q

ż C maxpx ¨wqdνpwq, x P R d `.
It is easily seen that ψ is the co-survival function of the measure µ :" ψp1q ş C λ w dνpwq.

Expression of Sobol effects and associated variances

The main result of this paper is stated below. It says that Sobol effects ψ u (as their variances) have rather simpler expressions in comparison with (2) when ψ is a homogeneous co-survival function. Indeed, they are expressed as integrals on C ˆr0, 1s of rank-one functions. Recall that 1 " p1, . . . , 1q in R d .

Theorem 

K i pw i ; sqds + dνpwq ¸.
Its corresponding variance ş ψ 2 u has the following expression

σ 2 u " ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iRu K i pw i ; sqK i pv i ; tq ź iPu pK i pw i , v i ; s, tq ´Ki pw i ; sqK i pv i ; tqq .
Furthermore,

σ 2 " ´pψp1q ´ψH q 2 `ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt d ź i"1 K i pw i , v i ; s, tq .
The link of Sobol effects ψ u and their variances σ 2 u with the spectral measure ν has been made explicit. The main ingredients for proving the previous theorem is to remark that the spectral representation of ψ can be written as an integral of rank-one tensors. Then, all Sobol effects ψ u and corresponding variances σ 2 u inherit the same form by application of the Fubini-Tonelli theorem. As can be seen through Formula (2), the variance σ 2 u is usually computed as an alternating combination of cumulated variances. It thus suffers from accumulation of estimation error, overall as d becomes larger. Theorem 1 offers a setting where the numerical complexity of σ 2 u is the same as that of σ 2 or other well-known quantities discussed in Subsection 2.3.

Example 1. If the measure λ corresponds to the product of Lebesgue measures dλpxq " dx 1 ¨¨¨dx d then K i pw, v; s, tq " ps{wq ^pt{vq ^1. Under this measure λ, consider ψpxq " maxpxq, a particular extreme point. By Theorem 1, with the probability measure ν " δ 1 on C, one obtains ψ H " d{pd `1q, σ 2 " d{ppd 1q 2 pd `2qq,

ψ u pxq " ´ż 1 0 ź iPu p1 sěxi ´sq s d´|u| ds and σ 2 u " 2 ż 1 0 t d´|u| p1 ´tq |u| "ż t 0 s d ds * dt " 2p2d ´|u| `1q! |u|! pd `1qp2d `2q! .
Example 2. Consider an extreme point of the convex and compact set K (mentioned in Subsection 2.1) precisely ψpxq " maxpx ¨wq with w P C. It is worth noticing that Theorem 1 furnishes the expressions of the variances σ 2 and σ 2 u as integrals on r0, 1s 2 of a product of d univariate functions. In comparison with their original definitions, already mentioned in the introduction, this provides an important gain: The number of integrals is reduced (it is no longer an alternating sum) and the domain of integration is smaller. Under a precise value of w, the calculations would give exact expressions after very tedious efforts. One could numerically approximate them by Monte Carlo procedures on r0, 1s 2 instead. With λ as the two dimensional Lebesgue measure, we focus here on these extreme points in the bivariate setting. For w " pw, 1q, we obtain

ψ H " 1{2 `w2 {6 and σ 2 " 1{12 ´w2 {6 ´w4 {36 `w3 {6 , with the following decomposition of σ 2 σ 2 t1u " w 4 {45, σ 2 t2u " ´w2 {6`2w 3 {15´w 4 {36`1{12, σ 2 t1,2u " w 3 {30´w 4 {45 .

Consequences for cumulated variances

It turns out that several combinations of variances are of prime interest in order to characterize the importance of a subset u of variables. Justifications can be found in [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF][START_REF] Liu | Estimating mean dimensionality of analysis of variance decompositions[END_REF] in the case of

I 2 u " ÿ vĎu σ 2 v " ż r0,1s 2d´|u| ψpx u , x ´uqψpx u , z ´uqdλpxqdλ ´upzq ´ψ2 H (4) 
and

τ 2 u " ÿ vXu‰H σ 2 v " σ 2 `ψ2 H ´żr0,1s d`|u| ψpx u , x ´uqψpz u , x ´uqdλpxqdλ u pzq . ( 5 
)
We see immediately that 0 ď

I 2 u ď τ 2 u ď σ 2 and I 2 u `τ 2 ´u " σ 2 .
Finally, [START_REF] Hooker | Discovering additive structure in black box functions[END_REF] examined the meaning of the sum over the supersets of u

Υ 2 u " ÿ vĚu σ 2 v . (6) 
Ranking based on the superset quantities Υ 2 u takes into account the importance of x u but additionnaly that of any vector containing these |u| variables. Formulae depending on the spectral measure are now derived for these three types of cumulated variances. The next corollary asserts that they are also written as integrals of rank-one tensors.

Corollary 1. Let ψ be a homogeneous co-survival function (3) associated with a spectral probability measure ν on C. Then,

I 2 u " ´pψp1q´ψ H q 2 `ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iPu K i pw i , v i ; s, tq ź iRu K i pw i ; sqK i pv i ; tq τ 2 u " ψp1qp2ψ H ´ψp1qq `ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ˜ź iPu K i pw i , v i ; s, tq ´ź iPu K i pw i ; sqK i pv i ; tq ¸ź iRu K i pw i , v i ; s, tq Υ 2 u " ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iRu K i pw i , v i ; s, tq ź iPu pK i pw i , v i ; s, tq ´Ki pw i ; sqK i pv i ; tqq
The Choquet representation above will play a crucial role in the proof of the upper bound stated in the extreme value theory setting at the end of the paper.

Example 3. Consider again Example 1. One obtains easily

I 2 u " 2 ż 1 0 t d´|u| "ż t 0 s d ds * dt ´p1 ´ψH q 2 " |u| pd `1q 2 p2d ´|u| `2q , τ 2 u " σ 2 `ψ2 H ´2 ż 1 0 t |u| "ż t 0 s d ds * dt " d d `2 ´2 pd `1qpd `|u| `2q , and 
Υ 2 u " 2 ż 1 0 p1 ´tq |u| "ż t 0 s d ds * dt " 2 d! |u|! pd `|u| `2q! .
In the opinion of the authors the current example (as its first part Example 1) looks promising for being a convenient test function. It provides a simple but non trivial function which has known individual variances as well as cumulated and global ones, for any dimension d.

In [9, Theorem 1] the following identity is shown

Υ 2 u " 2 ´|u| ż r0,1s d`|u| pD x u z u ψp¨, z ´uqq 2 dx u dz (7) 
where ψp¨, z ´uq : r0, 1s u Ñ R is defined by ψp¨, z ´uqpx u q :" ψpx u , z ´uq. The gain of the expression of Υ 2 u claimed in Corollary 1 can be questioned with regard to the dimension of the domain of integration. Similar comments hold for I 2 u and τ 2 u with reference formulae (4) and [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF]. But, it does not exist a direct formula of σ 2 u , i.e. based on ψ, except from inversion of (6) for instance. It yields

σ 2 u " ÿ vĚu p´1q |vzu| Υ 2 v " ÿ vĚu p´1q |vzu| 2 ´|v| ż r0,1s d`|v| pD x v z v ψp¨, z ´v qq 2 dx v dz . ( 8 
)
Comparing the already known formula [START_REF] Konakli | Global sensitivity analysis using low-rank tensor approximations[END_REF] with our result associated with σ 2 u in Theorem 1 makes the interest of our expressions more obvious. In Theorem 1 indeed, it is no longer expressed as an alternating sum of integrals. We have reduced the dimension of integration. Nevertheless, to be also numerically convincing, a wide comparison between the estimation of σ 2 u derived from (8) and from Theorem 1 will now be offered. The same comparison is done for the estimation of Υ 2 u , Formula ( 6) competing with the one from Corollary 1.

Numerical illustrations

For the sake of simplicity, we assume here that the distribution of the entries are known and fixed as uniforms. Our goal is to compare the effectiveness of the new formulae, obtained for homogeneous co-survival functions, with the already known and general ones. Both are integrations approximated by Monte Carlo procedures, but neither the domain of integration nor the complexity of the integrand are the same. Our choices must assess impartiality. One possibility is to compare the estimation obtained after a given common executing time.

However, this depends strongly on the way the integrands are coded. We thus decide to fix the Monte Carlo size N on the unit interval.

We will first restrict ourselves to the case of the max function ψpxq " maxpxq for which the exact values are known (see Examples 1 and 3). This corresponds to a one-point measure. The comparison will therefore be broken down according to the value of d and the size of u with respect to d. Completely arbitrarily we set the following values d " 5 or d " 10 ; then u " t1, 2u or u " t1, . . . , du. Both σ 2 u and Υ 2 u will be estimated. The measures are based on the absolute mean error obtained over n replicates and defined as

AM E :" 1 n n ÿ i"1 | θi,N ´θ0 |
where θ 0 is the true value and θi,N is the i-th estimate. The number of replicates here is n " 50. The level of accuracy is the same on each column of Table 1 in order to facilitate the comparison. Two values for N have been handled: N " 100 and N " 10, 000. However, for the largest value, the time limit has been reached using the already known formula.

In Table 2 

p k maxpx¨w k q . ( 9 
)
Fix arbitrarily m " 15 and d " 5. The weights, chosen at random, are pp 1 , . . . , p m q " p0.04, 0.08, 0.12, 0.05, 0.02, 0.10, 0.11, 0.01, 0.12, 0.13, 0.06, 0.03, 0.10, 0.01, 0.02q and the associated locations pw 1 , . . . , w m q are ¨0.11 1.00 0.52 0.21 0.38 1.00 1.00 0.36 1.00 0.18 0.18 0.20 0.17 0.02 0.31 0.62 0.81 0.59 0.52 1.00 0.56 0.59 0.08 0.15 0.10 0.35 1.00 0.56 0.43 1.00 0.67 0.84 1.00 0.24 0.43 0.69 0.12 0.20 0.09 0.71 0.62 0.31 1.00 0.37 0.04 1.00 0.65 0.64 0.41 0.76 0.74 0.57 1.00 0.49 1.00 1.00 0.54 0.42 1.00 0.44 0.32 0.37 0.03 1.00 0.02 0.11 0.50 0.70 0.18 0.16 0.75 0.03 0.11 0.18 0.29

‹ ‹ ‹ ‹ ' .
Since the true values are not easily computable, we only provide a graphical comparison of the resulting boxplots obtained from n " 50 repetitions.

As expected, this numerical study shows that the estimation from the new formulae is more accurate. This is nothing more than the illustration of the domain of integration being reduced. The reader should be aware that recent studies in GSA provided new methods compared to the classical Monte Carlo procedure. Going further with a comparison based on pick-freeze method or any other refinement would clearly exceed our ambitions in this paper.

Statistical applications in extreme value theory

In the following, we focus on the Hoeffding-Sobol representation of a stable tail dependence function (stdf). A homogeneous co-survival function is a stdf iff pe 1 q " . . . " pe d q " 1 i.e., it is associated with a probability measure ν on C satisfying ż

C w i dνpwq " 1{ p1q @ i " 1, . . . , d .
Denote by µ the measure such that pxq " µprx, 8s c q. This measure µ is closely related to the so-called exponent measure µ ‹ introduced in [14, Section 5.4.1] for instance. In fact, for any x P R d μprx,

8s c q " µ ‹ pr0, 1{xs c q .
This means that µ ‹ is the image of µ under x Þ Ñ 1{x, so that µ is directly homogeneous (as is ) when µ ‹ is inversely homogeneous: µ ‹ ptAq " t ´1µ ‹ pAq for any positive t and any measurable set A of r0, 8s d zt0u.

Whereas the characterization of stdfs was shown relatively late [START_REF] Ressel | Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions[END_REF]Theorem 6], their integral representation was known long before: it goes back essentially to [START_REF] De Haan | Limit theory for multivariate sample extremes[END_REF]. Most of the use of their integral representation has been done under the L 1 or L 2 -norm on R d `. But as emphasized by de Haan and Resnick, it is an arbitrary choice. As seen in Section 2, the extreme points of K (functions x Þ Ñ maxpx ¨wq for w P C) combined with the max-norm were natural choices here.

The main objective of this section is to analyse the theoretical aspect of the functional decompositon for stdfs with respect to the Lebesgue measure dλpxq " dx 1 . . . dx d . As mentioned in the introduction, this idea has been introduced in [START_REF] Mercadier | The tail dependograph[END_REF] but the focus was on the meaning of Υ 2 u in this context, named as tail superset indices, and on their estimation. To illustrate their importance in multivariate extreme value modelling, let us focus for instance on the comparison Υ 2 ti,ju p q ă Υ 2 th,ku p q. This means that the asymptotic dependence between components X i and X j themselves added to the asymptotic dependence between the pair pX i , X j q and the d ´2 remaining variables is weaker than its equivalent in h, k. Reducing the dimension of the asymptotic dependence structure consists in selecting subsets u according to their tail superset indices Υ 2 u . Below, we first obtain a simplified expression for these indices by application of Corollary 1 to . Then, we deduce an upper bound for the tail superset indices. The section is ended by a short discussion.

Tail superset indices

The tail dependograph introduced in [START_REF] Mercadier | The tail dependograph[END_REF] starts from a non-oriented graph whose vertices represent components of the random vector X in the domain of attraction of . The edge between i and j is drawn proportionally to the pairwise superset indices Υ 2 ti,ju of . This index measures the strength of asymptotic dependence between the components X i and X j , not only in their associated bivariate model pX i , X j q, but in the complete model X. A thick line reveals a strong asymptotic dependence between corresponding components, whereas at the opposite, such index vanishes when the asymptotic dependence is null. The present paper thus offers a theoretical expression of the tail dependograph indices as

Υ 2 ti,ju p q " p1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź k‰i,j s w k ^t v k ^1 ˆs w i ^t v i ^1 ´" s w i ^1* ¨" t v i ^1*˙ˆs w j ^t v j ^1
´" s w j ^1* ¨" t v j ^1*˙.

Pairwise indices are perhaps the most important since their value on a graph is easily represented by the thickness of a segment. However, more general indices can be defined and an application of the previous section also provides the representation of Υ 2 u p q as follows

p1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iRu s w i ^t v i ^1 ź iPu ˆs w i ^t v i ^1 ´" s w i ^1* ¨" t v i ^1*˙.
Examples. The asymptotic independence occurs when `pxq :" ř d i"1 x i so that `p1q " d and ν " p ř d i"1 δ ei q{d. All the terms in the integrand of Υ 2 ti,ju p `q cancel since at least the term depending on i or on j (or both) will be reduced to (1-1). As a consequence Υ 2 u p `q " 0 as soon as |u| ě 2.

The asymptotic complete dependence corresponds to _ pxq :" maxpxq so that _ p1q " 1 and ν " δ 1 . All indices of interest Υ 2 ti,ju p _ q are equal to Υ 2 ti,ju p _ q "

ż 1 0 ds ż 1 0 dtps^tq d´2 ps ^t ´s ¨tq 2 " 2 d `1 ż 1 0 p1´tq 2 t d`1 dt " 4 pd `1qpd `2qpd `3qpd `4q .
For in between strengths of asymptotic dependence, one can use logistic extreme value models. Symmetric versions pxq " q i pw ´iq1 wi"1,w´iPr0,1s d´1 dw where for instance

q d pw ´dq " c r ˜d´1 ÿ i"1 w ´1{r i `1¸r ´d ˜d´1 ź i"1 w i ¸´p1{r`1q .
as pointed out in [START_REF] Ressel | Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions[END_REF]. Unfortunately, the expressions obtained in the present paper do not allow a real simplification under such models.

Upper bounds for tail superset indices

Some simple computations allow to obtain the following lower and upper bounds.

Lemma 1. Let be a d-variate stable tail dependence function. Then,

d d `1 ď H ď d 2 and d d `2 ď σ 2 p q ` 2 H ď d 12 `d2 4 , implying σ 2 p q ď d p3d 3 `7d 2 ´7d `1q 12pd `1q 2 .
Moreover, for any subset u of t1, . . . , du, set _,u pxq " max iPu x i . Then,

I 2 u p _,u q `p _,u H q 2 ď I 2 u p q ` 2 H ď d 2 4 `|u| 12 .
The lower bound is given by

I 2 u p _,u q `p _,u H q 2 " σ 2 p _,u q `p _,u H q 2 pd ´|u| `1q 2 `2 _,u H pd ´|u|q d ´|u| `1 `pd ´|u|q 2 pd ´|u| `1q 2 where _,u H " |u| |u|
`1 and σ 2 p _,u q " |u| p|u| `1q 2 p|u| `2q .

Hence, one can derive lower and upper bounds for I 2 u of a stable tail dependence function in any dimension, and for any size of the subset u, whenever H is controlled. However, it doesn't provide a very simple way to deduce bounds for σ 2 u or, more interestingly in the tail dependograph context, for Υ 2 u . The following result answers this question.

Theorem 2. Let be a d-variate stable tail dependence function. Then, for any non-empty u Ď t1, . . . , du

Υ 2 u p q ď Υ 2 u p _,u q " 2p|u|!q 2 p2|u| `2q!
where _,u px u q " max iPu x i . If is a d-variate stdf with equality Υ 2 u p q " Υ 2 u p _,u q for a given H ‰ u Ď t1, . . . , du, then its projection on the variables x u is equal to px u , 0 ´uq " _,u px u q " max iPu x i .

In particular, if is a d-variate stdf with equality Υ 2 t1,...,du p q " 2pd!q 2 p2d`2q! then pxq " maxpxq.

The proof is postponed to Section 4. However, note that it relies on the following preliminary result.

Proposition 1. Let f : R d `Ñ R be 1 d -alternating and let u be a non-empty subset of t1, . . . , du. Then,

Υ 2
u pf q ď Υ 2 u pf rus q with f rus pz u q :" f pz u , 0 ´uq.

The authors conjectured the sharp upper bound in Theorem 2 a long time ago but the rigorous proof was only made possible after transferring the Choquet representation of the function to its indices as investigated in Section 2. The optimization problem dealt with in Theorem 2 might be looked at in the broader perspective of maximizing a convex functional over a compact convex set (which need not be a simplex). Bauer's maximum principle ensures that the maximal value is attained in an extreme point, in our case in an extreme stable tail dependence function. It does however give no hint to localize such a point nor to its uniqueness. Our statement in Theorem 2 answers completely the question: it asserts the existence, the uniqueness and the location (and so finds the maximal value) of the maximization problem. The following statement is included in the proof of Theorem 2. p2d `2q! .

Practical meaning and use

Taking into account the bounds provided by Theorem 2, the tail superset indices are normalized after multiplication by 90, so that the corresponding affinity matrix is r90 Υ 2 ti,ju p qs 1ďi,j,ďd , on which classical clustering algorithms and analyses can be performed. However, even if this pairwise normalization is correct, the use of this bound is more powerful when comparing subsets with different sizes. Indeed, thanks to the renormalization Υ 2 u p q{Υ 2 u p _,u q due to Theorem 2 all the renormalized superset tail indices can now be compared even if the subsets u have unequal sizes. The effective dimension of the asymptotic dependence structure could be defined as ∆p q :" argmax |u|,uĎt1,...,du " p2|u| `2q! Υ 2 u p q 2p|u|!q 2 * .

In the asymptotic independent case, ∆p `q " 1 since Υ 2 ti,ju always vanishes: the entire additive component of `explains the whole variance. In the asymptotic complete dependent case, ∆p _ q " d by application of Theorem 2. Now, for models in between, rules can be easily defined: select a subset u that achieves the maximization, or remove (in the asymptotic dependence modelling) subsets associated with small values of the previous brace. Let us provide an example. Consider a trivariate stdf with value at y, zq given by px, y, zq " pp0.36xq 1 0.8 `p0.35yq 1 0.8 q 0.8 `pp0.37xq 1 0.44 `p0.38zq 1 0.44 q 0.44 `pp0.32yq 1 0.67 `p0.30zq 1 0.67 q 0.67 `pp0.27xq 1 0.04 `p0.33yq 1 0.04 `p0.32zq

1 0.04 q 0.04 . ( 10 
)
It is an asymmetric extreme value logistic model. Its associated tail dependograph is drawn below Figure 3: The Tail Dependograph of the stdf [START_REF] Mercadier | The tail dependograph[END_REF].

A quick estimation gives Υ 2 12 " 1.700684 ˆ10 ´4, Υ 2 13 " 1.625145 ˆ10 ´4, Υ 2 23 " 2.909913 ˆ10 ´4 and Υ 2 123 " 1.391676 ˆ10 ´4. These values are not completely comparable since the sizes of the subsets are unequal. Their single use does not indicate the effective dimension of the function . Applying our bound, one obtains Υ 2 12 p q ¨Υ´2 12 p _,12 q » 0.0153, Υ 2 13 p q ¨Υ´2 13 p _,13 q » 0.0146, Υ 2 23 p q ¨Υ´2 23 p _,23 q » 0.0262 and Υ 2 123 p q ¨Υ´2 123 p _,123 q » 0.0779. These calculations reveal that the strength of asymptotic dependence, when modelled by , between the three components is closer to the possible maximal value, than its pairwise equivalent. Thus, the effective dimension of is 3 and it is not 2, according to this criteria. In other words, one should not simplify the representation of by combining only bivariate terms. The knowledge of our bound is crucial to construct this reasoning. Then, applying the Fubini-Tonelli theorem yields

ÿ vĎu ψ v pxq " 2 |u| ψp1q ´ψp1q ż r0,1s ´u dλ ´upxq ż C dνpwq ż 1 0 ds1 sěx¨w " 2 |u| ψp1q ´ψp1q ż C # ż 1 0 ź iPu 1 sěxiwi ź iRu K i pw i ; sq ds + dνpwq . Consequently, if u " H ψ H " ψp1q ´ψp1q ż C # ż 1 0 d ź i"1 K i pw i ; sq ds + dνpwq whereas if u ‰ H ψ u pxq " ÿ vĎu p´1q |uzv| # ÿ ṽĎv ψ ṽ pxq + " ´ψp1q ż C # ż 1 0 ÿ vĎu p´1q |uzv| ź iPv 1 sěxiwi ź iRv K i pw i ; sq ds + dνpwq " ´ψp1q ż C ż 1 0 ¨ÿ vĎu p´1q |uzv| ź iPv 1 sěxiwi ź iPuzv K i pw i ; sq 'ź iRu K i pw i ; sq dsdνpwq " ´ψp1q ż C # ż 1 0 ź iPu p1 sěxiwi ´Ki pw i ; sqq ź iRu K i pw i ; sq ds + dνpwq .
For non-empty u, the term ψ u is centered so that its variance σ 2 u is also the second order moment.

ż r0,1s |u| ψ 2 u px u qdλ u pxq " ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iRu K i pw i ; sqK i pv i ; tq ż r0,1s |u| ź iPu p1 sěxiwi ´Ki pw i ; sqq p1 těxivi ´Ki pv i ; tqq dλ u pxq " ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iRu K i pw i ; sqK i pv i ; tq ź iPu ż 1 0 p1 sěxiwi ´Ki pw i ; sqq p1 těxivi ´Ki pv i ; tqq dλ i px i q " ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iRu K i pw i ; sqK i pv i ; tq ź iPu pK i pw i , v i ; s, tq ´Ki pw i ; sqK i pv i ; tqq .
The last assertion comes from the computation of ş ψ 2 dλpxq " σ 2 `ψ2 H . More precisely, Proof of Corollary 1. Following [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] one knows that p´1q |uza|`|uza 1 | 1 sěx a ¨wa 1 sěz ´a ¨w´a 1 těx a 1 ¨va 1 1 těz ´a1 ¨v´a 1 since ř aĎu p´1q |uza| " 0 as soon as u is non-empty. As usual, we let a∆b " pa Y bqzpa X bq be the symmetric difference of the subsets a and b. As a consequence, 

σ 2 `ψ2 H " ψp1q 2
ψ 2 H `I2 u " ż r0,1s 2d´|u| ψpx u , x ´uqψpx u , z ´uqdλpxqdλ ´upzq " ψp1q 2 ż r0,1s 2d´|u| dλpxqdλ ´upzq ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt p1 ´1sěx u ¨wu 1 sěx ´u ¨w´u qp1 ´1těx u ¨vu 1 těz ´u ¨v´u q " ψp1qp2ψ H ´ψp1qq `ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ż r0,1s 2d´|u| dλpxqdλ ´upzq1 sěx u ¨wu 1 sěx ´u¨w ´u 1 těx u ¨vu 1 těz ´u¨v ´u " ψp1qp2ψ H ´ψp1qq `ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt ź iPu K i pw i , v i ; s,
Υ 2 u " ψp1q 2 ż C dνpwq ż C dνpvq ż 1 0 ds ż 1 0 dt 1 2 |u| ÿ a,a 1 Ďu p´1q |uza|`|uza 1 | ź iPa∆a 1 K i pw i ; sqK i pv i ; tq ź iRa∆a 1 K i pw i , v i ; s,
D px v ,z ´v q pz v ,x ´v q f " p´1q d´|v| D x z f .
In particular, D z x f " p´1q d D x z f . If x i " z i for some i P t1, . . . , du then D x z f " 0.

Proof of Lemma 2. For x and z both in A write x 1 :" px 1 , . . . , x d´1 q and z 1 :" pz 1 , . . . , z d´1 q. Define ρ : A d Ñ R by ρptq :" D x 1 z 1 f p¨, tq . Then p´1q |u| f pz u , x ´puYtduq , x d q ´ÿ uĎt1,...,d´1u p´1q |u| f pz u , x ´puYtduq , z d q " ρpx d q ´ρpz d q " D x d z d ρ .

It implies D x z f " 0 whenever x d " z d . Moreover, we also see that

D px 1 ,z d q pz 1 ,x d q f " ´Dx z f .
The analogue results hold for any coordinate i ď d. The conclusion follows by obvious iteration.

Lemma 3. Let A 1 , . . . , A d Ď R be non-empty, A :" A 1 ˆ. . . ˆAd , and suppose f : A Ñ R to be 1 d -alternating. Then, for any x 1 and z 1 both in ś d´1 j"1 A j the function rptq :" ˇˇD x 1 z 1 f p¨, tq ˇǐ s decreasing on A d .

Proof of Lemma 3. By Lemma 2, we may assume that x 1 ď z 1 . For s ď t both in A d we have 0 ě D px 1 ,sq pz 1 ,tq f " D x 1 z 1 f p¨, sq ´Dx 1 z 1 f p¨, tq where both terms on the right hand side are non-positive. Hence

0 ě D x 1 z 1 f p¨, tq ě D x 1 z 1 f p¨, sq
or equivalently rptq ď rpsq.

We now go back to the proof of Proposition 1. By iterating Lemma 3, we deduce that

ˇˇˇˇÿ vĎu p´1q |uzv| f px v , z ´v q ˇˇˇˇ" ˇˇD x u z u f p¨, z ´uq ˇˇď ˇˇD x u z u f p¨, 0 ´uq ˇˇ" ˇˇˇˇÿ vĎu p´1q |uzv| f px v , z uzv , 0 ´uq ˇˇˇˇ. It yields Υ 2 u pf q ď 1 2 |u| ż ˜ÿ vĎu p´1q |uzv| f px v , z uzv , 0 ´uq ¸2 dx u dz u " Υ 2 u pf rus q ,
where f rus pz u q " f pz u , 0 ´uq.

Proof of Lemma 1. Recall that `pxq and _ pxq now stand for ř d i"1 x i and maxpxq respectively. Set also _,u pxq " max iPu x i . Stable tail dependence functions have the well-known property

_ ď ď `. (12) 
To prove [START_REF] Owen | The dimension distribution and quadrature test functions[END_REF] recall the equality pxq " µprx, 8s c q. Then, the inclusions

rx i e i , 8s c Ď rx, 8s c " ď iďd ty|y i ă x i u
lead to the result since is the identity on each axis. Indeed, is homogeneous and equals one at the canonical basis vectors. The inequality [START_REF] Owen | The dimension distribution and quadrature test functions[END_REF] is easily transfered to first and second order moments

_ H ď H ď H and σ 2 p _ q `p _ H q 2 ď σ 2 p q ` 2 H ď σ 2 p `q `p Hq 2 .
Precisely, it yields

d d `1 ď H ď d 2 and d d `2 ď σ 2 p q ` 2 H ď d 12 `d2 4 , implying σ 2 p q ď d p3d 3 `7d 2 ´7d `1q 12pd `1q 2 .
From [START_REF] Owen | The dimension distribution and quadrature test functions[END_REF], one can also prove that

pmax iPu x i q d´|u|`1 `d ´|u| d ´|u| `1 ď ÿ vĎu v pxq " ż pxqdx ´u ď d{2 `ÿ iPu tx i ´1{2u .
Indeed, the left hand term comes from Ermaxpm, Y ´uqs " ż 1 0 maxpm, yqpd ´|u|qy d´|u|´1 dy where m " maxpx u q and Y ´u is sampled from identical standard uniform. Taking moment of order 2, one obtains

I 2 u p _,u q `p _,u H q 2 ď I 2 u p q ` 2 H ď I 2 u p `q `p Hq 2 .
Precise computations give

I 2 u p `q `p Hq 2 " d 2 4 `|u| 12 
and Proof of Theorem 2. Proposition 1 allows us to focus on the majorization associated to the largest subset u in t1, . . . , du. Then, for a d-variate stdf, we are just interested in an upper bound for Υ 2 t1,...,du . Let us introduce the following notation h w pxq " maxpx ¨wq so that the spectral representation can be written as pxq " p1q ż C h w pxqdνpwq .

I 2 u p _,u q `p _,u H q 2 " σ 2 p _,u q `p _,u H q 2 pd ´|u| `1q 2 `2
From linearity, one obtains

D x z " p1q ż C D x z h w dνpwq .
Now, recall µ w is the image of the Lebesgue measure λ on the half-line R `under the mapping s Þ Ñ s{w, and the fact that h w pxq " µ w prx, 8s c q as discussed in Subsection 2.1. Consequently,

|D x z h w | " µ w prx ^z, x _ zsq " ż 1 0 1 x^zďs{wďx_z ds .
Then, from [9, Theorem 1] and what precedes, one can write

Υ 2 t1,...,du p q " 2 ´d ż r0,1s d ż r0,1s d pD x z q 2 dxdz ď 2 ´d p1q 2 ż r0,1s d ż r0,1s d ˆżC |D x z h w |dνpwq ˙ˆż C |D x z h v |dνpvq ˙dxdz .
The Fubini-Tonelli theorem leads to u p _,u q " Υ 2 u p q ď Υ 2 u p rus q ď Υ 2 u p _,u q so that Υ 2 u p rus q " Υ u p _,u q. The problem is now the same as the last statement of Theorem 2 for d " |u|. The result will thus follow if one can prove it directly. Let be any stdf where the maximal value is attained. Then the inequalities after the inequality [START_REF] Razavi | The future of sensitivity analysis: An essential discipline for systems modeling and policy support[END_REF] implying by Lemma 4 (below) that the functions w Þ Ñ w 1{d i , 1 ď i ď d, are proportional, as are then also w Þ Ñ w i . Since ş C w i dνpwq " 1{ p1q for each i, we see that ν-almost surely the components w i are equal, i.e. ν is concentrated on the diagonal tw|w 1 " w 2 " . . . " w d u, and the only w P C with this property is w " 1. Consequently, ν " δ 1 and p1q " 1. In other words, pxq " maxpx 1 , . . . , x d q.

ż r0,1s d ż r0,1s d |D x z h w ||D x z h v |dxdz " ż 1 0 ż 1 0 ˜żr0,1s d ż r0,1s d 1 x^zďs{wďx_z 1 x^zďt{vďx_z dxdz ¸dsdt " 2 d ż 1 0 ż 1 0 d ź i"1 ˆs w i ^t v i ˙ˆ1 ´s w i _ t v i ˙`dsdt ď 2 d d ź i"1 ˜ż 1 0 ż 1 0 ˆs w i ^t v i ˙d ˆ1 ´s w i _ t v i ˙d `dsdt ¸1{d " 2 d d ź i"1 ˆż 1 0 ż 1 0 ps ^tq d p1 ´s _ tq d w i v i dsdt ˙1{d " 2 d ˜d ź i"1 w 1{d i v 1{d i ¸ˆż 1 0 ż 1 
Lemma 4. Consider in the generalized Hölder inequality (13) the special case p 1 " . . . " p n " 1{n, f i ě 0 and 0 ă ş f n i dµ ă 8 for all i. Then ż f 1 . . . f n dµ ď

˜n ź i"1 ż f n i ¸1{n (14) 
with equality if and only if the functions f i are proportional, i.e. f i " α i f 1 for i " 2, . . . , n where α i ą 0.

Proof of Lemma 4. If f i " α i f 1 for all i (α 1 " 1) then both sides in ( 14) have the same value ş f n 1 dµ ¨śn i"1 α i . Supposing now equality in [START_REF] Resnick | Extreme Values, Regular Variation and Point Processes[END_REF], we proceed by induction. For n " 2 the inequality ( 14) is the Cauchy-Schwarz inequality and it is well known that f 1 and f 2 are proportional in case of equality. We assume now the validity of our assertion for some n ě 2 and consider n `1 functions f 1 , . . . , f n`1 . Hölder's inequality for two functions g, h ě 0 reads ż ghdµ ď ˆż g p dµ ˙1{p ˆż h q dµ ˙1{q with p, q ě 1 such that 1{p `1{q " 1, and with equality iff g p and h q are proportional. It will be applied to g :" f 1 ¨¨¨f n , h :" f n`1 , p " pn `1q{n and q " n `1 ż pf 1 ¨¨¨f n qf n`1 dµ ď ˆż pf 1 ¨¨¨f n q n`1 n

˙n n`1 ˆż f n`1 n`1 dµ

˙1 n`1 ď ˜n ź i"1 ˆż f n`1 i dµ ˙1 n ¸n n`1 ˆż f n`1 n`1 dµ ˙1 n`1 " ˜n`1 ź i"1 ż f n`1 i dµ ¸n n`1
where the second majorization is obtained by applying the induction hypotheses to f f n`1 " pβ 2 ¨¨¨β n q 1{pn`1q ¨f1 ,

showing f 1 , . . . , f n`1 to be proportional.

Concluding remarks

The Choquet representation of homogeneous co-survival functions, shown to be unique in [START_REF] Ressel | Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions[END_REF], is the source of all results in this paper. Then, the Fubini-Tonelli theorem appears as the main ingredient in transposing the spectral expressions to several forms of combined variances.

Illustrated through Monte-Carlo comparisons, the coverage accuracy is significantly improved. However, this just illustrates the contraction of the domain of integration. As a natural example, the function that summarizes the tail dependence structure in extreme value theory, namely the stable tail dependence function, received successfully the application of the new results. Furthermore, the generalization of Hölder's inequality associated with more tricky justifications from multivariate monotonicity yielded a sharp upper bound to the quantity of interest.

Finally, it may be worth pursuing the consequences for measuring the effective asymptotic dependence dimension of a random vector.
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 1 Figure 1: Estimation of σ 2u when ψ is given by (9) for u " t1, 2u on the left panel and u " t1, . . . , du on the right. The boxplot (a) is associated to the well-known Formula (8) whereas (b) refers to the new one stated in Theorem 1.
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 2 Figure 2: Estimation of Υ 2u when ψ is given by (9) for u " t1, 2u on the left panel and u " t1, . . . , du on the right. The boxplot (a) is associated to the well-known Formula (7) whereas (b) refers to the new one stated in Corollary 1.

  p0, 1q are obtained with p1q " d r and νpdwq "

Corollary 2 .

 2 Let ψ be a homogeneous co-survival function (3) associated with a spectral probability measure ν on C. Then, Υ 2 t1,...,du pψq ď ψp1q 2

4 Proofs

 4 Proof of Theorem 1. The proof relies on the combination of ψpxq " x P r0, 1s d with the equalityÿ vĎu ψ v pxq " ż r0,1s´u ψpxqdλ ´upxq .

1 K

 1 i pw i , v i ; s, tq using the fact that ψp1q 2 ş C ş r0,1s d ş r0,1s 1 sěx¨w dνpwqdλpxqds " ψp1q 2 ´ψp1qψ H . The result follows.
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  are in fact equalities, in particular ż

." β 1 f n` 1 n` 1 as well as f n`1 2 " β 2 f n`1 1 , . . . , f n` 1 n" β n f n` 1 1for positive β 1

 1121111 These two inequalities are by assumption equalities, and lead to pf 1 ¨¨¨f n q n`1 n , β 2 , . . . , β n , i.e. β 1{pn`1q 1
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 1 AME for the estimation of σ 2 u when ψpxq " maxpxq. Missing valuerefers to exceeding the time limit.

	only one estimation has not been obtained because of time ex-
	ceedance. Again, the level of accuracy is the same on each column to facilitate
	the comparison.	
	Let us now consider another homogeneous co-suvival function associated
	with a discrete probability measure ν "	ř m k"1 p k δ w k where each w k lies in C
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and p 1 `. . . `pm " 1 so that ψpxq "

m ÿ k"1

  tq ź iRu K i pw i ; sqK i pv i ; tq . ¨wu 1 sěx ´u ¨w´u qp1 ´1těz u ¨vu 1 těx ´u ¨v´u q

	Again, starting from					
			ż					
	σ 2 `ψ2 H	´τ 2 u "	r0,1s d`|u|	ψpx u , x ´uqψpz u , x ´uqdλpxqdλ u pzq
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	Now, applying (7),						
	Υ 2 u "	1 2 |u|	ż r0,1s |u|`d ˜ÿ aĎu p´1q |uza| ψpx a , z ´aq ¸2 dλ u pxqdλpzq	(11)
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  pw i , v i ; s, tq´K i pw i ; sqK i pv i ; tqq . Lemma 2. Let A 1 , . . . , A d be non-empty sets, A :" A 1 ˆ. . . ˆAd , and f : A Ñ R. For x and z both in A and for any subset v Ď t1, . . . , du then

	Finally, one obtains												
	Υ 2 u " ψp1q 2 pK i Proof of Proposition 1. Prior to proving Proposition 1, we review some prelim-ż ż ż 1 ż 1 ź ź C dνpwq C dνpvq 0 ds 0 dt iRu K i pw i , v i ; s, tq iPu
	inary results.													
																tq
	" ψp1q 2	ż	dνpwq	ż	dνpvq	ż 1	ds	ż 1	dt	ÿ	p´1q |a|	ź	K i pw i ; sqK i pv i ; tq	ź	K i pw i , v i ; s, tq
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	where the last equality comes from the general fact		
			ÿ	p´1q |uza|`|uzb| f pa∆bq " 2 |u|	ÿ	p´1q |a| f paq .
		aĎu,bĎu										aĎu	

  by application of Corollary 1 with ψp1q " 1, ν " δ 1 , and Example 3. Assume now the second assertion of Theorem 2 and recall that if is a d-variate stdf then rus is a |u|-variate stdf. Combining the assumption with what precedes and Proposition 1, we obtain Υ 2

	Combining the last results gives us
	Υ 2 t1,...,du p q ď p1q 2	˜żC	i"1 d ź	0 ¸2 ˆż 1 i dνpwq w 1{d	0 ż 1	ps ^tq d p1 ´s _ tq	d dsdt ď
				p1q 2	˜d ź	ż	w i dνpwq ¸2{d	ˆż 1	ż 1	ps ^tq d p1 ´s _ tq d dsdt invoking
						i"1	C	0	0
		again (13). Since a stable tail dependence function satisfies pe i q " 1,
	we have	ş C w i dνpwq " 1{ p1q. Finally
	Υ 2 t1,...,du p q ď	ż 1 0	ż 1 0	ps ^tq	d p1 ´s _ tq	d dsdt " Υ 2 t1,...,du ph 1 q "	2pd!q 2 p2d `2q!
								ẇhere
								ps ^tq d p1 ´s _ tq	d dsdt
								0
	the inequality comes from the generalization of Hölder's inequality: for
	any positive numbers p i such that 1 p1 `. . . `1 pn " 1
		ż	|f 1 . . . f n | dµ ď ˆż |f 1 |	˙1{p1 p1 dµ	˙1{pn pn dµ ¨¨¨ˆż |f n |	.	(13)

This notion was first introduced in[START_REF] Ressel | Functions operating on multivariate distribution and survival functions-with applications to classical mean-values and to copulas[END_REF] under the name fully d-max-decreasing.
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