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Necula [2000] and Tristan et al. [2011] established that symbolic execution combined with rewriting is effective
in validating the code produced by state-of-the-art compilers applying various optimizations. In the meantime,
Tristan and Leroy [2008] used formally-verified symbolic execution to certify the schedules produced by
untrusted oracles—optimizing pipeline usage—within the CompCert compiler. Alas, their formally-verified
checker had exponential complexity and was thus never integrated into mainline CompCert. Recently, Six
et al. [2020] solved this performance issue with formally-verified hash-consing within the symbolic execution.
Our paper extends these approaches to superblocks (where instructions move across branches) and enables
translation validation of instruction rewritings (changing instructions for “better” ones) modulo register
liveness (e.g. with introduction of “fresh” registers): a significant step forward for certifying compilers from
symbolic executions.

1 INTRODUCTION
In-order processor cores execute assembly instructions in the order in which they are in the program.
If one instruction computes a register and the next instruction uses this register, then the core may
stall until the value computed becomes available, which may take a number of clock cycles for
expensive instructions. An optimizing compiler will thus reorder instructions to minimize stalling.1
CompCert2 is a compiler for the C programming language3 with a machine-checked proof of

correctness: if compilation succeeds, then the semantics of the assembly code match that of the
source code in the sense that an execution of the C program without undefined behaviors translates
into an assembly execution with the same sequence of observable events (calls to external functions,
accesses to volatile variables. . . ). Vanilla CompCert however does not reschedule instructions, and
thus produces suboptimal assembly code for in-order cores.

Tristan and Leroy [2008]; Tristan [2009] added instruction scheduling to CompCert: an untrusted
oracle would reorder instructions, and some formally verified checker would witness that the
semantics were preserved through symbolic execution. But, their checker was unusable because of
its exponential runtime complexity [Tristan 2009, §6.7.1][Tristan and Leroy 2008, §7].

Six et al. [2020] added instruction scheduling and some peephole optimizations to CompCert at
the assembly level, in postpass (after register allocation and final transformations, see Figures 1
and 2). One of their goals was to form instruction “bundles”, to be executed in parallel, for a VLIW
(very large instruction word) processor, called KVX. However, due to that late position in the
compilation process, they were limited to scheduling inside basic blocks (instruction sequences
with one single entry point and one single exit point). Consequently, their system was sometimes
prevented from finding good schedules by dependencies induced by register reuse. Moreover, the
1The alternative is using an out of order core, which dynamically reorders instructions. Such cores are more complex and less
predictable (e.g., for bounding worst-case execution time), two undesirable characteristics for some safety-critical systems.
2https://compcert.org/ vanilla releases at https://github.com/absint/CompCert
3There also exists a front-end for a subset of the Lustre synchronous data-flow programming language [Bourke et al. 2017].
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Fig. 1. The KVX backend of Six et al. [2020]
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Fig. 2. Extending CompCert Backends with our Scheduling Passes

porting effort of their approach is rather high for every architecture. Section 2 briefly recalls their
approach and how we have ported it to AArch64 architecture, as a secondary contribution.
In particular, it enables a “cheap” verification of some peephole optimizations (e.g. replacing loads
and stores to consecutive addresses by double loads and stores) on the final assembly code.

Our main contribution is a verified instruction scheduler and rewriter working on a
portable intermediate representation (RTL, see Figure 2). It operates over superblocks: a generaliza-
tion of basic blocks, such that each node of a given block has still at most one successor in this block,
but may also branch to another (super)block [Hwu et al. 1993; Lee et al. 1993]. The semantics of the
scheduled superblock must preserve the observable outputs on live registers of the non-trapping
executions of the original superblock. Undefined behaviors (e.g., traps such as division by zero
or incorrect memory accesses) may be preserved or replaced by defined behaviors. For example,
the scheduler may move instructions across some internal conditional branches as long
as this is not observable by other superblocks; it may also introduce fresh registers (e.g. local
renamings), or replace some instructions by equivalent combinations. See Section 3.
The scheduled superblock must simulate the original superblock. We check this simulation

property with a formally-proved simulation test described in Section 5. Similar to the postpass
verifier of Six et al. [2020], this test is based on symbolic execution with formally-verified hash-
consing. Like them, the only addition we make to CompCert’s trusted computing base is that
pointer equality implies structural equality, which is non-controversial.4 Our symbolic execution
also normalizes symbolic values in order to validate some rewritings of instructions during the
scheduling. Indeed, our untrusted schedulers rewrite or expand some instructions (depending on
the target architecture) in a lightweight way compared to the use of a postpass oracle, that is meant
for increasing scheduling opportunities.

Prior to scheduling, a preliminary phase selects a superblock structure for each function [Hwu
et al. 1993; Lee et al. 1993]. Here, many choices are possible, which have a deep impact on the
overall performance, since intra-superblock scheduling amounts to optimizing some execution path
at the expense of other execution paths. First, there are often several partitions of a given function
block into superblocks, provided that we do not try to create maximal superblocks. Moreover,
4Also, at some point, we treat a possibly nondeterministic function as deterministic, to avoid having to make very expensive
changes to the rest of CompCert. This is in line with vanilla CompCert using untrusted, possibly nondeterministic, oracles,
as though they were deterministic.
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during the selection of superblocks, we may duplicate some instructions (tail-duplication, several
variations of loop unrolling) in order to create new opportunities of superblock partitioning with
larger superblocks at the end. Currently, our superblocks are selected to be the “most likely path”
inside the code, and instruction duplications are controlled through compiler options. See Section 4.

2 ADAPTING THE CERTIFIED KVX POSTPASS-SCHEDULER FOR AARCH64
Section 2.1 recalls the formally-verified postpass scheduler of Six et al. [2020] for the Kalray KVX
processor. Section 2.2 briefly reports on our port of their system to the AArch64 architecture.

2.1 KVX Postpass-Scheduler of Six et al. [2020]
The certified compiler of Six et al. [2020] extends the usual assembly expansions of vanilla
CompCert—the “Mach-to-Asm” pass of Figure 2—with instruction scheduling within basic blocks:
the “Mach-to-AsmVLIW” passes of Figure 1. Because the target processor (Kalray KVX) is a VLIW
(with explicit parallelism of instructions at the assembly-level), they need to introduce a new
kind of assembly language in CompCert—called AsmVLIW—providing an abstract syntax and a
parallel semantics for “bundles” of instructions. They have also introduced 3 new intermediate
representations. First, Asmblock, an IR specific for the KVX, which shares the syntax and the
semantics of atomic instructions with AsmVLIW, but provides a blockstep sequential semantics
for “basic blocks” of atomic instructions. Their other IR, called Machblock and AbstractBasicBlock,
are generic w.r.t. the target processor (like Mach). Machblock extends Mach with a basic block
semantics, and the “Mach-to-Machblock” pass provides a generic pass for recovering the basic
block structure from Mach programs. AbstractBasicBlock is the input language for their generic
certified static analyzes over basic blocks. Note that because they target a VLIW processor, their
scheduling also performs “bundling”.

Asmblock
Program

PostpassScheduling
Module

AsmVLIW
Program

Error

AbstractBasicBlock
Verifiers

Peephole+Scheduler Hash Consing

B lb

B

lb

B, lb
OK/Error

Coq (trusted)

OCaml (untrusted)

Fig. 3. Certified Scheduling from Untrusted Oracles

Scheduling is performed block by
block from the Asmblock program.
As depicted in Fig. 3, it generates a
list lb of AsmVLIW bundles from
each basic block B. More precisely, a
basic block B from Asmblock enters
the PostpassScheduling module. This
module sends B to an external un-
trusted scheduler, which returns a list
of bundles lb, candidates to be added
to the AsmVLIW program. The Post-
passScheduling module then checks
that lb simulates B and through ded-
icated (certified) verifiers. Then, Post-
passScheduling either adds lb to the AsmVLIW program, or stops the compilation if the verifiers
returned an error.
The dynamic verification that lb simulates B is done by composing two independent verifica-

tions, after generating an intermediate basic block tB, obtained by “sequentializing” the atomic
instructions of lb into a single basic block: (1) tB simulates B for the sequential semantics of basic
block; (2) for each bundle b of lb, the sequential semantics and the parallel semantics of b are
observationally equivalent.
Each test is implemented on the AbstractBasicBlock IR, after a compilation pass “Asmblock-to-

AbstractBasicBlock” that preserves both the sequential and the parallel semantics. In the following,
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we focus on the simulation test—test 1) above—because, AArch64 is not a VLIW processor and
there is no parallel semantics to consider.

Asmblock B tB

AbstractBasicBlock · ·

Symbolic states · ·

simulated by

bisimulation

bisimulation

compilations
(block by block)

symbolic executions
with hash-consing

simulated by

Fig. 4. Diagram of Simulation Test Correctness

2.1.1 Simulation Test of Six et al. [2020]. The
simulation test on the AbstractBasicBlock IR
uses symbolic execution, which simply consists
in compiling each program into a big symbolic
term—actually called a symbolic state—in or-
der to deduce the simulation from syntactical
equalities on symbolic states. In the case of a
basic block—with a single execution path—such
a symbolic state simply corresponds to a kind
of preconditioned parallel assignment, as illus-
trated on Example 2.1.

Example 2.1 (Simulation on symbolic states). Consider two basic blocks 𝐵1 and 𝐵2:
(𝐵1) 𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟1]; 𝑟3 B 𝑟1; 𝑟1 B 𝑟1 + 𝑟3
(𝐵2) 𝑟3 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟3 + 𝑟3

Both 𝐵1 and 𝐵2 lead to the same parallel assignment: 𝑟1 B (𝑟1 + 𝑟2) + (𝑟1 + 𝑟2) ∥ 𝑟3 B 𝑟1 + 𝑟2.
But, normal execution of 𝐵1 is preconditioned by “load[𝑚, 𝑟1 + 𝑟2] has not trapped”, whereas the
precondition of 𝐵2 is trivially true. Hence 𝐵2 simulates 𝐵1, but the converse is false.

Six et al. [2020] encode such a precondition as a list of potentially trapping terms, hence relaxing
the implication of preconditions as a list inclusion.

As coined by King [1976], symbolic execution mimics the concrete semantics of programs, while
replacing each concrete state by a symbolic state (which thus represents the set of all reachable
concrete states). Finally, the overall proof of the simulation of B by tB corresponds to compose the
two commutative diagrams on the right-hand side of Figure 4.

2.1.2 Certified Hash-Consing. As suggested by duplication of term “𝑟1 + 𝑟2” in Example 2.1, sym-
bolic execution involves many replicas of terms. Thus, comparing symbolic states with structural
equalities of terms, as performed in [Tristan and Leroy 2008; Tristan 2009; Tristan and Leroy 2010],
takes exponential time (and prevents their simulation tests to be usable).

Instead, Six et al. [2020] establish term equality by pointer equality, which assumes that two iden-
tical terms lie at the same location in memory. This is achieved by hash-consing: when constructing
a term, their system looks it up in an unstrusted hash table that contains all terms generated by the
symbolic execution, and returns the existing instance of that term if there is one.
This “smart constructor” for terms is wrapped into a formally proved function as follows: the

term 𝑐 (𝑎1, . . . , 𝑎𝑛) returned by the untrusted hash table, where 𝑐 is the constructor at the root
and 𝑎1, . . . , 𝑎𝑛 are its operands, is formally accepted as equal to the term that we want to create
𝑐 ′(𝑎′1, . . . , 𝑎′𝑛) only if 𝑐 = 𝑐 ′ and all 𝑎𝑖 == 𝑎′𝑖 by pointer equality.

This does not allow proving that if two terms are equal, then their pointers are equal, though
this is what happens. But they only need the other direction: if pointers are equal then so are the
terms. However, because modeling pointer equality as a pure function is unsound, they model
pointer equality as a nondeterministic operator, inside a nondeterministic monad and they admit
the axiom that pointer equality implies term equality (see [Six et al. 2020, Sect. 4.4] for details).

2.1.3 Peephole Optimization on the KVX. In the preprocessing of their untrusted scheduling oracle,
Six et al. [2020] perform a small peephole optimization: they replace pairs of simple load/store
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Fig. 5. Our AArch64 backend

ldr w4, [x6, #0]
sxtw x3, w0
ldr w1, [x6, #4]
ldr w5, [x3, #0]
ldr w7, [x3, #4]
add w2, w4, w1
adrp x16, a

→

ldp w4, w1, [x6, #0]
sxtw x3, w0
ldp w5, w7, [x3, #0]
add w2, w4, w1
adrp x16, a

ldr x19, [sp, #16]
ldr x30, [sp, #8]
movz x1, #0, lsl #0
str w2, [x1, #0]
movz w0, #0, lsl #0
str w2, [x1, #4]
sub w0, w0, w2

→

ldp x30, x19, [sp, #8]
movz x1, #0, lsl #0
movz w0, #0, lsl #0
stp w2, w2, [x1, #0]
sub w0, w0, w2

Fig. 6. Four Examples of Load/Store Compaction on AArch64

instructions to consecutive addresses by single double load/store instructions. In the formally-
verified simulation test, this optimization is also expressed as a rewriting, of the Asmblock-to-
AbstractBasicBlock pass (see Fig. 4). A noticeable feature of their approach comes from the fact
that the rewriting rules are expressed in the verifier in the opposite way to the oracle. Indeed, in the
verifier, each double load/store is rewritten into a pair of simple loads/stores. This way induces
a much simpler proof, especially for our AArch64 backend, where the replaced simple load/store
instructions are not necessarily consecutive within the original basic-block (hence our AArch64
peephole preprocessing performs itself instruction reordering), as illustrated in Figure 6.

2.2 Our Port of the Postpass-Scheduler on AArch64
Vanilla CompCert provides a backend for the AArch64 processor (a non-VLIW processor) and thus
provides us the “Mach-to-Asm” pass of Figure 2. We have replaced this pass by the “Mach-to-Asm”
passes resulting from the composition of the “Mach-to-Asmblock” of Six et al. [2020] with the
passes of “Asmblock-to-Asm” of Figure 5. We have kept AArch64 Asm mostly unchanged, and have
introduced a new IR Asmblock for AArch64, providing a basic block syntax and semantics over
Asm instructions. The original “Mach-to-Asm” AArch64 pass has been extended into a “Machblock-
to-Asmblock” pass by also adapting the 6 Kloc corresponding proof on the KVX (representing a
development of 5 Kloc of Coq in one man·month for AArch64). The final pass of “Asmblock-to-Asm”
is quite bureaucratic but its proof is still a bit more tedious than informally expected5: 2 Kloc of Coq.
We also implemented the “Asmblock-to-AbstractBasicBlock” pass necessary to reuse the simulation
test of AbstractBasicBlock to check the correctness of our scheduling oracle.

In contrast to the peephole optimizer of [Six et al. 2020], ours (also applied before the untrusted
scheduler), is able to merge non-consecutive load or store within the original basic block, as long
as they respect the semantic dependencies and offset constraints on double load/store specific to
AArch64 ISA. Our algorithm traverses the basic block in both directions, while remembering every
encountered compatible load and store as potentials candidates (and forgetting them if another
instruction breaks a needed dependency in-between). The first pass (forward) tries to replace the
last encountered load or store by the double instruction, and the first one by a Nop (no operation)
5The translation, unfolding the basic block structure, is completely straightforward. But, its correctness proof, as a “Plus”
simulation, is a bit tedious. For instance, this “Plus” simulation results from the composition of either a “Plus” and then a
“Star” simulation, or a “Star” and then a “Plus”, depending or not on the absence or not of a control-instruction at the end of
the input basic block. This case analysis requires the introduction of several “similar” intermediate lemma.
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instruction. The second pass (backward) tries the opposite. Figure 6 illustrates four situations found
by our peephole. On the left column: (1) backward load pairing, with increasing offset (the offset of
the second load is greater than that of the first one); (2) consecutive load pairing, with increasing
offset. On the right column: (1) consecutive load pairing, with decreasing offset (the offset of the
second load is lower than that of the first one); (2) forward store pairing, with increasing offset.

Currently, the main benefit of our peephole for AArch64 is a reduction of code size: it reduces the
number of generated memory transfer instructions by about 10%, which represents approximately
3% of the total code length (on average across all our benchmarks). Unfortunately, on our Cortex-
A53 target, it does not speedup much the generated code, as if, on this dual-issue processor, double
memory accesses were actually performed by two accesses. But, this optimization opens the door
for future similar replacements: e.g. selection of ands or the bics instructions6.

Like Six et al. [2020], our formally-verified simulation test validates these rewritings by perform-
ing the reverse rewriting (i.e. from double load/store to pairs of simple load/store) in the Asmblock-
to-AbstractBasicBlock pass (see Fig. 4). The overall implementation of our formally-verified postpass
scheduler on AArch64 represents a bit more than three man·months of development.

3 OUR SUPERBLOCK SCHEDULING MODULO LIVENESS AND REWRITINGS
With respect to the “intra basic-block” scheduling of Six et al. [2020], our prepass scheduling brings
twomain improvements: (1) the scheduler operates on superblocks (one entry point, possibly several
exit points), and instructions may be moved across intermediate conditional exits; (2) instructions
can be rewritten during the scheduling including assignments to fresh registers.
In turn, our formally-verified simulation test must support features not provided by Six et al.

[2020]: (1) conditional exits (e.g. several execution paths within symbolic execution); (2) simulation
modulo liveness of registers (on each possible exit); (3) normalization of symbolic values during
symbolic execution. Sections 3.1 and 3.2 illustrate this on two different processors.

3.1 KVX Speculative Loads in Superblock Scheduling
In addition to normal load instructions that trap (usually aborting the program) if an incorrect
address is accessed, the Kalray KVX provides special load instructions known as “speculative”,
“dismissible” or “non-trapping”, which instead return a default value.7 Speculative loads can be
freely moved before a conditional branch, whereas normal loads cannot unless one can prove that
it cannot trap; they are thus very interesting for superblock scheduling.
Formally, it is correct to compile C programs entirely using speculative loads, since access to

incorrect addresses is undefined behavior, and returning a default value is an acceptable way of
implementing undefined behavior. Yet, this would hinder debugging and detection of abnormal
behavior. We thus opted to generate speculative loads only as needed by the schedule.

Consider for instance the superblock starting at label .L100 of Figure 7: it is the body of a loop
exiting on label .L101 that computes in $r0 the sum of the $r1 integer array for index variable $r4
(bounded by $r2). On the left, the superblock has been scheduled and bundled with the postpass
scheduler of Six et al. [2020]. On the right, our prepass scheduler has moved sxwd (originally on
line 6) and lws.xs (originally on line 9) above the conditional exit originally on line 4. The effect
of these moves is to gain one bundle and to remove one pipeline stall one the update of $r0.8 The
gain is of 2 · 𝑛 − 1 cycles where 𝑛 is the number of loop iteration (there is 1 cycle loss if there is no
6Specific versions of the corresponding arithmetic instructions update the condition flags while writing the result.
7If paging, through a memory management unit, is not used, speculative loads are easily implemented in hardware: just
return the default value instead of generating an exception. If paging is used, their implementation needs some cooperation
from the virtual memory subsystem.
8Only one stall remains in the improved scheduling, because loads have latency of 3 cycles on the KVX.
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1 L100:

2 compw.ge $r32 = $r4 , $r2

3 ;;

4 cb.wnez $r32? .L101

5 ;;

6 sxwd $r5 = $r4

7 addw $r4 = $r4 , 1

8 ;;

9 lws.xs $r3 = $r5[$r1]

10 ;; // 2 STALLS

11 addw $r0 = $r0 , $r3

12 goto .L100

1.L100:

2sxwd $r5 = $r4

3compw.ge $r32 = $r4 , $r2

4;;

5lws.s.xs $r3 = $r5[$r1]

6;;

7cb.wnez $r32? .L101

8;; // 1 STALL

9addw $r0 = $r0 , $r3

10addw $r4 = $r4 , 1

11goto .L100

Fig. 7. On the left: a sequence of KVX bundles as emitted by Six et al. [2020] (makespan of 8 cycles).
On the right, the result with our prepass scheduler in between (makespan of 6 cycles).

iteration, because the two moved instructions have been executed while being useless; sxwd has
been executed in parallel of compw.ge, thus its useless execution does not lose a cycle). For this
simple loop, this is almost a gain of 25%.
Note that, for Six et al. [2020], these moves were impossible because the original superblock is

made of two basic blocks, the first one ended on the conditional exit of line 4. In order to prove
that the second superblock simulates the first one, we need to check that the assignment of $r5
and $r3 involved in these moved instructions have no effect on the code after the loop exit (at
label .L101). Fortunately, they are not in the live registers of .L101 (they are “local” to the loop
body). Moreover, we need to check that these moved instructions do not introduce any undefined
behavior when label .L101 should be taken. Actually, this is the case, because the scheduler has
rewritten the trapping load lws.xs into a non-trapping (speculative) load lws.s.xs.

3.2 Expanding Instructions with Immediate on RISC-V in Superblock Scheduling
Figure 8 presents a fragment of C code and the resulting RiscV superblock, both for vanilla CompCert
and for our CompCert version. Registers x10, x11 and x12 respectively correspond to variables x,
y and t of the input program. Vanilla CompCert does not attempt to minimize pipeline stalls: on
line 1, the lw instruction dereferencing x12 in x7 may induce pipeline stalls in line 3, where x7 is
added to x10 in x6. Moreover, vanilla CompCert expands the comparison with immediate only in
the “Mach-to-Asm” pass (Figure 2): the immediate (here 7) is stored in the scratch register x31 (in
RiscV, x0 is a read-only register equal to 0). Additionally, vanilla CompCert does not attempt to
remember that from line 4, register x31 has value 7: thus it reloads 7 in x31 a second time on line 6.

On RiscV, our prepass scheduler performs an expansion of comparisons with immediate (branch-
ing or not), and of some others instructions (arithmetic operations on immediate, casts, loads of
constant, and length conversions) in the untrusted preprocessor of our scheduling oracle. Inter-
mediate values coming from expansion are stored into fresh pseudo-registers (before the register
allocation pass), and the untrusted preprocessor uses a dynamic value numbering system to avoid
redundant instructions (it is a Common Subexpression Elimination limited to the superblock - oper-
ating on every instruction in the path). Fortunately, in Figure 8, the fresh pseudo-register assigned
to immediate 7, has been allocated (after the prepass scheduling) into x12 (register reuse). In the
general case, because the scope of our preprocessing is limited to a superblock, this memoization
of immediate should only have a limited impact on register pressure.

Performing these expansions within the prepass scheduling increases scheduling opportunities.
Here, the assignment of x12 to 7 is interleaved by the scheduler between the load of 0(x12) into
x7, and the addition of x7 to x10: this potentially saves one cycle.
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if (x + *t < 7)

if (y < 7)

return 421;

1 lw x7, 0(x12)

2 // POTENTIAL STALL for x7

3 addw x6, x10 , x7

4 addiw x31, x0, 7

5 bge x6, x31, .L100

6 addiw x31, x0, 7

7 bge x11 , x31, .L100

lw x7, 0(x12)

addiw x12, x0, 7

addw x6, x10 , x7

bge x6, x12, .L100

bge x11 , x12, .L100

Fig. 8. On the left: a fragment of a C function; in the middle: the RiscV assembly produced by vanilla
CompCert (3.8); on the right: the RiscV assembly produced with our prepass scheduler (one addiw & one
potential lw stall have been gained, resulting in a potential gain of two cycles).

Our formally-verified simulation test must check that the expansions performed by the untrusted
scheduling preprocessor simulate the original RTL superblock. This is achieved by applying rewrit-
ing rules mimicking those of the preprocessor within the symbolic execution and formally proving
than these rewritings preserve the semantics of symbolic values. It would be difficult to directly
prove the memoization mechanism within the preprocessor, whereas it is proved “for free” by our
simulation test with symbolic execution. Even without memoization, verifying these rewriting rules
on symbolic values is much easier than verifying them directly on the RTL code. Indeed, symbolic
values are directly expression trees, whereas the RTL code is a CFG of register assignments. In
particular, the rewriting rules on symbolic values do not involve registers (and substitution of
registers). The verification that the untrusted rewritings of the untrusted preprocessor correctly
deal with “fresh” registers is only a particular case of the simulation test modulo liveness: the
expansion on the right-hand side of Figure 8 is correct because x12 is not live at labels .L100 and
.L101. For example, let us consider the following rewriting on RTL conditional branch instructions:

𝐿1: if (Cges 7) [𝑟1] goto 𝐿2 else goto 𝐿3 →
{
𝐿1: 𝑟2 B (OEaddiwr0 7); goto 𝐿4
𝐿4: if CEbgew[𝑟2, 𝑟1] goto 𝐿2 else goto 𝐿3

where 𝑟2 is a fresh pseudo-register and 𝐿4 is a fresh node. This rewriting is simply expressed in the
symbolic representation by the rule “(Cges 7) [𝑣] → CEbgew[(OEaddiwr0 7), 𝑣]” where 𝑣 is the
symbolic value of 𝑟1.

Note that embedding the rewriting rules within the symbolic execution makes the proof of these
rewrite rules easier than having them expressed in a preprocessing of the simulation test (e.g. in the
“Asmblock-to-AbstractBasicBlock” pass of Fig. 4 of [Six et al. 2020]). Within the symbolic execution,
the proof ignores liveness issues. In a preprocessing of the simulation test, rewriting rules would
be required to satisfy a bisimulation modulo register liveness.

4 SELECTION OF “RELEVANT” SUPERBLOCKS FOR INTRA-BLOCK OPTIMIZATIONS
Superblock scheduling [Hwu et al. 1993; Lee et al. 1993] optimizes some given execution path of the
program, by moving instructions before conditional branches (or after them, at the discretion of the
scheduler). If optimized paths are frequently taken, the function execution will be faster. However,
this may be to the detriment of other paths: moving the lws instruction above the loop-exit in
Figure 7 actually slows down the path exiting from the loop (but eliminates a stall at each loop
iteration).
Superblocks must thus be carefully chosen. This section describes how we transform each

function into a partition of superblocks. The first step to form superblocks is to identify CFG
paths—what is called trace9 by Fisher [1981]—likely to be executed. This is static branch prediction.

9CompCert already defines a trace as a sequence of observational events. Instead, we use “CFG path”.
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Then, based on this prediction, we may duplicate some paths of the CFG in order to increase
the size of superblocks, and thus the scope of our superblock scheduling. We implement several
kinds of path duplications: (1) tail duplication consists in duplicating a path after a join point (i.e. a
new superblock entry), in order to move that join point further and hence, extends the superblocks
ending on this join point (See Figure 9); (2) loop body unrolling consists in unrolling a whole
(innermost) loop in order to make its unrolled loop body a big superblock, and thus enable the
scheduling across the original loop iterations; (3) loop rotation consists in turning “while-do” loops
into “do-while” loops, by duplicating the exit-condition and its context: this enables scheduling the
context of the exit-condition within the loop body and removes a “goto” in the loop.

We implement each of these RTL transformations by a dedicated untrusted oracle and use a single
formally-verified test to dynamically check that they preserve the semantics of the original RTL
program (see Section 4.1). Finally, the selection of our superblocks for scheduling combines branch
predictions (presented in Sections 4.2 and 4.3) and these path duplications (see Section 4.4).

4.1 Formally-Verified Checker of Path Duplications
Tail duplication and the various loop unrollings share an important commonality: they duplicate
paths in the CFG, while preserving syntactically the CFG structure modulo renaming of nodes.
This is what we call path duplications. Hence, we perform each of these transformations via a
dedicated untrusted oracle and introduce a single formally-verified test able to dynamically check
their results (the checker is also able to verify in a single run any combination of these oracles).
Moreover, this checker (with its correctness proof) is both simple and small (only 650 lines of Coq).

Hence, each of these oracles of Coq type “RTL.function → code ∗ node ∗ ( PTree.t node ) ”
is expected to return: (1) the resulting CFG (of type code); (2) the new entrypoint in this new CFG;
(3) a mapping from nodes of the new CFG to nodes of the original CFG, that we call the duplicate
mapping, and noted 𝜙 on Figure 9.

1

2 3

4

1

2 3

4 4’

𝜙

Fig. 9. Example of Path Duplication

Figure 9 illustrates the path duplication: the orig-
inal code is on the left-hand side; the transformed
code is on the right one; and the duplicate map-
ping 𝜙 , in red, indicates which node originated from
where. Nodes 1, 2, 3 and 4 are unchanged: for all
𝑖 ∈ {1, 2, 3, 4}, (𝑖 ↦→ 𝑖) ∈ 𝜙 . A new node 4, named 4′
in the figure, is introduced: it is a duplicate of node
4, denoted (4′ ↦→ 4) ∈ 𝜙 . Node 3 is then modified
so that its successor becomes 4′.
Thanks to the duplicate mapping 𝜙 , it is very simple to check that any execution step of the

function 𝑓1 associated to the original CFG is simulated by the new function 𝑓2, for a lockstep
simulation, as pictured on Figure 10. Informally, 𝑆1 ∼ 𝑆2 means that the current program counters
𝑛1 of state 𝑆1 in 𝑓1 and 𝑛2 of state 𝑆2 in 𝑓2 satisfy (𝑛2 ↦→ 𝑛1) ∈ 𝜙 (and that return addresses of the
respective stacks also match for duplicate mappings of caller functions).

𝑆1 𝑆2

𝑆 ′1 𝑆 ′2

∼

𝑡 𝑡

∼

Fig. 10. Lockstep

First, our checker verifies that the entrypoint 𝑒1 of 𝑓1 maps the entrypoint
𝑒1 of 𝑓1 through 𝜙 , ie (𝑒2 ↦→ 𝑒1) ∈ 𝜙 . Then, for any pair (𝑛2 ↦→ 𝑛1) in 𝜙 ,
we check that, if 𝑛1 is node in 𝑓1 CFG, then 𝑛2 is also a node in 𝑓2 CFG
such that: (1) the instruction at node 𝑛1 in 𝑓1 CFG syntactically matches
the instruction at node 𝑛2 in 𝑓2 CFG (e.g. if the instruction at 𝑛1 performs
assignment “𝑟 ′ B 𝑟1 + 𝑟2”, then the instruction at 𝑛2 performs exactly the
same assignment); (2)𝑛1 (in 𝑓1 CFG) and𝑛2 (in 𝑓2 CFG) have the same number
of successors; (3) for any 𝑖-th successor 𝑛′1 of 𝑛1 (in 𝑓1 CFG), the 𝑖-th successor 𝑛′2 of 𝑛2 (in 𝑓2 CFG)
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Fig. 11. Program with two branches. Left figure: original program. Right figure: the instruction 𝐸 is moved
before𝐴 (under the non-trivial assumption that it is correct to do so). An identified path (that could be turned
into a superblock) is shown in green. Each conditional branch edge is annotated with its probability.

𝐴 𝐵? 𝐶

𝑋

𝐷? 𝐸

𝑌

𝐹? 𝐺

𝑍

Fig. 12. Whole Body of an Innermost Loop within a Superblock

must satisfy (𝑛′2 ↦→ 𝑛′1) ∈ 𝜙 . Hence, any step from 𝑛1 can be simulated by a step from 𝑛2 while
preserving the simulation relation ∼ of Fig. 10.
Note that, this verifier may also accept oracles that prune unreachable part of the CFG (from

𝑒1), as long as these pruned nodes do not appear in 𝜙 . We have extended the checker described
above in order to accept oracles that negate condition on conditional branch: in this case, the two
successors must also be exchanged. Indeed, on some pipelined architecture like the KVX, it is more
efficient to have the most frequent successor in the “ifnot” successor than in the “ifso”: taking the
conditional branch induces a pipeline stall.

4.2 Principles of our Static Branch Prediction
Depending on the branch prediction, our optimizations may end up in a performance gain or a loss.

4.2.1 Storing Prediction Information. Lee et al. [1993] advise storing profiling information as one
floating-point number per branch edge, indicating the probability for the execution to take that edge:
superblocks are thus selected by following edges with the largest probability. However, selecting
paths according to “local” probabilities may lead to bad predictions, as illustrated on the CFG in
Figure 11. Here, each letter represents one instruction, with 𝐴 and 𝐷 being conditional branches.
If each branch has say a 51% probability to take the privileged branch, and we move instruction
𝐸 to the top of instruction 𝐴 (because the scheduler ruled that this would give a faster execution
under the assumption that we follow the path 𝐴 − 𝐵 − 𝐷 − 𝐸 − 𝐸 ′ − 𝐻 ), then we would only have
a 26% chance to get a faster execution. Indeed, on that particular example, two others paths are
possible: 𝐴 −𝐶 −𝐺 −𝐻 (49%) or 𝐴 − 𝐵 − 𝐷 − 𝐹 −𝐻 (25%). That move would only be beneficial for
the first path, and detrimental for the other two, because of the wasted time executing 𝐸 (wrongly)
speculatively.

Moreover, in our compiler architecture, superblock transformations are scattered across several
purpose-fit composable passes. Annotating each conditional branch with a probability number
would require to interpret and maintain such a number consistently across all of these passes.
This seems tricky for transformations like tail-duplication or loop-unrolling. This led us to adopt
one Option bool prediction 𝑝𝑐 per conditional branch 𝑐 . (1) 𝑝𝑐 = None: no prediction attached to
𝑐; (2) 𝑝𝑐 = Some true: the branch instruction 𝑐 is predicted to be very likely to follow the ifso
branch (condition evaluates to true); (3) 𝑝𝑐 = Some false: the branch instruction 𝑐 is predicted to
be very likely to follow the ifnot branch (condition evaluates to false). On the CFG in Figure 11,
we would have labeled each branch to be “None” and stop the path, rather than identifying a too
big path whose scheduling results in worse performance.
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4.2.2 Detecting Innermost-Loops. Figure 12 represents a program consisting of two nested loops.
The innermost loop starting at test “D?” is the one of interest: this is usually where most of the
computation time lies. Ideally, our static branch prediction should favor the path staying within the
innermost loops, instead of the one going out: the “F?” test should be predicted as “Some false”,
in order to enable loop unrolling, which builds a big superblock by duplication of this loop body.
However, there are other examples where both successors of a given test remain within the

loop. In such a case, without additional profiling information, we end the superblock at that test.
As detailed in Section 4.2.1, a wrongly predicted branch can be harmful to overall performance.
In contrast, an unpredicted branch that could have been predicted will just result in a missed
opportunity for optimization: it will not decrease performance compared to the original code.

4.3 Acquiring Prediction Information
Prediction information can be acquired by profiling (Section 4.3.1) or by static analysis (Section 4.3.2).
Profiling consists in instrumenting the code to record execution statistics into a file. Then, that file
is used on next compilations to guide branch prediction. In the absence of profiling information, we
exploit certain patterns in the program in order to guess the most likely direction of many branches.
In particular, innermost loops as well as their exit branches are detected by static prediction.

4.3.1 Prediction by Profiling. We developed a profiling system in our version of CompCert. As
common, our profiling system is used in two steps. First, the program is compiled with special
instrumentation: (1) counters are inserted into each object file as local symbols; (2) right after each
branch, a special CompCert builtin EF_profiling is inserted, which increments the appropriate
counter; (3) at program exit, all the counters are written to a file, through special linker sections
added to each compiled object file, as for C++ destructors. The program is then run on representative
input, and branch counts are accumulated in a log file.
Second, once enough profiling information has been recorded, we use it to add prediction

information to branches. The compiler loads the logging file and the profiler-based heuristic
consists in assigning the prediction to “None” if the relative difference between the two branches
counts is below a given small threshold, or “Some b” if branch “b” is more executed than the other.

4.3.2 Prediction by Heuristics. When no profiling is available, our heuristics—mostly inspired by
Ball and Larus [1993]—perform an educated guess of the privileged direction. They are run in
sequence, until one of them decides a prediction, otherwise preserving the default “None” prediction.
(1) In a conditional branch, a comparison such as (𝑥 < 0)? is likely to be an error-code check,

so we predict that the check succeeds (that is, the condition is not taken). Similarly, float
equality checks are predicted to be false.

(2) If a given branch leads to a return, then that branch is unlikely to be taken.
(3) If a branch leads away from a loop (the destination is not in the loop body) while the other

stays in the loop, we predict the looping branch. This heuristic is very important for later
identifying the superblock following that innermost loop.

(4) Finally, if one branch leads to a call instruction and the other does not, privilege the latter.
Experimentally, these heuristics seem to detect most branches of interest, though it seem to remain
a few slightly disappointing corner cases, in particular for heuristic (1) on conditions.

4.4 Path Selection from Predictions
Once branch prediction has been done, several phases of path selection are done: (1) for tail-
duplication, a selection of the paths that will be transformed into superblocks; (2) for loop unrolling
and loop rotation, we select the superblocks that encompass innermost loops; (3) for superblock
scheduling, the pass “RTL-to-RTLpath” of Figure 13 involves a superblock selection, which partitions
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Fig. 13. Our Formally-Verified RTL Superblock Scheduler

each function into superblocks; (4) finally, the linearization pass, “LTL-to-Linear” pass on Figure 2,
also partitions each function into superblocks (but on a different representation).

Among these four phases, the path selection by tail-duplication is the most complex, and the one
that ends up defining which parts of the code will be optimized. We mostly use the algorithm from
[Chang and Hwu 1988], which consists in selecting a node that has the largest execution count,
then growing a path forward (by going through the “best successors” in regard to execution count),
and then grow it backward. Then, the path stops, and the next unvisited node is selected to grow a
new path. Key differences between our implementation and their algorithm:
(1) They have access to precise execution counts for each node. We do not. We follow instead

the branch prediction information, stopping the path when that information is None.
(2) Their algorithm was not designed for superblocks: it allows node sharing between paths. In

contrast, we enforce paths without intersection, by ending paths before such node sharing.

5 DESIGN OF OUR FORMALLY-VERIFIED SUPERBLOCK SCHEDULER
Figure 13 sketches the design of our formally-verified RTL superblock scheduler. RTLpath is a new
IR which annotates RTL programs with information about superblocks: entry-points, exit-points
and register liveness. It also represents the execution of a whole superblock in a single step.

Hence, our formally-verified superblock scheduler requires that its input RTL program has been
previously rewritten, as described in Section 4, in order to exhibit “relevant” superblocks in each
function. It is the “RTL-to-RTL” pass composing the 3 successive simulations depicted in Figure 13.
(1) An untrusted oracle provides the RTLpath annotations for the original RTL program. A

formally-verified test checks the correctness of these annotations. It ensures that the RTLpath
execution of the original program simulates its RTL execution.

(2) An untrusted scheduler provides a new RTLpath program, with a reverse mapping relating
its superblock entry-points to those of the original program. Our formally-verified simulation
test ensures that the execution of the scheduled program simulates that of the original.

(3) The final pass simply forgets the RTLpath annotations of the scheduled program. By con-
struction, the RTL execution of the scheduled program simulates its RTLpath execution.

5.1 Definition of the RTLpath IR
RTLpath extends RTL CFG (Control-Flow-Graph) of instructions, with a super CFG-structure of
paths, where such a path represents a superblock. But, for the formal proofs, the path-structure
does not need to partition the CFG into superblocks: two distinct paths are not required to be
disjoint.
Our notion of CFG path is more like the usual notion of trace in “trace-scheduling”. It derives

from default_succ defined in Figure 14. We say that a node 𝑛 in the RTL CFG is a default successor
of instruction 𝑖 , iff (default_succ 𝑖)=𝑛. For 𝑝 ≥ 0, a node 𝑛2 in the RTL CFG is the 𝑝-th default
successor of a node 𝑛1, if there is a sequence of (𝑝+1) nodes in the CFG from 𝑛1 to 𝑛2 such that each
node in the sequence is the default successor in the CFG of the previous one in the sequence. Hence,
we define a path of size 𝑝 and of entry-point 𝑛 as the sequence of nodes leading to the 𝑝-th default
successor of 𝑛 (called the final node of the path). Note that instructions with a default successor in
the CFG are either basic instructions, or conditional branches. The whole execution of a path of
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Definition default_succ (i: instruction ): option node B
match i with
| Inop s | Iop _ _ _ s | Iload _ _ _ _ _ s | Istore _ _ _ _ s ⇒ Some s (* basic inst *)
| Icond _ _ ifso ifnot _ ⇒ Some ifnot (* conditional branch *)
| _ ⇒ None (* others *)
end

Record path_info B { psize: nat; input_regs: Regset.t; (* . . . *) }
Definition path_map: Type B PTree.t path_info
Definition path_entry (pm: path_map) (n: node): Prop B pm!n <> None
Inductive wellformed_path (c:code) (pm: path_map ): nat → node → Prop B . . .

Definition wellformed_path_map (c:code) (pm: path_map ): Prop B
∀ n path , pm!n = Some path → wellformed_path c pm path.(psize) n

Record function : Type B
{ fn_RTL:> RTL.function; fn_path: path_map;

fn_entry_point_wf: path_entry fn_path fn_RTL.(fn_entrypoint );
fn_path_wf: wellformed_path_map fn_RTL.(fn_code) fn_path

}

. . .

(* path step semantics *)
Inductive path_step ge pge (path:nat) stack f sp rs m pc: trace → state → Prop B . . .

Fig. 14. Definition of RTLpath functions

RTL RTLpath

𝑆1 𝑆2
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∼
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𝑆 ′1 𝑆 ′2

∼

𝑡 𝑡

∼
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Fig. 15. RTL-to-RTLpath
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𝑆1 𝑆2
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∼

𝑡 𝑡 +
∼

Fig. 16. RTLpath-to-RTL

size 𝑝 emits at most one observational event: the one emitted by its final node (this is important for
forward simulation proofs). Also, note that one given CFG path represents several execution paths:
the execution may early exit from the CFG path through an intermediate conditional branch.

Records of type path_info in Figure 14 store information relative to each path of the CFG. Mainly,
the field psize giving the size of the path, and optional liveness information which is only relevant
for the original RTLpath program, but not the scheduled one.10 Figure 14 also defines RTLpath
functions. A RTLpath function extends a RTL function (field fn_RTL), with a map associating nodes
to path_info (field fn_path). By convention, a node with an associated path_info in fn_path
is called a path entry. A RTLpath function must provide a proof that the entry-point of the RTL
function is a path entry, and also a proof that fn_path is well-formed, i.e.: (1) for each path entry
𝑛 associated to a psize 𝑝 in fn_path, there exists a 𝑝-th default successor in fn_RTL .(fn_code )
(the RTL CFG); (2) each path exit—i.e. any successor of a node in the path that is not itself in the
path—is a path entry in fn_path.
A step of RTLpath execution (defined through the path_step definition sketched in Fig. 14)

runs all RTL instructions from a path entry to a path exit. Technically, the notion of RTLpath states
must extends the notion RTL states in order to remember that caller functions (stored in the shadow
stack of the state) are actually RTLpath functions.

10Because, our simulation test only needs liveness information about the original RTLpath, but not about the scheduled one.
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Algorithm 1 Checking well-formedness & liveness information of CFG paths
procedure path_liveness_checker(f)

for all (pc,path) :∈ f.fn_path do
live B path.input_regs
for p B 0 to path.psize do ⊲ pc is the p-th “default succ.” in the path

inst B f.fn_RTL.fn_code[pc] ⊲ Fails if pc is not in the CFG
r B read_regs(inst) ∥ w B written_regs(inst)
assert(r ⊆ live)
live B live ∪ w ∥ succ B successors(inst)
if p < path.psize then

Some(pc) B default_succ(inst) ⊲ Fails if no default successor
succ B succ\{pc}

for all path_exit :∈ succ do
assert(f.fn_path[path_exit].input_regs ⊆ live) ⊲ Fails if path_exit is not a path entry

5.2 Bisimulation of RTLpath and RTL Executions
With these definitions, the forward simulation of RTLpath by RTL is reduced to a simple “Plus-
simulation” as pictured in Figure 16: a RTLpath step runs at least one RTL instruction, but at most
𝑝 + 1 where 𝑝 is the size of the executed path entry.

The reverse simulation, of RTL by RTLpath, is less trivial. In a RTLpath execution, successive
states necessarily correspond to entry paths. In particular, each return address stored in the stack is
itself an entry path of the return function: this is because a CALL instruction has no default successor
on Figure 14. Relation ∼ matching RTL states with RTLpath states encodes these invariants. More
generally, 𝑆1 ∼ 𝑆2 relates an RTL state 𝑆1 with an RTLpath state 𝑆2 that is the entry point of a CFG
path containing 𝑆1. As pictured in Figure 15, one RTL step is simulated by one RTLpath step on path
exits. Else, the RTLpath execution stutters. To prevent silent infinite loops from being simulated
by any program, CompCert forward simulations require proving that the number of successive
stuttering steps is finite: here, this number is bounded by the size of the current CFG path.

5.3 Equivalence of RTLpath Executions Modulo (Register) Liveness
The well-formedness of the RTLpath program produced from the original RTL program, by the
oracle pictured in pass (1) of Figure 13, is dynamically verified by the certified checker described in
Algorithm 1, applied to each RTLpath function candidate f. Explicit assertions in this algorithm
also check that the liveness information is correct: the input_regs field on each path entry actually
corresponds to the set of registers that are read in any execution starting from this path entry. Our
oracle partly reuses the existing liveness analysis of CompCert on RTL CFG.
In our Coq code, the success of this procedure on a RTLpath function is abstracted as pred-

icate “liveness_ok_function”. The main lemma proved on this predicate is given by the
path_step_eqlive lemma in Figure 17. Indeed this lemma allows us to define a “lockstep” simu-
lation (see Fig. 10) of RTLpath execution modulo liveness: here, 𝑆1 ∼ 𝑆2 means that RTLpath states
𝑆1 and 𝑆2 only match on live registers, including the “live registers” that have been stored in the
stack during function calls. In practice, the liveness information of caller functions are recovered
from the shadow stack of RTLpath states.

Roughly speaking, path_step_eqlive expresses that for all path step starting from an initial
state with a (shadow) stack stk1, a register state rs1 and a memory state m, such that this path
step emits a trace t and a final state s1, for all register state rs2 equivalent to rs1 modulo liveness
(at the path entry), for all stack stk2 equivalent to stk1 modulo liveness, there exists a path step
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Definition eqlive_reg live rs1 rs2: Prop B ∀ r, (Regset.In r live) → rs1#r = rs2#r
Inductive eqlive_states : state → state → Prop B . . .

Definition eqlive_stacks: (list stackframe) → (list stackframe) → Prop B
Lemma path_step_eqlive f path stk1 sp rs1 m pc t s1 stk2 rs2:

liveness_ok_function f →
(f.(fn_path )) ! pc = Some path →
path_step . . . path.(psize) stk1 f sp rs1 m pc t s1 →
eqlive_stacks stk1 stk2 →
eqlive_reg path.(input_regs) rs1 rs2 →
∃ s2, path_step . . . path.(psize) stk2 f sp rs2 m pc t s2 ∧ eqlive_states s1 s2

Fig. 17. Equivalence of RTLpath Steps Modulo (Register) Liveness

Record match_function (dm: PTree.t node) (f1 f2: RTLpath.function): Prop B {
preserv_entrypoint: dm!(f2.(fn_entrypoint )) = Some f1.(fn_entrypoint );
dupmap_path_entry1: ∀ pc1 pc2 , dm!pc2 = Some pc1 → path_entry (fn_path f1) pc1;
dupmap_path_entry2: ∀ pc1 pc2 , dm!pc2 = Some pc1 → path_entry (fn_path f2) pc2;
dupmap_correct: ∀ pc1 pc2 , dm!pc2 = Some pc1 → sexec_simu dm f1 f2 pc1 pc2;
(* + a few extra properties expressing that f1 and f2 share the same interface *)

}

Fig. 18. Matching of RTLpath Function through the Symbolic Test Simulation

starting from stk2 and rs2 instead, emiting the same trace t and a final state s2 equivalent to s1
modulo liveness.

5.4 Design of the Certified RTLpath Scheduler
The Coq interface of our RTLpath scheduler is declared by the following directive:
Axiom untrusted_scheduler: RTLpath.function → code * node * path_map * (PTree.t node)

Given an original function from RTLpath, the oracle devises a schedule for each superblock (each
path from the function). It returns a tuple (𝑐, 𝑒, 𝑝𝑚, dm) where 𝑐 is the scheduled RTL CFG, 𝑒 is
its main entry-point, 𝑝𝑚 is its associated pathmap, dm is the reverse mapping from entry paths
of the scheduled CFG of the original CFG (like the duplicate mapping 𝜙 in Section 4.1). Given an
original RTLpath function f1, our formally-verified code turns the (𝑐, 𝑒, 𝑝𝑚) returned by the oracle
into a RTLpath function f2, after verifying the well-formedness conditions through a variant of
Algorithm 1 which ignores liveness information. Then, it applies various checks in order to ensure
that f2 “matches” f2 for match_function of Figure 18: (1) properties dupmap_path_ ∗ express
that dm is a mapping from path entries of f2 to path entries of f1; (2) property dupmap_correct

expresses that for each path entry pc2 of f2, given pc1 its matching path entry in f1, our formally-
verified simulation test (detailed in Section 5.5) validates that the symbolic execution of the f2

path starting at pc2 simulates the symbolic execution of the f1 path starting at pc1 modulo live
registers of f1. Formally, the forward simulation proof of our scheduler corresponds to a lockstep
simulation “RTLpath-to-RTLpath” modulo live registers of f1 (see Figure 10).

5.5 Certifying the RTLpath Simulation Test by Refinement
Like [Six et al. 2020] our simulation test by symbolic execution is defined in an intermediate
representation, RTLpath, which is generic w.r.t. the target architecture. Our formal proof is organized
in a similar way: we first define an abstract model of symbolic execution, allowing for a definition
of a specification for the simulation test in this symbolic semantics, then, we refine this model
into an efficient implementation that uses their formally-verified hash-consing technique. Indeed,
as recalled in Section 2.1.2, this technique, based on the embedding of a trusted pointer equality
into Coq and an untrusted hash-table, requires their monad of “impure” computations. The core of
our simulation test, function imp_simu_check below, is implemented in this monad and proved
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correct by lemma imp_simu_check_correct , expressing that when imp_simu_check normally
terminates then property dupmap_correct of Fig. 18 holds. The primary goal of their refinement
technique is to circumscribe the reasoning on impure computations as much as possible.11

Definition imp_simu_check (dm: PTree.t node) (f tf: RTLpath.function): ?? unit B . . .

Lemma imp_simu_check_correct dm f tf:
WHEN imp_simu_check dm f tf { _ THEN ∀ pc1 pc2 , dm!pc2=(Some pc1) → sexec_simu dm f tf pc1 pc2

However, our abstract model of the simulation test, detailed in Section 5.6, is more complex than
the one of [Six et al. 2020] on several points. (1) We consider superblocks: the symbolic state thus
must represent several execution paths (where [Six et al. 2020] only deal with a single execution
path). (2) Our simulation test compares symbolic state on each path exit modulo liveness. (3) Our
notion of RTL/RTLpath state is richer than their notion of Asm/Asmblock state. For example, our
notion of symbolic state partly abstracts away the RTLpath shadow stack, with a dedicated category
of symbolic values, because each path step runs at constant stack, except on the final instruction.

Moreover, our implementation of the simulation test, detailed in Section 5.7, is also more complex.
(1) Our rewriting rules are directly integrated in the symbolic execution engine, whereas their
rewriting rules happens during the “Asmblock-to-AbstractBasicBlock” compilation (see Figure 4).
As explained in Section 3.2, our approach gives simpler proofs about these rewriting rules. But,
this makes the symbolic execution implementation a little more tricky. (2) In CompCert’s memory
model, the arithmetic operators comparing pointers fail when these pointers are allocated in distinct
memory blocks. This feature is convenient for proving the correctness of compilation passes: we
do not have to prove that the compilation preserves comparison of pointers allocated in distinct
memory block, because the proof already assumes that the input program does not perform such
comparison (the input program is assumed to not fail). However, some arithmetic operators may
contain a read dependency on memory, which may lead a naive implementation of the simulation
test to reject some desirable schedules. The solution of [Six et al. 2020] to this technical issue cannot
be simply applied in our case: their solution works on the last IR of CompCert (assembly), but not
in an intermediate IR such as RTLpath. Fortunately, we have found another very simple solution,
easily proved in our design by refinement.
Let us quantify this increased complexity by comparing the size of the respective Coq develop-

ments. The model of symbolic execution (with the bisimulation theorems of symbolic execution
w.r.t concrete execution) in [Six et al. 2020] represents around 300 lines of Coq. In our case, it
represents almost 1500 lines of Coq. Their specification of the simulation test is a few lines of Coq. In
contrast, our detailed model of the simulation test (with the proof that these detailed specifications
are indeed correct) represents 700 additional lines of Coq. Finally, our implementation (including
its proof w.r.t. the model, but excluding the rewriting rules specific to each processor target) also
represents around 1.5 Kloc of Coq. Their implementation represents around 700 lines of Coq.12 In
short, around 1.4 Kloc of Coq for their development vs 3.7 Kloc for ours, our model being seven
times bigger than their one, whereas our implementation is only two times bigger.

11At some point, imp_simu_check is coerced into a pure function returning a “option unit”. We now argue that such a
trusted coercion is safe as soon as the “None” case, which corresponds to the case where the function does not terminate
normally, can never be observed from a pure computation. Thus, even if the function non-determistically diverges, this
non-determinism cannot be observed. In other words, the trusted coercion has to catch exceptions and diverge instead.
12This line number on their implementation excludes 300 lines of Coq for a debugging system that we have not ported,
because it would be too complex in our case. Its purpose is to provide debug traces when the simulation test fails: this helps
to debug the scheduling oracles, or to discover expressiveness issues in the simulation test itself. In our case, we succeeds to
debug with the help of ocamldebug plus a few traces manually inserted in the sources or in the extracted code.
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Representing the left-hand side of Fig. 7

if (r4 ≥ r2) {
r32 B (r4 ≥ r2);
goto .L101

}
r0 B (r0+(lws.ws(sxwd(r4),r1))

∥ r3 B (lws.ws(sxwd(r4),r1))
∥ r4 B (r4 + 1)
∥ r5 B (sxwd(r4))
∥ r32 B (r4 ≥ r2);
goto .L100

Representing the right-hand side of Fig. 7
if (r4 ≥ r2) {

r3 B (lws.s.ws(sxwd(r4),r1))
∥ r5 B (sxwd(r4))
∥ r32 B (r4 ≥ r2);
goto .L101

}
r0 B (r0+(lws.s.ws(sxwd(r4),r1)))

∥ r3 B (lws.s.ws(sxwd(r4),r1))
∥ r4 B (r4 + 1)
∥ r5 B (sxwd(r4))
∥ r32 B (r4 ≥ r2);
goto .L100

Fig. 19. Respective Symbolic States of Figure 7 Superblocks.

5.6 Model of the Symbolic Execution and the Simulation Test
The symbolic representation of [Six et al. 2020] for a basic block is a preconditioned parallel
assignment ended by goto (PPAG) as recalled in Example 2.1. We now detail our generalization
for RTL “superblocks”. Figure 19 illustrates our symbolic representations for KVX superblocks of
Figure 7. We represent each execution path of the superblock as a PPA ended by goto (PPAG):
a superblock is represented by a sequence of guarded PPAG. On Figure 19, all PPAG have a valid
precondition, because all possible failure of the original superblocks are still present in parallel
assignments. Figure 20 sketches the abstract syntax of our (model of) symbolic states.

Actually, Figure 7 represents the symbolic states returned by ourmodel of the symbolic execution:
the rewriting of trapping lws.ws instruction into the non-trapping lws.s.ws one is not represented
here, because these rewriting is only achieved in the implementation of the symbolic execution.
Hence, our specification of the simulation test (predicate sexec_simu of Figure 18) expresses that
the right-hand side simulates the left-hand side by a semantical comparison of the symbolic states
modulo register liveness. Like [Six et al. 2020], we prove on this model, that the (semantical) simu-
lation of symbolic states (modulo liveness) suffices to prove the semantical simulation of RTLpath
steps (modulo liveness). This actually results from Theorems sexec_correct and sexec_exact

of Fig. 21, which together expresses that:
“given a path entry pc and given a symbolic state st returned by the symbolic execution
model on pc, then semantics of st bisimulates the RTLpath step from pc.”

Simulationmodulo liveness is proved by combining this strong bisimulation (which does not itself
consider liveness) with predicate sexec_simu (which defines a semantical view of our simulation
test). This predicate sexec_simu is itself refined into a detailed model performing a pairwise
comparison of the guards of the two symbolic states: guards must appear in the same order, their
conditions are compared for syntactical equality, their list of arguments are compared for semantical
equalities of symbolic values, and the PPAG are semantically compared modulo register liveness.

5.7 Implementation of the Simulation Test
Our implementation of the symbolic execution uses the formally-verified defensive programming
technique of [Six et al. 2020] for hash-consing, based on an untrusted hash-table, but a trusted pointer
equality (as recalled in Section 2.1.2). Figure 22 sketches the Coq definition of the implementation
of our symbolic values (hsval). Replicating the approach of [Six et al. 2020], our implementation
duplicates the definitions of the model (e.g. sval) while inserting a hash-identifier hid of type
hashcode on each node. Here are some important invariants of the hash-consing mechanism,
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(* Model of Symbolic Values and Memories *)
Inductive sval B Sinput (r: reg)

| Sop (op:operation) (lsv: list_sval) (sm: smem)
| Sload (sm:smem) (trp:trapping_mode) (chk:memory_chunk) (addr:addressing) (lsv:list_sval)

with list_sval B Snil | Scons (sv: sval) (lsv: list_sval)
with smem B Sinit

| Sstore (sm: smem) (chunk:memory_chunk) (addr:addressing) (lsv:list_sval) (srce:sval)

(* Model of Preconditioned Parallel Assignment (PPA) *)
Record sistate_local B {

si_pre: RTL.genv → val → regset → mem → Prop; (* precondition on input memory and regs. *)
si_sreg: reg → sval; si_smem: smem (* parallel assignment *)

}

(* Model of Guarded PPA ended by Goto *)
Record sistate_exit B {

si_cond: condition; si_scondargs: list_sval; (* Symbolic Guard *)
si_elocal: sistate_local; si_ifso: node (* PPA ended by Goto (PPAG) *)

}

(* Model of Sequences of Guarded PPAG *)
Record sistate B { si_exits: list sistate_exit; si_local: sistate_local; si_pc: node }

(* Model of Symbolic Final Value (modifiying the stack or emitting observational events) *)
Inductive sfval B Snone

| Scall (sig:signature) (svos:sval+ident) (lsv:list_sval) (res:reg) (pc:node)
| Sreturn: option sval → sfval
. . .

(* Model of Symbolic State *)
Record sstate B { internal:> sistate; final: sfval }

Fig. 20. Abstract Syntax of our Symbolic Representation of “Superblocks”

(* Model of Symbolic Execution *)
Definition sexec (f: function) (pc:node): option sstate B . . .

(* Semantics of Symbolic State Models *)
Inductive ssem pge ge sp (st: sstate) stack f rs0 m0: trace → state → Prop B . . .

(* Symbolic State Simulates Path Step *)
Theorem sexec_correct f pc pge ge sp path stack rs m t s:

(fn_path f)!pc = Some path →
path_step ge pge path.(psize) stack f sp rs m pc t s →
∃ st, sexec f pc = Some st ∧ ssem pge ge sp st stack f rs m t s

(* Path Step Simulates Symbolic State *)
Theorem sexec_exact f pc pge ge sp path stack st rs m t s1:

(fn_path f)!pc = Some path →
sexec f pc = Some st →
ssem pge ge sp st stack f rs m t s1 →
∃ s2, path_step ge pge path.(psize) stack f sp rs m pc t s2 ∧ equiv_state s1 s2

Fig. 21. Bisimulation of Symbolic States Semantics w.r.t RTLpath Semantics

which do not, however, require a formal proof (because they are only a matter of “performance”, not
of “formal correctness”): (1) a hid has either the special value unknown_hid or has been allocated
by the hash-consing oracle; (2) a node contained a hid distinct from unknown_hid (being thus
allocated) never contains a subtree with an unknown_hid . Actually these invariants were already
introduced in [Six et al. 2020]. However, we exploit invariant 2) in a new way, in order to simplify
the proofs about rewriting rules, as further detailed in Section 5.8.
Except for the hids, the only difference between hsval (Fig. 22) and sval (Fig. 20) is that

the HSop constructor does not depend on any “symbolic memory”, whereas Sop depends on a
symbolic memory sm. We relate our “concrete symbolic values” of type hsval to their model of
type sval by the hsval_proj function, which removes hid information and uses Sinit as the
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(* Implementation of Symbolic Values and Memories *)
Inductive hsval B

| HSinput (r:reg) (hid:hashcode)
| HSop (op:operation) (lhsv:list_hsval) (hid:hashcode)
| HSload (hsm:hsmem) (trp:. . .) (chk:. . .) (addr:. . .) (lhsv:list_hsval) (hid:hashcode)

with list_hsval B HSnil (hid:hashcode) | HScons (hsv:hsval) (lhsv:list_hsval) (hid:hashcode)
with hsmem B HSinit (hid:hashcode)

| HSstore (hsm:hsmem) (chk:. . .) (addr:. . .) (lhsv:list_hsval) (srce:hsval) (hid:hashcode)

(* Abstraction of Concrete Symbolic Values and Memories *)
Fixpoint hsval_proj hsv: sval B

match hsv with
| HSinput r _ ⇒ Sinput r
| HSop op hl _ ⇒ Sop op (hsval_list_proj hl) Sinit
| HSload hm t chk addr hl _ ⇒ Sload (hsmem_proj hm) t chk addr (hsval_list_proj hl)
end

with hsval_list_proj hl: list_sval B . . .

with hsmem_proj hm: smem B . . .

Fig. 22. Implementation of the Symbolic Values

(* Implem. of PPA *)
Record hsistate_local B { hsi_ok_lsval:list hsval; hsi_sreg:PTree.t hsval; hsi_smem:hsmem }
(* Implem. of Guarded PPAG *)
Record hsistate_exit B

{ hsi_cond:condition; hsi_scondargs:list_hsval; hsi_elocal:hsistate_local; hsi_ifso:node }
(* Implem. of Sequences of Guarded PPAG *)
Record hsistate B { hsi_pc:node; hsi_exits:list hsistate_exit; hsi_local:hsistate_local }
(* Implem. of Symbolic Final Value *)
Inductive hsfval B HSnone

| HScall (sig:signature) (svos:hsval+ident) (lsv:list_hsval) (res:reg) (pc:node)
| HSreturn (res:option hsval)
. . .

(* Implem. of Symbolic State *)
Record hsstate B { hinternal:> hsistate; hfinal: hsfval }

Fig. 23. Abstract Syntax of our Concrete Symbolic States

symbolic memory of all Sop nodes. Here, Sinit represents the initial memory when executing
the underlying RTL superblock. Indeed, as explained in Section 5.5, the semantics of arithmetic
operators may access the allocation table of the current memory. But within a superblock, the only
instruction that modify the memory are “store” instructions which do not change this allocation
table. Hence, the semantics of arithmetic operators do not change if we use the initial memory of
the superblock instead of the current memory. Formally, this idea is expressed through a dedicated
invariant of our data-refinement relation that relates “concrete PPA” of type hsistate_local (in
Fig. 23) to their model of type sistate_local (in Fig. 20). Except for this additional invariant,
this data-refinement relation is very like the smem_model relation of [Six et al. 2020].

Moreover, we have also refined each type of the abstract syntax given in Figure 20 into those of
Figure 23. See our Coq sources online (its non-anonymous URL is associated to our submission)
for details on these (not so straightforward) data-refinement relations. Like [Six et al. 2020], the
proof of our implementation simply reduces to ensuring that each elementary computation of the
symbolic execution preserve the data-refinement relations w.r.t. its abstract model, and finally that
the physical or syntactic equalities involved in the implementation of the simulation test implies
the semantical equalities involved in its detailed model.

5.8 Implementing Verified Rewriting Rules during the Symbolic Execution
As explained in Section 5.5, the implementation of the symbolic execution with hash-consing is
written and proved correct within the Impure monad, also used by [Six et al. 2020]. Our rewriting
function is defined as a transformation over hash-consed terms during the symbolic execution.
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However, the design of this rewriting engine discharges the formally-verified rewriting rules of
producing hash-consed terms within the Impure monad. Indeed, it exploits the fact that: (1) our
rewriting rules are always applied at the top of hash-consed terms (like a smart constructor);
(2) a node contained a hid distinct from unknown_hid (being thus allocated) never contains a
subtree with an unknown_hid . Thus, our rewriting rules are defined as pure functions which
produce new top nodes marked with unknown_hid . The rewritten terms are then turned into
proper hash-consed terms by a dedicated (impure) function that only transform the top nodes of
these terms. In other words, the management of hash-consing during rewriting is delegated to this
dedicated function.
Currently, we store all potentially trapping terms of each PPAG into the hsi_ok_lsval field

without any rewriting. Hence, rewriting is only applied within the parallel assignment expressed in
hsi_sreg (see Fig. 23). Formally, a rewriting rule must turn a term 𝑡1 into a term 𝑡2 such that for all
register and memory states such that evaluation of 𝑡1 does not fail, 𝑡2 evaluates to the same value as
𝑡1. This allows us to rewrite a lws.ws operation of the KVX into a lws.s.ws in parallel assignment,
the trap of lws.ws being still present in the precondition: our formally-verified simulation test
validates the example in Figure 7.

As explained in Section 3.2, on the RiscV backend, we succeeded to move most of assembly
expansions expressed at the “Mach-to-Asm” pass in vanilla CompCert (see Fig. 2) as rewriting rules
on RTLpath. This required overcoming a little issue: while the forward simulation proof of “Mach-
to-Asm” supports that expansions replace “vundef” value by any other value, this is not supported
in the proof of our rewriting rules.13 Our simple workaround is to introduce within rewriting rules
some dedicated pseudo-instructions able to generate the necessary “vundef” (hence, acting like
defensive tests): these extra pseudo-instructions are further removed in the “Mach-to-Asm” pass.
Note that these extra pseudo-instructions do not disturb the scheduling because they are assigned
0 latency and 0 resource.
On complex ISA, like AArch64, many expansions of “Mach-to-Asm” pass cannot be expressed

at RTL level. This is due to limitations of RTL, which does not support arithmetic instructions
modifying several pseudo-registers in parallel, such as instructions with side effects on flags. Even
on RiscV, expansions that involve stack-accessing instructions cannot really be expressed at RTL
level, because the layout of stackframes is not yet defined at this level (see Fig. 2): stack accesses
are only handled in a very abstract way.

6 SUPERBLOCK SCHEDULING ORACLE IMPLEMENTATION
Our oracle for superblock scheduling extends the principles of the one from Six et al. [2020] for basic
block scheduling. It assigns to each instruction 𝑗 , including exit branches, a date 𝑡 ( 𝑗) expressing
the number of clock cycles at which it is estimated that the instruction is executed: 0 is the first
instruction in the superblock. Dependencies between reads and writes on register and memory
are computed and adorned with latencies expressing the minimum number of clock cycles needed
between the two events, then a schedule is computed that respects these dependencies and latencies.
(1) A register read as an operand introduces a “read-after-write” dependency from the last write to
that register, with a latency 𝛿 defined by the instruction that performed that write: 𝛿 is the number
of clock cycles between the time when the instruction reads its operands and the time when it
writes its output; (2) a register written to introduces a “write-after-write” dependency from the last
write to that register, with a latency of 1 clock cycle (no simultaneous writes to the same register),
and “write-after-read” dependencies from the last reads from that register, with a latency of 0

13In CompCert, a “vundef” value, e.g. generating by reading in an uninitialized register, does not abort execution. In contrast,
accessing to an invalid address “traps”: it aborts execution.
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(one can read then write to the same register using instructions issued at the same cycle); (3) live
variables at side exits are considered as extract reads by the branch instruction.

A dependency with a latency of 𝛿 clock cycles between an instruction 𝑗 and an instruction 𝑗 ′ is
thus expressed as an inequality 𝑡 ( 𝑗 ′) − 𝑡 ( 𝑗) ≥ 𝛿 , or, equivalently, as an edge 𝑗 𝛿−→ 𝑗 ′ in the latency
graph. Path lengths in that graph matter for prioritizing instructions when scheduling.

Memory is treated as one single big register; there is at present no alias analysis that would allow,
for instance, swapping two writes to non-overlapping locations. In order for such an analysis to be
added the symbolic execution engine would have to be modified to reason modulo commutativity
of memory accesses to memory locations proved not to overlap by this analysis.
In addition, the schedule should obey resource constraints. Each instruction 𝑗 of instruction

class 𝐾 ( 𝑗) consumes a vector u(𝐾 ( 𝑗)) of resources: each coordinate of that vector expresses the
number of resources taken from a certain class (e.g. load/store units, arithmetic units capable of
doing addition/subtraction, floating-point units). The total of resources used by all instructions
issued at the same clock cycle is bounded by a vector r: ∀𝑖 ∑𝑗 |𝑡 ( 𝑗)=𝑖 u(𝐾 ( 𝑗)) ≤ r.
Compared to postpass scheduling [Six et al. 2020], our prepass scheduler reasons at a higher

level of abstraction: not only do we have an unbounded amount of registers, but also certain pseudo
instructions have not yet been expanded into sequences of elementary assembly instructions. We
however still have to assign latencies and resource uses to instructions. On the Kalray KVX, we
generate the assembly instruction sequence, and then call the functions of the postpass scheduler
that give latency and resource usage. On AArch64 and RiscV, for a limited number of cores (Cortex-
A53, Cortex-A35; Rocket, SweRV EH1), we implemented these functions directly, with numbers
from the available documentation or from relevant scheduling parameters in the LLVM compiler.
One difficulty is that the format of latency and resource constraints, originally from [Six et al.

2020], was designed for fully pipelined processors: processors in which there are resources con-
straints on which instructions can be issued at the same clock cycle, but no constraints across
different clock cycles. That is, on a fully pipelined processor, such as the KVX, if a multiplication was
issued at a cycle 𝑡 , then it does not prevent another multiplication from being issued at cycle 𝑡 +1. In
many processors, some units, especially dividers, are not pipelined: an instruction entering the unit
monopolizes it until completion. A general solution would be to introduce multiple-cycle resource
reservations. We are waiting to have more core descriptions to introduce a more general format
(with added functionality such as operands read at different cycles, etc.). Meanwhile, we handle
this by adding a constraint 𝑡 ( 𝑗 ′) − 𝑡 ( 𝑗) ≥ 𝛿 when 𝑗 and 𝑗 ′ are two successive uses of the same non
pipelined unit, where 𝛿 is an estimated number of cycles of use.14 A drawback is that this does not
allow reordering operations using the same non-pipelined unit with respect to one another.
Postpass optimization within a basic block [Six et al. 2020] has a single objective: reducing the

makespan, defined as the date when the last value produced by the basic block is available. In
contrast, superblock prepass optimization may have multiple, conflicting, objectives: (1) reducing
the makespan (with respect to the final exit); (2) reducing register pressure (the number of physicals
registers needed), or, as a proxy, the live ranges of values; (3) pushing side exits as early as possible.
For solving the constraint system, we reuse the algorithms of [Six et al. 2020]. (1) Forward list

scheduling: time slots are greedily filled by increasing date (clock cycle), adding instructions to each
slot as long as they respect the resource and latency constraints, with a priority for instructions that
finish the longest path in the latency graph. Forward scheduling tends to place exit points as soon
as possible, but may increase the live ranges of variables. (2) Backward list scheduling: time slots are
instead greedily filled by decreasing date. (3) In addition, we introduced zigzag scheduling: forward
scheduling is used to place exit points, and then backward scheduling places other instructions.

14The cycle count used by divider units typically depends on the number of bits in the quotient.
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AArch64 KVX RiscV
Setup Q1 Med Q3 Q1 Med Q3 Q1 Med Q3
+Postpass +2.56% +9.11% +20.62% +14.13% +31.25% +46.62% - - -
+LICM +6.11% +16.29% +41.06% +17.07% +35.50% +61.18% -1.65% +3.11% +9.67%
+Prepass +8.71% +22.44% +50.44% +18.67% +37.73% +62.34% +4.34% +9.23% +15.99%
+Loop unroll. +13.52% +23.64% +59.09% +18.84% +42.85% +79.13% +6.20% +12.37% +20.47%
+Loop rotate +14.14% +26.15% +58.40% +18.78% +47.34% +85.49% +5.44% +15.18% +22.39%
+RTL expans. - - - - - - +6.34% +15.24% +24.52%

Table 1. Improvement of Cumulated Optimizations wrt Vanilla CompCert on 3 Benchmarks

GCC-O1 -9.17% +1.35% +10.61% -23.17% -6.13% -0.66% +9.27% +19.61% +34.73%
GCC-O2 -3.27% +2.55% +10.55% -0.12% +5.47% +11.88% +42.73% +63.21% +74.02%

Table 2. Improvement of GCC wrt “Best CompCert” on Polybench

GCC-O1 -3.05% +9.47% +34.17% -19.66% +1.71% +15.11% +5.38% +23.68% +46.54%
GCC-O2 +11.43% +53.09% +88.64% +27.10% +51.58% +84.81% +24.20% +60.07% +102.81%

Table 3. Improvement of GCC wrt “Best CompCert” on TACLeBench

Backward -1.99% +0.32% +2.17% -1.78% -0.04% +0.27% -3.52% +0.11% +2.34%
Zigzag -3.96% -0.76% +0.99% -2.35% -0.20% +0.04% -3.90% -0.63% +1.60%

Table 4. Improvement of Alternative Prepass Scheduling wrt List Scheduling on 3 Benchmarks

7 EXPERIMENTAL EVALUATION
Tables 1 to 4 summarize our experiments on several architectures: AArch64 corresponds to ARM
Cortex A53 (AArch64) inside a Raspberry Pi 3 running Ubuntu 18.04.5 LTS;15 KVX is a KV3
“Coolidge” core in actual hardware; RiscV is a “Rocket” RiscV core in FPGA. In each case, we tie
the process to one core of the machine, and we measure clock cycles using hardware counters. We
run three different suites: the benchmark of [Six et al. 2020], the computational oriented Polybench
[Pouchet 2012], and the embedded systems oriented TACLeBench [Falk et al. 2016].
First of all, Table 1 measures the cumulative impact of each gradually introduced optimization

compared to vanilla CompCert 3.8.16 Note that the postpass is only active on AArch64 and KVX, and
the RTL expansions are only compatible with RiscV. The postpass scheduling for KVX is the one of
[Six et al. 2020]. And LICM (Loop Invariant Code Motion) is the one of [Monniaux and Six 2021].
The Q1, Med and Q3 values respectively denote the first quantile, the median, and the third quantile
on the entirety of our benches. Here are a few conclusions. (1) For both the AArch64 and KVX
cores, postpass scheduling has a significant impact. For the KVX, this impact is bigger, as expected
on a VLIW architecture. (2) LICM is another meaningful optimization, producing a gain of 20% on
some benchmarks. (3) Prepass scheduling 17 (without any loop unrolling) also helps, increasing
by 5-10% for the AArch64 and RiscV cores. This is mostly due to removing the false dependencies
(compared to the postpass scheduling). The KVX core, on the other hand, is not affected much since
it features 64 user registers. Using both prepass and postpass scheduling together on AArch64 is
the best setting, mainly because the latter act as a fine-tuning for in-between expanded instructions
(that occur at the Asm level). (4) Loop unrolling, combined with prepass scheduling, increases
performance by another 5-10%. (5) Loop rotation used alone has a small impact on AArch64 and
RiscV (about +3% on the latter), but the postpass (on AArch64) benefits from it as the rotation may
provides more scheduling opportunities. It shines mostly for the KVX architecture, since it results
in a more efficient bundling of the loop header in postpass. (6) RTL expansions does not have a
15This dual-issue, in-order core was chosen because it is similar to other in-order ARM cores used in embedded systems;
also it is used as little core in “big.LITTLE” settings.
16For the KVX target, not available in vanilla CompCert, we use the one from [Six et al. 2020] without postpass scheduling
(nor bundling).
17On the KVX, due to a temporary technical issue not related to CompCert, we disabled the support for non-trapping loads.
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significant impact on average (for all benchmarks) but they can, on some programs, result in a
large performance gain when combined with the prepass. For instance, we measured that they
increase the prepass yield from +7.8% to +10.5% on the Polybench tests.
We also compared our best version of CompCert to GCC. Table 2 (resp. 3) shows the gain (can

be negative) of using GCC with the given optimization flag, versus our best version of CompCert,
for Polybench (resp. TACLeBench). On Polybench, we are getting closer to GCC -O2 with our
optimizations on AArch64 and KVX. On RiscV, we still have a margin of progression: we suspect the
lack of postpass scheduling. Also, less work went on our RiscV prepass backend. On TACLeBench
however, GCC -O2 beats us by a large margin.
Another experiment, in Table 4, shows that the prepass scheduling algorithms of Section 6

produce almost equivalently efficient code. List scheduling seems generally a little better than its
variants for KVX, but not for AArch64 and RiscV where backward seems to give better results.

Finally, we measured on KVX that branch prediction from profiling information, instead of our
static heuristics, gives only negligible benefit (+1% on Q3, 0% on Q1 and Median). To evaluate the
impact more finely, we first profiled all our benchmarks, then we modified the compiler code to
count the number of times that our heuristics gave a wrong prediction. Out of the 17816 branches
that were able to be profiled, only 5% of them were wrongly predicted, and 14% of them had a
pattern not caught by our used heuristics.18 This gives us confidence in our static branch prediction.

8 RELATED AND FUTUREWORKS
Trace scheduling, as introduced by Fisher [1981], is more general than superblock scheduling. Indeed,
trace schedulers may move code across side exits or side entrances within a given trace, modulo
a quite complex bookkeeping (i.e. instruction duplications) in other traces. Superblock schedul-
ing [Hwu et al. 1993; Lee et al. 1993] provides a simpler approach—in particular for formally-verified
compilers—by dissociating the bookkeeping from the actual scheduling, through a preliminary
pass of tail duplication. Additionally, tail-duplication may offer new opportunities of redundant
code elimination: it is thus interesting to apply CompCert optimizations such as CSE3,19 constant
propagation or deadcode elimination, between tail-duplication and the actual scheduling.
Previously, Tristan and Leroy [2008] attempted to implement some form of trace scheduling

à la Fisher within CompCert. But, their implementation suffered from exponential complexity,
partly due to their lack of control of tail-duplication within the scheduling. Moreover, in contrast
to Fisher’s trace scheduling, their implementation systematically duplicated instructions that are
moved across side-exits; our superblock scheduling, on the other end, can move instructions across
side-exits without any duplication (under certain conditions depending on a liveness analysis).
We have not taken register pressure explicitly into account in the scheduling oracle. We only

note that backward list scheduling naturally tends to minimize variable lifetime and thus register
pressure. Goodman and Hsu [1988] proposed a modified list scheduler, switching to a different
strategy when register pressure becomes high. We may in the future introduce such a scheduler,
but so far have not found a need for it: backward list scheduling before register allocation does
not seem to generate schedules that produce register spills that were not already present in the
original program. Shobaki et al. [2013] propose an optimal scheduling algorithm in the presence
of register pressure.20 We did not seek an optimal scheduling algorithm: the problems we need to

18That’s only half of the branches encountered: this is because our benchmarks do not have a 100% code coverage, only a
part of each benchmark code is actually executed.
19CSE3 is a common subexpression elimination that analyzes accross branches [Monniaux and Six 2021].
20As the authors of that article rightly point out, optimality when solving the combinatorial optimization problem does
not necessarily translate into optimal runtime behavior, because runtime behavior depends on other compiler phases and
microarchitectural aspects that are not reflected in the model in which optimization is performed.
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solve are NP-complete and optimal algorithms therefore have intolerable worst-case complexity.
Furthermore, Six et al. [2020] observed that, for postpass scheduling, their optimal and costly
algorithm yields a better makespan than heuristics only in a very small fraction of the cases, and
the makespan is then only marginally better.

Necula [2000] and Tristan et al. [2011] previously established that symbolic simulation is effective
to validate state-of-the-art compilers. While, it seems difficult to turn their powerful debuggers
into a fully formally-correct checker, our approach could be extended to certify more complex
optimizations. A few next steps: support a more general notion of block, support simulation modulo
invariants at block entry (and in particular global renaming of registers), include an alias-analysis.
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