
Formally Verified Superblock Scheduling
Cyril Six

Kalray S.A.

Montbonnot, France

csix@kalrayinc.com

Léo Gourdin

Univ. Grenoble Alpes, CNRS,

Grenoble INP, Verimag

France

Leo.Gourdin@univ-grenoble-alpes.fr

Sylvain Boulmé

Univ. Grenoble Alpes, CNRS,

Grenoble INP, Verimag

France

Sylvain.Boulme@univ-grenoble-
alpes.fr

David Monniaux

Univ. Grenoble Alpes, CNRS,

Grenoble INP, Verimag

France

David.Monniaux@univ-grenoble-
alpes.fr

Justus Fasse

Univ. Grenoble Alpes, CNRS,

Grenoble INP, Verimag

France

Justus.Fasse@kuleuven.be

Nicolas Nardino

ENS de Lyon

France

Nicolas.Nardino@ens-lyon.fr

Abstract
On in-order processors, without dynamic instruction sched-

uling, program running times may be significantly reduced

by compile-time instruction scheduling. We present here the

first effective certified instruction scheduler that operates

over superblocks (it may move instructions across branches),

along with its performance evaluation. It is integrated within

the CompCert C compiler, providing a complete machine-

checked proof of semantic preservation from C to assembly.

Our optimizer composes several passes designed by trans-

lation validation: program transformations are proposed

by untrusted oracles, which are then validated by certified

and scalable checkers. Our main checker is an architecture-

independent simulation-test over superblocks modulo regis-

ter liveness, which relies on hash-consed symbolic execution.

CCS Concepts: • Software and its engineering → For-
mal software verification;Retargetable compilers; •The-
ory of computation → Scheduling algorithms; • General
and reference→ Performance; •Computer systems orga-
nization→ Superscalar architectures; Very long instruction

word.

Keywords: Translation validation, Symbolic execution, the

Coq proof assistant, Instruction-level parallelism.

This is the authors version of the peer-reviewed paper

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux,

Justus Fasse, and Nicolas Nardino. 2022. Formally Verified

Superblock Scheduling. In Proceedings of the 11th ACM SIG-
PLAN International Conference on Certified Programs and
Proofs (CPP’22), https://doi.org/10.1145/3497775.3503679

This authors version is posted here for your personal use.

Not for redistribution. Please, find the definitive version at

the referenced DOI.

1 Introduction
In-order processor cores execute assembly instructions in

their syntactic order. If one instruction computes a register

and the next instruction uses this register, then the core stalls
until the value computed becomes available, which may take

several clock cycles. An optimizing compiler thus reorders

instructions to minimize stalling.
1

CompCert
2
[Leroy 2009a,b] is a compiler for the C pro-

gramming language with a machine-checked proof of cor-

rectness: if compilation succeeds, then the semantics of the

assembly code matches that of the source: an execution of

the C program without undefined behaviors translates into

an assembly execution with the same sequence of observable

events (calls to external functions, accesses to volatile vari-

ables. . .). CompCert does not reschedule instructions, thus

producing suboptimal assembly code for in-order cores.

Motivations. Six et al. [2020] added instruction sched-

uling and some peephole optimizations to CompCert (thus

creating CompCertSched) at the assembly level, in postpass
(after register allocation and final transformations, Fig. 1

and 2). One of their goals was to form instruction “bundles”,

to be executed in parallel, for the Kalray KVX, a VLIW (Very

Long Instruction Word) processor. However, due to that late

position within compilation, they were limited to scheduling

inside basic blocks (instruction sequences with one single

entry point and one single exit point). Dependencies induced

by register reuse may thus prevent finding good schedules.

Moreover, the porting effort of their approach is rather high

for every architecture.

1
The alternative is an out-of-order core, dynamically reordering instructions.

Their complexity and lower predictability (e.g., for bounding worst-case

execution time), excludes them from some safety-critical systems.

2compcert.org, official versions: https://github.com/absint/CompCert

https://orcid.org/0000-0002-9501-9606
https://orcid.org/0000-0001-7671-6126
https://doi.org/10.1145/3497775.3503679
https://compcert.org/
https://github.com/absint/CompCert

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino

Mach Machblock Asmblock

AsmVLIW

AbstractBasicBlock

Basic block

construction

Assembly code

expansions

Intrablock

postpass

scheduling

Checking

oracles’

results

Figure 1. The KVX backend of Six et al. [2020]

CompCert C RTL LTL Linear

Mach

RTLpath

MachblockAsmblock

Asm

Register

allocation

Linearization

of CFG

Stackframes

layout

Assembly code

expansions

Prepass

scheduling

Postpass

scheduling

Optimizations

Branch

tunneling

Figure 2. CompCertSched with our Schedulers

Scheduling over superblocks (where instructions may mo-

ve across branches) is desirable because such blocks are often

larger than basic blocks, thus with more opportunities to

reorder instructions. Reordering before register allocation, at

the RTL level
3
, is also desirable as it can take advantage of the

infinite number of pseudo-registers, in contrast to postpass

scheduling which works with a limited number of registers,

some of them having already been spilled. While postpass

scheduling (anyway necessary for generating bundles on

VLIW processors) benefits from the precise view of the fi-

nal assembly code, e.g., with register-spilling instructions,

prepass scheduling greatly leverages various heuristics that

increases semantic parallelism, such as renaming with fresh

pseudo-registers after loop unrolling. RTL also provides a

representation generic over all processor architectures, thus

with a reduced per-architecture development effort.

Contributions and structure of the paper. Section 2

recalls the approach of Six et al. [2020] and how, as a sec-
ondary contribution, we have ported their postpass in-

struction scheduler to the AArch64 architecture. This demon-

strates which parts of their postpass are generic, and which

need to be ported. Our postpass scheduler, like theirs, also

performs a peephole optimization just before scheduling

3
RTL, or “Register Transfer Language”, is the intermediate representation

on which most optimizations take place within CompCert. Optimizing from

RTL to RTL facilitates compatibility, so our work can be easily slotted into

other CompCert-related projects.

(in the scheduler’s front-end). But, ours is slightly more ad-

vanced (for leveraging AArch64 features). Here, our main

result is that we have simply reused their translation valida-

tion procedure: this strengthens the case for this approach

to verification, which still works after tweaks to heuristics

whereas a direct proof would surely require much reengi-

neering.

Ourmain contribution is a portable verified instruction

scheduler, working on a portable intermediate representation

(RTL, see Figure 2). It operates over superblocks: a general-
ization of basic blocks, such that each instruction of a given

block has still at most one successor in this block, but may

also branch to another superblock [Hwu et al. 1993; Lee

et al. 1993]. The semantics of the scheduled superblock must

preserve the observable outputs on live registers of the non-

trapping executions of the original superblock. Undefined

behaviors (e.g., traps such as division by zero or incorrect

memory accesses) may be preserved or replaced by defined

behaviors. For example, the scheduler may move instructions
across some internal conditional branches as long as this is not
observable by other superblocks; it may also introduce fresh

registers (e.g., local renamings), or replace some instructions
by equivalent combinations. Section 3 recalls the specificities

of superblock (vs basic-block) scheduling.

In addition, we provide a certified checker for path du-

plications, which we use to prove tail duplication and loop

unrolling optimizations. These optimizations increase sched-

uling opportunities (at the price of code size increase). Our

checker of path duplications illustrates the interest of trans-

lation validation designs: a simple formally verified checker

enables to certify the correctness of an important class of

transformations, modulo small hints provided by oracles.

This checker and the heuristics and methods for selecting

relevant superblocks are explained in Section 4.

Next, Section 5 summarizes the several preprocessing

transformations that are applied on selected superblocks

to increase scheduling opportunities. As our prepass sched-

uling operates on RTL, the pass is technically available for

every architecture. However, the scheduling process itself is

only useful on in-order cores and needs to be parametrized

by a description of the micro-architecture. Thus, our sched-

uling oracle is decomposed into a front-end that is specific to

the architecture, and a generic backend (similarly to Six et al.

[2020]). Our verifier is completely generic, but parametrized

by rules specific to the target backend. This allows validating

some target-specific rewritings in the scheduler’s front-end

(e.g., the RISC-V expansion of Section 5.2). Hence, similar

rewritings could be easily set up for another target.

Section 6 details the implementation of our prepass sched-

uler’s backend. Finally, Section 7 describes how we formally

verify both instruction schedulings and rewritings, with a sin-

gle simulation checker. Because our checker is significantly

more powerful than the one of Six et al. [2020] (support of su-

perblocks, rewritings during symbolic execution, simulation

Formally Verified Superblock Scheduling

modulo register liveness), it is an important step forward for

certifying compilers from symbolic executions. Lastly, Sec-

tion 8 provides a thorough experimental evaluation of our

optimizations, and Section 9 concludes with related works.

Six’s PhD [Six 2021] details more in depth many parts of

this paper.We use “CompCert” to denote official releases, and

CompCertSched for our version of CompCert with schedul-

ing. Our source code is available on our gitlab server, in the

CPP22_main branch (a release consistent with this paper):

gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx/-/tree/CPP22_main

2 Postpass Scheduler for AArch64
Six et al. [2020] created CompCertSched, a postpass (post reg-

ister allocation) scheduler and peephole optimizer for Comp-

Cert, operating on basic blocks (one entry point, one exit

point) in KVX assembly code. First, their peephole optimizer

rewrites the assembly code to merge loads (resp., stores) to

consecutive locations into double or quadruple loads (resp.,

stores). Then, a dependency analysis is performed and a

scheduler, chosen by a command-line option among several

available ones, computes a reordering of instructions. Lastly,

the previous transformations being performed by untrusted

oracles, the final transformed code is validated against the

original one by a certified checker. This checker performs a

symbolic execution of both codes, that computes the final

contents of registers and of the memory as symbolic expres-

sions over their initial contents. The two codes are consid-

ered equivalent if these expressions are structurally equal.

For compilation efficiency, structural equivalence of expres-

sions is reduced to pointer equality through hash-consing
(i.e. memoizing expressions such that two structurally equal

expressions are uniquely allocated in each compiler run).
4

Since certain processor operations may trap (e.g., reading

from invalid memory locations), the symbolic execution en-

gine also checks that the set of possibly invalid expressions

of the original code includes that of the transformed code.

Example 2.1 (Simulation on symbolic states). Consider two

basic blocks 𝐵1 and 𝐵2:

(𝐵1) 𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟1]; 𝑟3 B 𝑟1; 𝑟1 B 𝑟1 + 𝑟3
(𝐵2) 𝑟3 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟3 + 𝑟3
Both 𝐵1 and 𝐵2 lead to the same parallel assignment:

𝑟1 B (𝑟1 + 𝑟2) + (𝑟1 + 𝑟2) ∥ 𝑟3 B 𝑟1 + 𝑟2.
But,𝐵1 is preconditioned by “load[𝑚, 𝑟1+𝑟2] has not trapped”,
whereas the precondition of 𝐵2 is trivially true. Hence, 𝐵2

simulates 𝐵1, but the converse is false.

Six et al. [2020] encodes such a precondition as a list of

potentially trapping terms, hence relaxing the implication

of preconditions as a list inclusion.

4
Thus, Six et al. [2020] distinguishes two notions of equality: first, the phys-

ical (or pointer) equality, bound to the OCaml == operator, that compares

these expressions by their allocation address in the compiler run; second,

the structural one, corresponding to the OCaml = operator and the Coq

definitional equality, that recursively compares their abstract syntax.

Machblock Asmblock Asmblock

AsmAbstractBasicBlock

Assembly code

expansions

Intrablock postpass

scheduling

Flattening

basic blocks

Checking

oracles’ results

Figure 3. Our AArch64 backend

1 ldr w4, [x6, #0]

2 add w2, w4, w3

3 ldr w1, [x6, #4]

4 ldr w5, [x3, #0]

5 add w3, w7, w1

6 ldr w7, [x3, #4]

7 sxtw x3, w0

8 ldr x19, [sp, #16]

9 ldr x30, [sp, #8]

10 movz x1, #0, lsl #0

11 str w2, [x1, #0]

12 movz w0, #0, lsl #0

13 str w2, [x1, #4]

1ldp w4, w1, [x6, #0]

2add w2, w4, w3

3add w3, w7, w1

4ldp w5, w7, [x3, #0]

5sxtw x3, w0

6ldp x30, x19, [sp, #8]

7movz x1, #0, lsl #0

8movz w0, #0, lsl #0

9stp w2, w2, [x1, #0]

Figure 4. Examples of Load/Store Compactions on AArch64

CompCert provides a backend for the AArch64 architec-

ture (non-VLIW processors) and thus provides us the “Mach-

to-Asm” pass of Figure 2. We have replaced this pass by the

“Mach-to-Asm” passes resulting from the composition of the

“Mach-to-Machblock” of Six et al. [2020] with the passes of

“Machblock-to-Asm” of Figure 3. The overall implementation

of our formally verified postpass scheduler on AArch64 rep-

resents a bit more than three person·months of development.

This port for a single architecture represents about 7000 LOC

of Coq, with many bureaucratic proofs.

In contrast to the peephole optimizer of [Six et al. 2020],

ours, also applied in the scheduler’s front-end, can merge

non-consecutive loads or stores within the original basic

block, as long as they respect the semantic dependencies

and offset constraints on double load/store specific to the

AArch64 ISA. Figure 4 illustrates four situations found by our

peephole, now described from top to bottom. (i) Backward

load pairing, with increasing offset (the offset of the second

load is greater than that of the first one): the pairing must

happen backward because, we need to preserve the write into

w4 on line 1, before its read on line 2. (ii) Forward load pairing,
with increasing offset: the pairing must happen forward

because, we need to preserve the read into w7 before its

write. (iii) Consecutive load pairing, with decreasing offset

(the offset of the second load is lower than that of the first

one). (iv) Forward store pairing, with increasing offset.

Like Six et al. [2020], our formally verified simulation

test validates these rewritings by performing the reverse

rewriting (i.e. from double loads/stores to pairs of simple

loads/stores) in the Asmblock-to-AbstractBasicBlock pass

(see Fig. 3). Currently, the main benefit of our peephole op-

timizations for AArch64 is code size reduction: it reduces

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx/-/tree/CPP22_main

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino

the number of generated memory transfer instructions by

about 10%, approximately 3% of the total code length (on

average across all our benchmarks). This optimization opens

the door for future similar replacements: e.g., selection of

ands or the bics instructions
5
.

Our experimental evaluation (see Sect. 8) shows that prepass

and postpass schedulings of CompCertSched are complemen-

tary, both on KVX and on AArch64.

3 Superblock vs Basic-Block Scheduling
A major improvement of our prepass scheduling over the

basic-block scheduling of Six et al. [2020] is that it operates

on superblocks (one entry point, possibly several exit points).

The scheduled superblock must simulate the original su-
perblock. We check this simulation property with a formally

proved simulation test summarized in Section 7. Similar to

the postpass verifier of Six et al. [2020], this test is based

on symbolic execution with formally verified hash-consing.
Additionally, our symbolic execution normalizes symbolic
values in order to validate some rewritings of instructions

applied in the scheduler’s front-end. And, the simulation be-

tween superblocks is proved modulo register liveness: instead
of comparing the symbolic values of all assigned registers,

we only compare, for a given exit, those which are live at

this exit (i.e. only those read by any execution starting at

this exit). Simulation modulo liveness is both more expres-

sive (since assignments of non-live registers are ignored)

and more efficient (since we only compare a small subset of

assigned registers).

Prior to scheduling, a preliminary phase selects a super-

block structure for each function [Hwu et al. 1993; Lee et al.

1993]. Here, many choices are possible as there are several

possible partitions of a given function into superblocks: in

particular, on each conditional branch, we may choose to

extend the current superblock to one of the successors, or

to end it when there is no clearly better choice. Moreover,

during the selection of superblocks, we may duplicate some

instructions (tail duplication, several variations of loop un-

rolling) in order to create new opportunities of superblock

partitioning with larger superblocks at the end.

This selection pass has a deep impact on the overall per-

formance, since intra-superblock scheduling amounts to op-

timizing some execution path at the expense of other execu-

tion paths. For example, moving the lws instruction above

the loop exit toward label .L101 in Figure 8 eliminates a stall

at each loop iteration, but slows down the path toward .L101.
Currently, our superblocks are selected to be the “most likely

path” inside the code, and instruction duplications are con-

trolled through compiler options. This is detailed in Section 4.

5
Specific versions of the corresponding arithmetic instructions update the

condition flags while writing the result.

𝐴 𝐵? 𝐶

𝑋

𝐷? 𝐸

𝑌

𝐹? 𝐺

𝑍

Figure 5. Innermost loop within a superblock

4 Selection and Extension of Superblocks
We describe here how we transform each function into a

carefully chosen partition of superblocks. The first step to

form superblocks is to identify “CFG paths”—called traces6

by Fisher [1981]—likely to be executed. Depending on the

accuracy of this static branch prediction, our optimizations

may result in a performance gain or loss.

Then, based on this prediction, we may duplicate some

paths of the CFG in order to increase the size of superblocks,

and thus the scope of our superblock scheduling. Finally, the

selection of our superblocks for scheduling combines branch

predictions (presented in Sections 4.1 and 4.2) and these path

duplications (see Sect. 4.3).

4.1 Principles of our Static Branch Prediction
We optionally attach one Boolean prediction per conditional

branch: if present it indicates the truth value for the condition

that we consider the most likely, and thus the next step in

the superblock; if absent, it indicates no prediction at this

branch, and thus the end of the superblock.

4.1.1 Detecting Innermost Loops. Fig. 5 depicts a pro-
gram consisting of two nested loops. The innermost, starting

at test “D?”, is the one of interest: this is usually where most

of the computation time lies. Ideally, our static branch pre-

diction should favor the path staying within the innermost

loops, instead of the one going out: “F?” should be predicted

as branching on “G”, in order to enable loop unrolling, which

builds a big superblock by duplication of this loop body.

However, there are other examples where both successors

of a given test remain within the loop. In such a case, with-

out additional profiling information, we end the superblock

at that test. A wrongly predicted branch can be harmful to

overall performance. In contrast, an unpredicted branch that

could have been predicted will just result in a missed op-

portunity for optimization: it will not decrease performance

compared to the original code.

4.2 Acquiring Prediction Information
Prediction information can be acquired by user annotations,

profiling (Sect. 4.2.1) or by static analysis (Sect. 4.2.2). An-

notations use __builtin_expect, as in GCC and LLVM. Profil-

ing consists in instrumenting the code to record execution

statistics into a file. Then, that file is used on subsequent

6
CompCert already defines a trace as a sequence of observational events.
Instead, we use “CFG path”, where CFG stands for “Control-Flow Graph”.

Formally Verified Superblock Scheduling

compilations to guide branch prediction. Absent annotations

and profiling information, we exploit certain patterns in the

program in order to guess the most likely direction of many

branches. In particular, innermost loops as well as their exit

branches are detected by static prediction.

4.2.1 Prediction by Profiling. We developed a profiling

system in CompCertSched. Classically, our profiling system

is used in two steps. First, the program is compiled with

special instrumentation: (i) counters are inserted into each

object file as local data blocks; the link between the counter

and the instruction in the program is given by a hash code

depending on the function being compiled and the location

within the function, so that counters can be retrieved during

recompilation; (ii) right after each branch, a special Com-

pCert builtin is inserted, which increments the appropriate

counter; (iii) at program exit, counters are written to a file,

through special linker sections added to each compiled ob-

ject file. The program is then run on representative input,

and branch counts are accumulated in a log file.

After profiling information has been recorded, the soft-

ware is recompiled. The compiler loads the logging file and

the profiler-based heuristic consists in assigning the pre-

diction to the branch more taken if the relative difference

between the two branches counts exceeds a given threshold.
7

4.2.2 Prediction by Heuristics. When no profiling is a-

vailable, our heuristics—mostly inspired by Ball and Larus

[1993]—perform an educated guess of the privileged direc-

tion. Heuristics are run sequentially, until one of them de-

cides a prediction, otherwise preserving the default “None”
prediction. (i) In a conditional branch, a comparison such as

(𝑥 < 0)? is likely to be an error-code check, so we predict

that the check succeeds (that is, the condition is not taken).

Similarly, float equality checks are predicted to be false.
(ii) If a given branch leads to a return, then that branch is

unlikely to be taken. (iii) If a branch leads away from a loop

(the destination is not in the loop body) while the other stays

in the loop, we predict the looping branch. This heuristic is

very important for later identifying the superblock following

that innermost loop. (iv) Finally, if one branch leads to a call
instruction and the other does not, privilege the latter. Exper-

imentally, these heuristics seem to detect most branches of

interest, though there are a few slightly disappointing corner

cases, in particular for heuristic (i) on conditions.

4.3 Path Duplication and Selection from Predictions
After branch prediction, we apply path duplications while

selecting superblocks: (i) tail duplication consists in dupli-

cating a path after a join point (i.e. a new superblock entry),

7
Right now, the threshold is 1: if the execution count of the “if” branch

is strictly greater than that of the “else” branch, then the “if” branch is

privileged. It would be interesting in the future to change it to a relative

threshold instead (e.g., privileging a branch if at least 70% of the executions

pass through it).

in order to move that join point further and hence, extends

the superblock ending on this join point (see Fig. 6); (ii) loop
body unrolling consists in unrolling a whole innermost loop
in order to make its unrolled loop body a big superblock, and

thus enable scheduling across the original loop iterations;

(iii) first iteration peeling, essentially consisting in replacing

while(e) {b} by if (e) {b; while(e) {b}}; (iv) loop rotation consists
in turning “while-do” loops into “if-do-while”, by duplicating

the exit-condition and its context: this enables scheduling

the context of the exit-condition within the loop body and

removes a “goto” from the loop.

In addition to these selections with duplications, path

selection is performed in two other passes of the compiler:

(i) for superblock scheduling, the pass “RTL-to-RTLpath” of

Fig. 11 involves a superblock selection, which partitions each

function into superblocks; (ii) the linearization pass, “LTL-to-

Linear” in Fig. 2, also partitions functions into superblocks:

it lays out basic blocks that are likely to flow from one to

the next in consecutive memory locations, which typically

benefits code fetch in processors.

Among these path selection phases, tail duplication is the

most complex, and the one that ends up defining which parts

of the code will be optimized. We mostly use the algorithm

from [Chang and Hwu 1988], which consists in selecting

a node that has the largest execution count, then growing

a path forward (by going through the “best successors” in

regard to execution count), and then growing it backward

(through the “best predecessors”). Then, the path stops, and

the next unvisited node is selected to grow a new path. Here

are key differences between our implementation and their al-

gorithm. (i) They have access to precise execution counts for

each node. We do not. We follow instead the branch predic-

tion information, stopping the path when that information is

None. (ii) Their algorithm was not designed for superblocks:

it allows node sharing between paths. In contrast, we enforce

paths without intersection, by ending paths before such node

sharing.

4.4 Formally Verified Checker of Path Duplications
All the duplications of Sect.4.3 are path duplications: they
duplicate paths in the CFG, while preserving syntactically

the CFG structure modulo renaming of nodes. In our com-

piler, these duplications are perfomed by dedicated untrusted
oracles followed by a common certified checker. The latter

can check in a single run any combination of these trans-

formations. Moreover, it is both simple and small (only 650

lines of Coq, including its correctness proof).

Each oracle is expected to return: (i) the resulting CFG;

(ii) the new entrypoint in this new CFG; (iii) a mapping from

nodes of the new CFG to nodes of the original CFG, that we
call the duplicate mapping, noted 𝜙 in Fig. 6.

Fig. 6 illustrates path duplication: the original is on the

left; the transformed code is on the right; and the duplicate

mapping 𝜙 , in red, indicates which node originated where.

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino

1

2 3

4

Before path duplication

1

2 3

4

After path duplication

4
′

𝜙

Figure 6. Example of Path Duplication

Nodes 1, 2, 3 and 4 are unchanged: for all 𝑖 ∈ {1, 2, 3, 4}, (𝑖 ↦→
𝑖) ∈ 𝜙 . A new node 4, named 4

′
, is introduced: it is a duplicate

of node 4, denoted (4′ ↦→ 4) ∈ 𝜙 . Node 3 is then modified so

that its successor becomes 4
′
.

Thanks to the duplicate mapping 𝜙 , it is very simple to

check that any execution step of the function 𝑓1 associated

to the original CFG is simulated by the new function 𝑓2, for

a lockstep simulation (Fig. 7). Informally, 𝑆1 ∼ 𝑆2 means

that the current program counters 𝑛1 of state 𝑆1 in 𝑓1 and

𝑛2 of state 𝑆2 in 𝑓2 satisfy (𝑛2 ↦→ 𝑛1) ∈ 𝜙 (and that return

addresses of the respective stacks also match for duplicate

mappings of caller functions).

𝑆1 𝑆2

𝑆 ′
1

𝑆 ′
2

∼

𝑡 𝑡

∼

Figure 7. Lockstep

First, our checker verifies

that the entrypoint 𝑒2 of 𝑓2
maps the entrypoint 𝑒1 of 𝑓1
through 𝜙 , ie (𝑒2 ↦→ 𝑒1) ∈ 𝜙 .

Then, for any pair (𝑛2 ↦→ 𝑛1)
in 𝜙 , we check that, if 𝑛1 is

a node in 𝑓1’s CFG, then 𝑛2
is also a node in 𝑓2’s CFG such that: (i) the instruction at

node 𝑛1 in 𝑓1’s CFG syntactically matches the instruction at

node 𝑛2 in 𝑓2’s CFG (e.g., if the instruction at 𝑛1 performs

assignment “𝑟 ′ B 𝑟1+𝑟2”, then the instruction at 𝑛2 performs

exactly the same assignment); (ii) 𝑛1 (in 𝑓1’s CFG) and 𝑛2 (in

𝑓2’s CFG) have the same number of successors; (iii) for any

𝑖-th successor 𝑛′
1
of 𝑛1 (in 𝑓1’s CFG), the 𝑖-th successor 𝑛′

2
of

𝑛2 (in 𝑓2’s CFG) must satisfy (𝑛′
2
↦→ 𝑛′

1
) ∈ 𝜙 . Hence, any step

from 𝑛1 can be simulated by a step from 𝑛2 while preserving

the simulation relation ∼ of Fig. 7.

This checker also accepts oracles that prune unreachable

parts of the CFG (from 𝑒1), as long as these pruned nodes

do not appear in 𝜙 , and oracles that negate conditions of

conditional branches: in this case, the two successors must

also be exchanged. This is useful on architectures such as

the KVX where branching costs more than not branching.

Finally, the same checker could also be applied to check

code factorizations, because intuitively, it ensures a bisimula-

tion. However, we have not yet formally proved the reverse

simulation, nor yet designed a pass leveraging this feature.

5 Rewriting for Better Scheduling
In order to remove some semantic constraints on instruction

reorderings, our scheduler’s front-end sometimes rewrites

instructions into other instructions, which possibly intro-

duces “fresh” registers. The verifier (detailed in Sect. 7) thus

checks the simulation by normalizing symbolic expressions

and by reasoning modulo register liveness.

5.1 KVX Speculative Loads
In addition to normal load instructions that trap (usually

aborting the program) if an unmapped address is accessed,

the Kalray KVX provides special load instructions known as

“speculative”, “dismissible” or “non-trapping”, which instead

return a default value. In our semantics, these loads return

the “undefined” (Vundef) value when accessing an incorrect

location.
8
Speculative loads can be freely moved before a

conditional branch, whereas a normal load cannot unless one

can prove that it cannot trap; they are thus very interesting

for superblock scheduling.

It would be correct to compile C programs entirely using

speculative loads: access to incorrect addresses is undefined

behavior, and returning a default value is a legal way of

implementing undefined behavior. Yet, this would hinder

debugging and detection of abnormal behavior. We opted to

generate speculative loads only as needed by the schedule.

Consider for instance the superblock starting at label

.L100 of Figure 8: it is the body of a loop exiting on label

.L101 that computes in $r0 the sum of the $r1 integer array
for index variable $r4 (bounded by $r2). On the left, the

superblock has been scheduled and bundled with the post-

pass scheduler of Six et al. [2020]. On the right, our prepass

scheduler has moved sxwd (originally on line 6) and lws.xs
(originally on line 9) above the conditional exit originally on

line 4. The effect of these moves is to gain one bundle and

to remove one pipeline stall on the update of $r0.9 The gain
is of 2𝑛 − 1 cycles where 𝑛 is the number of loop iterations

(there is a 1 cycle loss if there is no iteration, because the

two moved instructions have been executed while being use-

less; sxwd has been executed in parallel of compw.ge, thus
its useless execution does not lose a cycle). For this simple

loop, this is a gain of almost 25%.

Note that, for Six et al. [2020], thesemoveswere impossible

because the original superblock is made of two basic blocks,

the first one ended on the conditional exit of line 4. In order to

prove that the second superblock simulates the first one, we

need to check that the assignment of $r5 and $r3 involved

in these moved instructions have no effect on the code after

the loop exit (at label .L101). Fortunately, they are not in

the live registers of .L101 (they are “local” to the loop body).

Moreover, we need to check that these moved instructions

do not introduce any undefined behavior should label .L101
be taken. This is the case, because the scheduler’s front-end

8
Reading from an incorrect location w.r.t CompCert semantics may return

an arbitrary value if that memory location is accessible to the CPU, regard-

less of what was in that location. This is a valid refinement of “undefined”.

9
Only one stall remains in the improved scheduling, because loads have a

latency of 3 cycles on the KVX.

Formally Verified Superblock Scheduling

int sum(int *t, int n) {
int s=0; for (int i=0;i<n;i++) s += t[i];
return s;

}

Sequence of bundles as

emitted by Six et al. [2020]

(makespan of 8 cycles)

1 L100:

2 compw.ge $r32 = $r4 , $r2

3 ;;

4 cb.wnez $r32? .L101

5 ;;

6 sxwd $r5 = $r4

7 addw $r4 = $r4 , 1

8 ;;

9 lws.xs $r3 = $r5[$r1]

10 ;; // 2 STALLS

11 addw $r0 = $r0 , $r3

12 goto .L100

Effect of our prepass

scheduler in between

(makespan of 6 cycles)

.L100:

sxwd $r5 = $r4

compw.ge $r32 = $r4 , $r2

;;

lws.s.xs $r3 = $r5[$r1]

;;

cb.wnez $r32? .L101

;; // 1 STALL

addw $r0 = $r0 , $r3

addw $r4 = $r4 , 1

goto .L100

Figure 8. Scheduling and bundling a loop body on the KVX

has rewritten the trapping load lws.xs into a non-trapping

(speculative) load lws.s.xs.
We have thus slightly extended RTL to support trapping

load instructions. Formally, CompCertSched intermediate

representations model these instructions for all architectures.

But, they are only selected on KVX (i.e. except for KVX, the

compiler will fail to produce assembly code, if an intermedi-

ate pass selects them).

5.2 Expanding Operations on RISC-V
Figure 9 presents a fragment of C code and the resulting

RISC-V superblock, both for CompCert and for CompCert-

Sched. Registers x10, x11 and x12 respectively correspond

to variables x, y and t of the input program. CompCert does

not attempt to minimize pipeline stalls: on line 1, the lw
instruction dereferencing x12 in x7 may induce pipeline

stalls at line 3, where x7 is added to x10, with the result

written to x6. Moreover, CompCert expands the comparison

with immediate only in the “Mach-to-Asm” pass (Figure 2):

the immediate (here 7) is stored in the scratch register x31
(in RISC-V, x0 is a read-only register equal to 0). Additionally,
CompCert does not attempt to remember that from line 4,

register x31 has value 7: thus it reloads 7 in x31 a second

time on line 6.

On RISC-V, our prepass scheduler’s front-end performs

an expansion of comparisons with immediate (branching

or not), and of some other instructions (arithmetic opera-

tions on immediates, casts, loads of constants, and length

conversions). Intermediate values generated by expansions

are stored into fresh pseudo-registers (before register al-

location), and the untrusted preprocessor uses a dynamic

value numbering system to avoid redundant instructions

if (x + *t < 7) if (y < 7) return 421;

1 lw x7 ,0(x12)

2 // x7 MAY STALL

3 addw x6,x10 ,x7

4 addiw x31,x0 ,7

5 bge x6,x31,.L10

6 addiw x31,x0 ,7

7 bge x11 ,x31,.L10

lw x7, 0(x12)

addiw x12, x0, 7

addw x6, x10 , x7

bge x6, x12, .L10

bge x11 , x12, .L10

Figure 9. On the left: the RISC-V assembly produced by

CompCert (3.8). On the right: the RISC-V assembly produced

with our prepass’ front-end (one addiw & one potential lw
stall have been gained, resulting in a potential gain of two

cycles).

(a Common-Subexpression Elimination limited to the su-

perblock, operating on every instruction in the path). For-

tunately, in Figure 9, the fresh pseudo-register assigned to

immediate 7, has been allocated (after the prepass schedul-

ing) into x12 (register reuse). In the general case, because

the scope of our preprocessing is limited to a superblock,

this memoization of immediates should only have a limited

impact on register pressure.

Performing these expansions within the scheduler’s front-

end increases scheduling opportunities. Here, the assignment

of x12 to 7 is interleaved by the scheduler between the load of
0(x12) into x7, and the addition of x7 to x10: this potentially
saves one cycle.

Our formally verified simulation test must check that the

expansions performed by the untrusted scheduling prepro-

cessor simulate the original RTL superblock. This is achieved

by applying rewriting rules mimicking those of the prepro-

cessor within the symbolic execution and formally proving

that these rewritings preserve the semantics of symbolic val-

ues. It would be difficult to directly prove the memoization

mechanism within the preprocessor, whereas it is proved

“for free” by our simulation test with symbolic execution.

Even without memoization, verifying these rewriting rules

on symbolic values is much easier than verifying them di-

rectly on the RTL code. Indeed, symbolic values are directly

expression trees, whereas the RTL code is a CFG of register

assignments. In particular, the rewriting rules on symbolic

values do not involve registers (and substitution of registers).

For example, let us consider the following rewriting on RTL

conditional branch instructions (written in pseudocode):

𝐿1: if (GEs 7) [𝑟1] goto 𝐿2 else goto 𝐿3

→
{
𝐿1: 𝑟2 B (ADDiwx0 7); goto 𝐿4
𝐿4: if GE[𝑟1, 𝑟2] goto 𝐿2 else goto 𝐿3

where 𝑟2 is a fresh pseudo-register and 𝐿4 is a fresh node.

This rewriting is simply expressed in the symbolic represen-

tation by the rule

(GEs 7) [𝑣] → GE[𝑣, (ADDiwx0 7)]
where 𝑣 is the symbolic value of 𝑟1.

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino

Moreover, verifying that rewritings of the untrusted pre-

processor correctly deal with “fresh” registers is just a par-

ticular case of the simulation test modulo liveness: the ex-

pansion on the right-hand side of Figure 9 is correct because

x12 is not live at label .L10. Hence, embedding the rewriting

rules within the symbolic execution allows the proof of these

rewrite rules to ignore liveness issues. In contrast, expressed

in a preprocessing of the simulation test (like in the postpass

of [Six et al. 2020]), rewriting rules would be required to

satisfy a bisimulation modulo register liveness.

5.3 Register Renaming
Register allocationmay introduce a lot of name dependencies

(e.g., write-after-write and write-after-read) by reusing the

same register for previously independent pseudo-registers.

This may reduce the number of possible schedules. On the

contrary, before register allocation name dependencies are

rare because “fresh” registers can be generated at any time.

This is a big advantage of pre- over postpass scheduling.

However, the path duplications of Section 4.4 may induce

name dependencies. In particular, as illustrated on the left-

hand side of Fig. 10, loop unrolling produces two almost

exact copies of the loop body (shown here in assembly in-

stead of RTL), thus leading to name dependencies between

instructions of the original and duplicated loop body. These

name dependencies are due to the reuse of register names

(e.g., d1 and d2 in Fig. 10) and can be removed by renamings

with “fresh” names (resp. d4 and d3). We implemented an

oracle providing such renamings, and we check the correct-

ness of its results with our certified simulation test modulo

liveness over superblocks. Therefore, renamed registers must

either not be visible outside the superblock (this is the case

in Fig. 10), or else the expected data flow be restored by as-

signing the correct value to the expected name before exits,

at the price of extra-moves.

The result is a superblock-local register renaming pass,

which allows for greater scheduling flexibility within the

superblock while preserving the expected data flow with

respect to the successor superblocks. Note that CompCert’s

register allocator [Rideau and Leroy 2010], with coalescing

and live-range splitting, eliminates most of the extra-moves

created by renaming.

5.4 If-Lifting: Moving Up Side Exits in Superblocks
For architectures such as AArch64which do not provide spec-

ulative loads, load instructions cannot move above side-exits

without adding a potential trap (which is incorrect). Even

after the register renaming on the left-hand side of Fig. 10,

this “trap-after-exit” dependency between lines 9 and 7 pre-

vents the desired interleaving of the two occurrences of the

initial loop body. A workaround (Fig. 10, right) is to “lift”

the side-exit of line 7 above the two arithmetic operations

of lines 5 and 6. Interleaving these operations with those of

the second body is now possible. On ARM Cortex A53 (dual

double sumsq(double *x, int len) {
double s = 0.0;
for (int i=0; i < len; i++) s += x[i]*x[i];
return s;

}

1 .L101:// loop start

2 ldr d2 ,[x0,w2,sxtw #3]

3 add w2, w2, #1

4 cmp w2, w1

5 fmul d1, d2, d2

6 fadd d0, d0, d1

7 b.ge .L100

8 // end body 1

9 ldr d2,[x0,w2,sxtw #3]

10 add w2, w2, #1

11 cmp w2, w1

12 fmul d1, d2, d2

13 fadd d0, d0, d1

14 b.lt .L101

15 // end body 2

16 .L100:// loop exit

17 // only d0 is live here

18

.L101:

ldr d2 ,[x0,w2,sxtw #3]

add w2, w2, #1

cmp w2, w1

b.ge .L102

ldr d3,[x0,w2,sxtw #3]

add w2, w2, #1

fmul d1, d2, d2

cmp w2, w1

fmul d4, d3, d3

fadd d0, d0, d1

fadd d0, d0, d4

b.lt .L101

b .L100

.L102:

fmul d1, d2, d2

fadd d0, d0, d1

.L100:

Figure 10. Interleaving of unrolled loop-bodies on AArch64.

issue, where each of these operations takes 6 cycles), this

reduces the initial makespan from 25 to 21 cycles (a gain of

16%). The price to pay is the compensation code at the “fresh”

label .L102 which duplicates these two arithmetic opera-

tions for when the side-exit is taken. The correctness of this

transformation is verified by combining existing verifiers of

CompCertSched (modulo minor extensions).
10
See [Justus

Fasse 2021] for details.

6 Oracle of the Superblock Scheduler
After superblock selection, each superblock is scheduled

separately. Our superblock scheduling oracle, after prepro-

cessing the superblock according to Section 5, schedules

the transformed superblock by extending the principles of

Six et al. [2020] for basic block scheduling. The scheduling

problem of a given superblock is expressed through a sys-

tem of constraints, where each instruction 𝑗 , including exit

branches, is associated to a time-slot 𝑡 (𝑗) expressing the

number of clock cycles at which it is estimated that this in-

struction is executed. Constraints on 𝑡 (𝑗) are of two kinds:

resource constraints (i.e. feasible allocations of pipeline units)

and latency constraints (i.e. semantic and time dependen-

cies between instructions). In order to find schedules that

preserve the semantics in presence of side-exits, we need

to extend the latency constraints of Six et al. [2020], with

latency constraints specific to branching instructions: (i) we

represent live variables at side exits, by extra reads of the

branch instruction; (ii) we forbid trapping instructions to

move above side-exit, by making each trapping instruction

10
However, it is currently implemented through an intricate combination

of passes: it is thus not yet integrated in our mainline CompCertSched. Its

code is in the CPP22_if_lifting branch
gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx/-/tree/CPP22_if_lifting

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx/-/tree/CPP22_if_lifting

Formally Verified Superblock Scheduling

depend on the preceding side-exit with a latency of 1 cycle;

(iii) similarly, we forbid side-exits to be reordered, through a

latency of 1 between successive side-exits.

Compared to postpass scheduling [Six et al. 2020], our

prepass scheduler reasons at a higher level of abstraction:

not only do we have an unbounded amount of registers,

but also certain pseudo-instructions have not yet been ex-

panded into sequences of elementary assembly instructions.

We, however, still have to assign latencies and resource us-

age to instructions. On the Kalray KVX, we generate the

assembly instruction sequence, and then call the functions

of the postpass scheduler that give latency and resource us-

age. On AArch64 and RISC-V, for a limited number of cores

(Cortex-A53, Cortex-A35; Rocket, SweRV EH1, SiFive U74),

we implemented these functions directly, with numbers from

the available documentation or from relevant scheduling pa-

rameters in the LLVM compiler.

One difficulty is that the format of latency and resource

constraints, originally from [Six et al. 2020], was designed for

fully pipelined processors: processors in which there are re-

source constraints on which instructions can be issued at the

same clock cycle, but no constraints across different clock cy-

cles. That is, on a fully pipelined processor, such as the KVX,

if a multiplication was issued at a cycle 𝑡 , then it does not pre-

vent another multiplication from being issued at cycle 𝑡 + 1.

In many processors, some units, especially dividers, are not

pipelined: an instruction entering the unit monopolizes it

until completion. A general solution would be to introduce

multiple-cycle resource reservations. We are waiting to have

more core descriptions to introduce a more general format

(with added functionality, such as operand reads at different

cycles). Meanwhile, we handle this by adding a constraint

𝑡 (𝑗 ′) − 𝑡 (𝑗) ≥ 𝛿 when 𝑗 and 𝑗 ′ are two successive uses of the
same non-pipelined unit, where 𝛿 is an estimated number

of cycles of use.
11

A drawback is that this does not allow

reordering operations using the same non-pipelined unit

with respect to one another.

Postpass optimization within a basic block [Six et al. 2020]

has a single objective, reducing themakespan: the time when

the last value produced by the basic block is available. In

contrast, superblock prepass optimization has multiple, con-

flicting objectives: (i) reducing the makespan (with respect

to the final exit); (ii) reducing register pressure (the number

of physical registers needed), or, as a proxy, the live ranges

of values; (iii) pushing side-exits as early as possible.

For solving the constraint system, we reuse two algorithms

of [Six et al. 2020]. (i) Forward list scheduling: time slots are

greedily filled by increasing time (clock cycle), adding in-

structions to each slot as long as they respect the resource

and latency constraints, with a priority for instructions that

start the longest path in the latency graph. Forward schedul-

ing tends to place exit points as soon as possible, but may

11
The cycle count for division often depends on the quotient bit-length.

increase the live ranges of variables. (ii) Backward list sched-
uling: time slots are greedily filled by decreasing time, with

a priority for instructions that end the longest path in the

latency graph.

A difficulty not present in postpass scheduling is that

scheduling some instructions early, whereas their result is

not used soon, increases the number of live pseudo-registers;

the risk is that a superblock that originally used less pseudo-

registers than the number of physical registers in the pro-

cessor could, after scheduling, use more, resulting in costly

spill code (loads and stores to stack slots) being inserted by

the register allocation pass. The risk of exceedingly early

scheduling is higher with the forward list scheduler than

with the backward scheduler, thus we originally favored the

latter for prepass scheduling. In addition, we introduced:

(iii) Zigzag scheduling: forward scheduling is used to place

exit points, and then backward scheduling places other in-

structions. (iv) Register-pressure-aware scheduling: the for-
ward list scheduler is made aware, at each allocation step,

of the number of live pseudo-registers in each register class

(e.g., integer vs floating-point registers). When this number

becomes close (e.g., the difference is less than three) to the

number of physical registers in the processor, the strategy is

modified: the scheduler favors instructions which decrease

the number of live registers in that class, and chooses the one

which decreases it the most. If no instruction decreases reg-

ister pressure, we favor instructions which do not increase

the number of live registers of the given class, with long

paths to the exit in the latency graph. Finally, if all possible

instructions increase the number of live registers, we wait

for an instruction that does not, and if none becomes avail-

able after 5 cycles, we schedule the next instruction with the

normal list scheduling strategy (priority for instructions that

finish the longest path in the latency graph). When the num-

ber of live registers drops below the threshold, the normal

list scheduling strategy applies again. See [Nicolas Nardino

2021] for details.

7 Formally Verified Superblock Scheduler
We now describe how our superblock scheduler is formally

verified. For the sake of concision, this description remains

informal, and in particular, without Coq definition. Full de-

tails are given in [Six 2021, Chap. 5&7] and in our Coq code

(see the URL given on page 3).

Figure 11 sketches the design of our formally verified RTL

superblock scheduler. RTLpath is a new IR which annotates

RTL programs with information about superblocks: entry-

points, exit-points and register liveness. It also represents

the execution of a whole superblock in a single step.

Hence, our formally verified superblock scheduler requires

that its input RTL program has been previously rewritten,

as described in Section 4, in order to exhibit “relevant” su-

perblocks in each function. Then, the untrusted scheduler

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino

RTL RTLpath

RTLpathRTL

Superblock selection

+ liveness analysis

(1)

Prepass

scheduling
(2)

Forgetting

superblocks

(3)

Figure 11. Our Formally Verified RTL Superblock Scheduler

RTL RTLpath

𝑆1 𝑆2

𝑆 ′
1

∼

𝜖
∼

RTL RTLpath

𝑆1 𝑆2

𝑆 ′
1

𝑆 ′
2

∼

𝑡 𝑡

∼

𝑆 ′
1
in the path & |𝑆 ′

1
|< |𝑆1 | 𝑆 ′

1
out of the path

Figure 12. RTL to RTLpath

(Sect. 6) transforms each superblock, which are checked for

simulation by the verified checker, described in this section.

The final pass simply forgets the RTLpath annotations of the

scheduled program; by construction, the RTL execution of

the scheduled program simulates its RTLpath execution.

7.1 Definition of the RTLpath IR
RTLpath extends the RTL CFG of instructions, with a super

CFG-structure of paths, where such a path represents a su-

perblock. But, for the formal proofs, the path-structure does

not need to partition the CFG into superblocks: two distinct

paths are not required to be disjoint.

Our notion of CFG path is more like the usual notion of

trace in “trace-scheduling”. To each instruction we assign an

optional default successor. Instructions with a default succes-

sor are either basic instructions, or conditional branches.
12

A CFG path connects a sequence of instructions to their de-

fault successors; the final instruction of a path has no default

successor. The whole execution of a path of length 𝑝 emits

at most one observational event, in the CompCert seman-

tic sense (call to an external function, access to a volatile

variable): at its final node (this is important for forward sim-

ulation proofs). In fact, all functions calls are restricted to be

at the final node. Note that one given CFG path represents

several execution paths: the execution may exit early from

the CFG path through an intermediate conditional branch.

RTLpath comes with a semantics: one step of RTLpath

execution runs all RTL instructions from path entry to path

exit. States are the same as for RTL, but store as well that all

caller functions are well-formed RTLpath functions.

12
For conditional branches, the default successor is the one that “continues

the sequence” (i.e. the “else” branch). Indeed, it has the smallest latency in

usual pipelines. It also corresponds to the one predicted in Sect. 4: conditions

have been negated if necessary, as explained at the end of Sect. 4.4.

7.2 Bisimulation of RTLpath and RTL Executions

RTLpath RTL

𝑆1 𝑆2

𝑆 ′
1

𝑆 ′
2

∼

𝑡 𝑡 +
∼

Figure 13. Back to RTL

With these definitions, the

forward simulation of RTL-

path by RTL is reduced to

a simple “Plus-simulation”

(Fig. 13): an RTLpath step

runs at least one RTL instruc-

tion, but at most 𝑝 + 1 where

𝑝 is the size of the executed

path.

The reverse simulation, of RTL by RTLpath, is less triv-

ial. In an RTLpath execution, successive states necessarily

correspond to entry paths. In particular, each return address

stored in the stack is itself an entry path of the return func-

tion (recall that a call instruction must be last in a path, so

its return location is at the start of another path). Relation

∼ matching RTL states with RTLpath states encodes these

invariants. More generally, 𝑆1 ∼ 𝑆2 relates an RTL state 𝑆1
with an RTLpath state 𝑆2 that is the entry point of a CFG

path containing 𝑆1. As pictured in Figure 12, one RTL step is

simulated by one RTLpath step on path exits. Otherwise, the

RTLpath execution stutters. To prevent silent infinite loops

from being simulated by any program, CompCert forward

simulations require proving that the number of successive

stuttering steps is finite: here, this number is bounded by the

size of the current CFG path.

7.3 Path-Executions Equivalence Modulo Liveness
Given the original RTL program, the oracle pictured in pass (1)

of Figure 11 produces an RTLpath program, annotated with a

set of “input” (i.e. live) registers on each path entry. The well-

formedness of this RTLpath program is checked by a certified

simple forward analysis, that simultaneously checks the cor-

rectness of liveness information: the set of input registers
given on each path entry must include the sets of registers

actually read in all executions starting from this path entry.

For RTLpath programs with correct liveness information,

we prove a “lockstep” simulation (see Fig. 7) of RTLpath

executionmodulo liveness: here, 𝑆1 ∼ 𝑆2 means that RTLpath

states 𝑆1 and 𝑆2 only match on live registers, including those

that have been stored in the stack during function calls. Since

RTLpath states (like RTL ones) comprise a well-formed list of

stack frames modeling the call stack, it is easy to define this

simulation relation that both involves registers and memory.

7.4 Design of the Certified RTLpath Scheduler
The scheduling oracle takes as input an RTLpath function,

computes a schedule for each superblock (each path), and

returns a tuple (𝑐, 𝑒, 𝑝𝑚, dm) where 𝑐 is the scheduled RTL

CFG, 𝑒 is its main entry-point, 𝑝𝑚 is its associated pathmap,

and dm is the reverse mapping from entry paths of the sched-

uled CFG to the original CFG (like the duplicate mapping

𝜙 in Sect. 4.4). Given an original RTLpath function f1, our

Formally Verified Superblock Scheduling

Symbolic state for the left-hand side of Fig. 8

if (r4 ≥ r2) {
r32 B (r4 ≥ r2);
goto .L101

}
ok[lws.ws(sxwd(r4),r1)];

r0 B (r0+(lws.s.ws(sxwd(r4),r1)))
∥ r3 B (lws.s.ws(sxwd(r4),r1))
∥ r4 B (r4 + 1)
∥ r5 B (sxwd(r4))
∥ r32 B (r4 ≥ r2);
goto .L100

Symbolic state for the right-hand side of Fig. 8

if (r4 ≥ r2) {
r3 B (lws.s.ws(sxwd(r4),r1))

∥ r5 B (sxwd(r4))
∥ r32 B (r4 ≥ r2);
goto .L101

}
r0 B (r0+(lws.s.ws(sxwd(r4),r1)))

∥ r3 B (lws.s.ws(sxwd(r4),r1))
∥ r4 B (r4 + 1)
∥ r5 B (sxwd(r4))
∥ r32 B (r4 ≥ r2);
goto .L100

Figure 14. Comparing Symbolic States of the KVX Superblocks given in Figure 8.

certified pass turns the (𝑐, 𝑒, 𝑝𝑚) returned by the oracle into

an RTLpath function f2, after verifying the well-formedness

conditions (like in Sect. 7.3). Then, thanks to the dmmapping,

it checks that f2 “matches” f1: (i) dm is a mapping from path

entries of f2 to path entries of f1; (ii) for each path entry

pc2 of f2, given pc1 its matching path entry in f1, the sym-

bolic execution of the f2 path starting at pc2 simulates the

symbolic execution of the f1 path starting at pc1 modulo

live registers of f1 (with the simulation checker detailed

in Sect. 7.5). Formally, the forward simulation proof of our

scheduler also corresponds to a lockstep simulation, similar

to the one of Sect. 7.3.

7.5 Certifying the RTLpath Simulation Test
Fig. 14 illustrates the comparison of symbolic states for vali-

dating the transformation of Fig. 8. Each symbolic state is

a sequence of conditional exits followed by a final one. The

state of memory and registers on each exit is represented

by a preconditioned parallel assignment (following the ter-

minology of Example 2.1), where the precondition is a list

of possibly trapping expressions, within the “ok” keyword
in Fig. 14. Our simulation test checks the implication of pre-

conditions on each exit by testing list inclusion: here, the

lists of the right-hand side on both exits are implicitly empty.

And the simulation test compares the symbolic values of

live registers on each exit: here, only r0 is live at exit .L101,
whereas only r0, r1, r2, and r4 are live at exit .L100.13

Our formal development follows the general lines of that

of [Six et al. 2020]: we define an abstract model of symbolic

execution, allowing for a definition of a specification for the

simulation test in this symbolic semantics, then we refine

this model into an efficient implementation that uses their

formally verified hash-consing technique, extended with our

rewriting engine.

We retain their approach of modeling the impure com-

putations involved in hash consing in a monad of “impure”

computations [Boulmé 2021]. The core of our simulation

test is implemented in this monad and proved correct by a

lemma, expressing that when the test normally terminates

13
Superblock of Fig. 8 is a loop of entry .L100 and exit .L101, where r0

is the result of the loop, r4 is the loop counter, and where r1 and r2 are

parameters.

then property (ii) of Section 7.4 holds. The primary goal of

their refinement technique is to circumscribe the reasoning

on impure computations as much as possible.

However, our abstract model of the simulation test is more

complex than the one of [Six et al. 2020] on several points.

(i) We consider superblocks: the symbolic state thus must rep-

resent several execution paths (where [Six et al. 2020] only

deal with a single execution path). (ii) Our simulation test

compares symbolic states on each path exit modulo liveness.

(iii) Our notion of RTL/RTLpath state is richer than their no-

tion of Asm/Asmblock state. Note that, since call instructions

are always at the end of a path, return addresses in the call

stack must always point to the start of a path. (iv) In Comp-

Cert’s memory model, a pointer comparison fails when these

pointers are allocated in distinct memory blocks.
14
Hence,

arithmetic operators that may compare pointers (compar-

isons of integers of the same size as the pointers) contain a

read dependency on memory, which may lead a naive im-

plementation of the simulation test to reject some desirable

schedules. The solution of [Six et al. 2020] to this technical

issue works on the last IR of CompCert (assembly), but not in

an intermediate IR such as RTLpath. Alternatively, we solved

this issue by proving that the memory within a path exe-

cution is only modified by store instructions, which do not

change the results of pointer comparisons: thus, all pointer

comparisons do not really depend on the current memory,

but only on the initial memory of the path execution.

7.6 Verified Rewritings during Symbolic Execution
In contrast to rewriting rules of Six et al. [2020], which hap-

pens during the “Asmblock-to-AbstractBasicBlock” compi-

lation, ours are directly integrated in the symbolic execu-

tion engine. As explained in Section 5.2, our approach gives

simpler proofs about these rewriting rules, but makes the

symbolic execution implementation a little trickier. In par-

ticular, we have to integrate them within the hash-consing

mechanism.

Our rewriting rules are always applied at the top of hash-

consed terms (like a smart constructor). The rewritten terms

14
Comparison of pointers pointing to different blocks has undefined behav-

ior according to the C standard [ISO 2011, §6.5.8p5].

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino

are then turned into proper hash-consed terms by a dedi-

cated (impure) function that only transforms their top nodes.

In other words, the management of hash-consing during

rewriting is delegated to this dedicated function: this both

simplifies the implementation of rewriting rules and its for-

mal proof.

Formally, a rewriting rule must turn a term 𝑡1 into a term

𝑡2 such that for all register and memory states, if evaluation

of 𝑡1 does not fail, then 𝑡2 evaluates to the same value as 𝑡1.

This allows us to rewrite 𝑡1 as 𝑡2 in parallel assignments but
not in preconditions. For example, as illustrated in Fig. 14,

rewriting lws.ws operation into lws.s.ws suffices for our

certified simulation test to validate the transformation in

Fig. 8.

As explained in Section 5.2, on the RISC-V backend, we

succeeded to move most of the assembly expansions ex-

pressed at the “Mach-to-Asm” pass in CompCert (see Fig. 2)

as rewriting rules on RTLpath. This required us to overcome

a little issue: while the forward simulation proof of “Mach-

to-Asm” supports that expansions replace the Vundef value

by any other value, this is not supported in the proof of our

rewriting rules. In CompCert, Vundef represents a potential

undefined behavior that has not yet been observed (e.g., read

into an uninitialized register): it is a poison value which

does not abort computation until it becomes observable. In

our case, Vundef may appear when evaluating some RISC-V

macro-operations on unexpected immediate arguments (e.g.,

the shrximm macro-operation used to model division by a

power of two, expansed into a sequence of right shifts and

additions). The “Mach-to-Asm” expansion typically replaces

Vundef by a silent arithmetic overflow.

Our simple workaround is to introduce within rewriting

rules some dedicated pseudo-instructions able to generate

the necessary Vundef (hence, acting like defensive tests): these

extra pseudo-instructions are further removed in the “Mach-

to-Asm” pass. Note that these extra pseudo-instructions do

not disturb the scheduling because they are assigned 0 la-

tency and 0 resource.

On complex ISAs, such as AArch64, many expansions

of “Mach-to-Asm” pass cannot be expressed at RTL level.

This is due to limitations of RTL, which does not support

arithmetic instructions modifying several pseudo-registers

in parallel, such as instructions with side effects on flags.

Even on RISC-V, expansions that involve stack-accessing

instructions cannot really be expressed at RTL level, because

the layout of stack frames is not yet defined at this level (see

Fig. 2): stack accesses are only handled very abstractly.

8 Experimental Evaluation
Tables 1 to 3 summarize our experiments on several archi-

tectures: AArch64 is an ARM Cortex A53 (AArch64) in a

Raspberry Pi 3 running Ubuntu 18.04.5 LTS;
15 KVX a Kalray

KV3 “Coolidge” core;RISC-V a SiFive U74 RISC-V dual-issue,

in-order core in a HiFive Unmatched board. In each case, we

tie the process to one core of the machine, and measure clock

cycles using hardware counters. We run different suites: the

benchmarks of [Six et al. 2020], the computational oriented

Polybench [Pouchet 2012], and the embedded systems ori-

ented TACLeBench [Falk et al. 2016].

First, Table 1 measures the cumulative impact of each grad-

ually introduced optimization compared to CompCert 3.8.
16

Note that postpass scheduling and peephole optimizations

apply only to AArch64 and KVX, and RTL expansion only

applies to RISC-V. The postpass scheduling for KVX is the

one of [Six et al. 2020]; LICM (Loop Invariant Code Motion)

is the one of [Monniaux and Six 2021]. The Q1, Med and Q3

values respectively denote the first quartile, the median, and

the third quartile on the entirety of our benches. Here are a

few conclusions. (i) For both the AArch64 and KVX cores,

postpass scheduling has a significant impact. For the KVX,

this impact is bigger, as expected on a VLIW architecture.

(ii) LICM is another meaningful optimization, producing

a gain of 20% on some benchmarks. (iii) Prepass schedul-

ing (without any loop unrolling) also helps, increasing by

5-10% for the AArch64 and RISC-V cores. This is mostly due

to removing the false dependencies (compared to the post-

pass scheduling). In contrast, the KVX core, with 64 user

registers, is barely affected (in absence of optimizations for

building large superblocks such as loop unrolling). Using

both prepass and postpass scheduling together on AArch64

is the best setting, mainly because the latter fine-tunes the

placement of spills and other instructions that have been

expanded between RTL and Asm. (iv) Tail duplication and

loop unrolling, combined with prepass scheduling, increase

performance by about 5% on KVX. Those are also useful on

specific benches thanks to their ability to enlarge the size of

superblocks. (v) Loop rotation used alone has a small impact

on RISC-V, but the postpass (on AArch64) benefits from it

as the rotation may provide more scheduling opportunities.

It shines mostly for the KVX architecture, since it results

in a more efficient bundling of the loop header in postpass.

(vi) RTL expansions (RISC-V only) have no significant im-

pact on average (for all benchmarks) but they can, on some

programs, result in a large performance gain when combined

with prepass scheduling. We observe an improvement of 4%

on the third quartile.

We also compared our best version of CompCertSched to

GCC. Table 2 shows the gain (can be negative) of using GCC

with the given optimization flag, versus our best version of

CompCertSched, for the three suites.

15
This dual-issue, in-order core was chosen because it is similar to other

in-order ARM cores used in embedded systems; also it is used as little core

in “big.LITTLE” settings.

16
For the KVX target, not available in CompCert, we use the one from [Six

et al. 2020] without postpass scheduling (nor bundling).

Formally Verified Superblock Scheduling

Table 1

Improvement of Cumulated Optimizations wrt CompCert on 3 Benchmarks suites

AArch64 KVX RISC-V

Setup Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

+Peephole & Postpass +4.6% +13.7% +21.8% +16.5% +32.6% +54.5% - - -

+LICM +7.4% +21.9% +42.9% +19.3% +41.1% +65.9% +0.1% +3.8% +10.0%

+Prepass (List) +10.4% +27.5% +47.8% +19.7% +43.9% +69.0% +5.6% +14.0% +30.0%

+Tail dupl. +13.5% +28.1% +47.7% +20.7% +43.1% +70.1% +5.4% +14.3% +30.8%

+Loop unroll. +16.1% +30.1% +62.3% +23.3% +47.5% +88.1% +6.5% +13.6% +31.7%

+Loop rotate +18.2% +36.0% +63.5% +23.7% +53.7% +97.3% +6.9% +13.5% +32.2%

+RTL expans. (“Best”) - - - - - - +6.8% +14.3% +36.1%

Table 2

Improvement of GCC wrt “Best CompCertSched” on 3 Benchmarks suites

GCC-O1 -5.8% +0.9% +12.5% -20.6% -4.0% +10.8% -3.4% +6.9% +20.0%

GCC-O2 +6.2% +15.6% +39.9% +4.7% +21.5% +62.6% +17.7% +29.9% +67.1%

Table 3

Improvement of Alternative Prepass Scheduling wrt “Best” with List Scheduling on 3 Benchmarks suites

“Best” & Regpres +17.4% +36.6% +66.4% +23.7% +53.7% +97.3% +7.5% +14.4% +37.2%

“Best” & Backward +16.2% +34.1% +62.0% +23.6% +52.3% +91.1% +6.7% +15.7% +33.6%

“Best” & Zigzag +16.7% +32.0% +66.3% +23.3% +50.8% +96.6% +7.3% +14.8% +34.6%

We are getting closer to GCC -O2 with our optimizations

on AArch64 and KVX, and we are better than GCC -O1 in

most cases on KVX. On RISC-V, we still have a margin of

progression: we suspect the lack of postpass scheduling and

of strength reduction. RISC-V needs several instructions for

operations, such as accesses to consecutive indices in an

array, feasible in one instruction on KVX or AArch64 and

also strength-reducible, thus the lack of strength reduction

is more evident on a RISC-V core than on architectures with

more powerful individual instructions. More generally, less

work went into the RISC-V backend.

Another experiment, in Table 3, shows that the prepass

scheduling algorithms of Section 6 produce almost equiva-

lently efficient code. List scheduling seems generally a little

better than its variants for KVX, but not for AArch64 and

RISC-V where register-pressure-aware and backward (re-

spectively) seems to give better results.

We measured on KVX that branch prediction from profil-

ing information, instead of our static heuristics, gives only

negligible benefit (+1% on Q3, 0% on Q1 and Median). To

evaluate the impact more finely, we first profiled all our

benchmarks, then we modified the compiler code to count

the number of times that our heuristics gave a wrong predic-

tion. Out of the 17816 branches that could be profiled, only

5% of them were wrongly predicted, and 14% of them had

a pattern not caught by our used heuristics.
17
This gives us

confidence in our static branch prediction.

We also measured that the preprocessing pass exploit-

ing non-trapping loads on KVX yields an average gain of

about +1.5% on benchmarks where replacements are made.

17
That’s only half of the branches encountered: this is because our bench-

marks do not have a 100% code coverage, only a part of each benchmark

code is actually executed.

This score would possibly be higher if followed by an if-

conversion pass.

Finally, we have also measured the effect of our experi-

mental “if-lifting” optimization of Section 5.4 (together with

register renaming) on AArch64. Onmost benches, it has little

effect with only a few percent of performance gain or loss

when added to “Best”. Nonetheless, on some, we observe a

marked improvement of more than five percent, for a code

size increase below 5%. Interestingly, the efficiency gain on

TACLeBench’s Susan exceeds 30%.

Our verified checkers ensure that if code compiles suc-

cessfully, then it is compiled correctly. However, there is

the possibility that the scheduler, peephole optimizer, ex-

pander. . . are incorrect and code is rejected by the checker.

We thus test CompCertSched on benchmarks, applications,

as well as hundreds of random programs generated by com-

piler fuzzers, such as CSmith
18
[Yang et al. 2011] and Yarp-

Gen
19
[Livinskii et al. 2020]. CSmith found one bug in the

AArch64 peephole optimizer, which produced an incorrect

replacement which was refused by the verified checker; the

bug case was reduced using CReduce
20
[Regehr et al. 2012]

and then fixed.

9 Related Works and Conclusions
Remarks on heuristics within compilers. We imple-

ment a variant of Ball and Larus [1993]’s static branch predic-

tor, as do GCC (citing [Wu and Larus 1994]) and LLVM [Alo-

visi 2020]. Profile-guided scheduling, the “ground truth”, per-

forms better only on a small minority of examples, thus we

do not expect that more advanced static prediction [Deitrich

18https://github.com/csmith-project/csmith
19https://github.com/intel/yarpgen
20https://embed.cs.utah.edu/creduce/

https://github.com/csmith-project/csmith
https://github.com/intel/yarpgen
https://embed.cs.utah.edu/creduce/

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and Nicolas Nardino

et al. 1998] would improve the situation. From our experi-

ments, nonprediction is preferable to misprediction: this is

why we do not use some of Ball and Larus’s heuristics. Simi-

larly, we use heuristics to solve the instruction scheduling op-

timization problems. Six et al. [2020] observed that, for post-

pass scheduling, their optimal and costly algorithm based

on integer linear programming yields a better makespan

than heuristics only in a very small fraction of the cases, and

the makespan is then only marginally improved. Shobaki

et al. [2013] propose an optimal scheduling algorithm in

the presence of register pressure, with high cost. As they

rightly point out, optimality when solving the combinatorial

optimization problem does not necessarily translate into op-

timal runtime behavior, because the latter depends on other

compiler phases and microarchitectural aspects that are not

reflected in the model in which optimization is performed.

State of the art on unverified compilers. As of version
11.1.0, GCC optionally has postpass superblock scheduling

(-fsched2-use-superblocks) and can enlarge superblocks by tail

duplications (-ftracer), as CompCertSched. Superblock sched-

uling was introduced in GCC 3.4 but is still described as "ex-

perimental"; it is not active at -O3, one has to pass the specific

option. An option for trace scheduling (-fsched2-use-traces) ex-

ists but seems to be a dummy (trace scheduling is not in the

list of active passes listed by -fverbose-asm); it appears to have

been introduced in GCC 3.4 and deactivated later. GCC has

an “interblock” prepass scheduler based on region schedul-

ing [Gupta and Soffa 1990].

As of LLVM version 12.0.0, MachineScheduler and Machine-

Pipeliner operate on basic blocks only. Swing modulo sched-

uling, a software pipelining technique, and an extension to

superblocks were implemented for LLVM in 2005 [Lattner

2005] but this work was not integrated into official releases.

Recently, [Rangasamy 2021] proposed a superblock sched-

uler for LLVM. They neither aim at supporting code motion

below side exits with compensation code, nor do they cur-

rently take liveness into account in checking if code motion

is valid without compensation code.

Trace vs. Superblock scheduling. Trace scheduling, as
introduced by Fisher [1981], is more general than superblock

scheduling: it allows for side entrances in addition to side

exits. Instruction may then be moved above and below both

side entrances and exits. Generating the necessary compen-

sation code, especially when branches are moved across each

other, is however complex.

Superblock scheduling [Hwu et al. 1993; Lee et al. 1993]

is presented as a simpler alternative. By disallowing side-

entrances, and movements of branches across one another,

only the comparatively simple compensation code for mov-

ing instructions below side exits (e.g., “if-lifting” of Sect. 5.4)

is necessary [Gregg 2001]. Moreover, the loss of side en-

trancesmay be compensated by tail duplication. Gregg [2001]

actually argues that superblock scheduling gives comparable

results to full trace scheduling while being much simpler to

implement. We add that superblocks, in contrast to general
traces, allows for a compositional reasoning on scheduling

correctness, which makes formal proofs much easier.

Comparisonwith verified compilers. Tristan and Leroy
[2008] certified a simplified postpass trace scheduling within

CompCert (at the Mach level): they disallow moves of bran-

ches across each other and, because they do not consider

register liveness, they systematically duplicate instructions

(without register renaming). Moreover, their implementa-

tion suffered from exponential complexity [Tristan 2009,

§6.7.1][Tristan and Leroy 2008, §7], and was never integrated

into official releases of CompCert.

In contrast, our certified superblock scheduling leverages

most of the power of superblock scheduling while remaining

efficient even for large superblocks. Moreoever, it composes

with existing RTL-level optimizations. We thus apply Comp-

Cert optimizations such as CSE3,
21
constant propagation or

deadcode elimination, between our code duplications and

the actual scheduling. We intend to extend our approach to

certify more complex optimizations.

Apart from CompCert, the only other real-scale verified

compiler backend is CakeML, which does not include an

instruction scheduler. An alternative is to use a normal com-

piler and apply post-hoc translation validation. For example,

Necula [2000] and Tristan et al. [2011] previously established

that symbolic simulation is effective to validate state-of-the-

art compilers. However, it seems difficult to turn their power-

ful debuggers into formally verified checkers. Alternatively,

a translation validation approach by SMT-solving, applied

from source to object code without modification to the com-

piler, was used for the seL4 secure operating system kernel

[Sewell et al. 2013], with the GCC compiler and the ARM

architecture, with some restrictions as to the form of the C

programs to be compiled and the level of optimization. The

fact that this approach was only used for one specific pro-

gram seems to indicate that there are difficulties in applying

it more widely.

Acknowledgments
This work has been partially supported by the LabEx PER-

SYVAL-Lab (ANR-11-LABX-0025-01) and the IRT Nanoelec

(ANR-10-AIRT-05), funded by the French national program

“Investissement d’Avenir”.

We also wish to thank Delphine Demange, Benoît Dupont

de Dinechin, Frédéric Pétrot, Xavier Leroy, and anonymous

referees for their helpful advices.

21
CSE3 is a common subexpression elimination that analyzes across

branches [Monniaux and Six 2021].

Formally Verified Superblock Scheduling

References
Pietro Alovisi. 2020. Static Branch Prediction through Representation Learning.

Master’s thesis. KTH Stockholm. https://www.diva-portal.org/smash/
get/diva2:1450658/FULLTEXT01.pdf

Thomas Ball and James R Larus. 1993. Branch prediction for free. ACM
SIGPLAN Notices 28, 6 (1993), 300–313.

Sylvain Boulmé. 2021. Formally Verified Defensive Programming (efficient
Coq-verified computations from untrusted ML oracles). Habilitation Thesis.
Université Grenoble Alpes. https://hal.archives-ouvertes.fr/tel-03356701

P. P. Chang and W. W. Hwu. 1988. Trace Selection for Compiling Large C

Application Programs to Microcode. In Proceedings of the 21st Annual
Workshop on Microprogramming and Microarchitecture (San Diego, Cal-

ifornia, USA) (MICRO 21). IEEE Computer Society Press, Washington,

DC, USA, 21–29.

Brian L. Deitrich, Ben-Chung Cheng, and Wen-mei W. Hwu. 1998. Im-

proving Static Branch Prediction in a Compiler. In Proceedings of the
1998 International Conference on Parallel Architectures and Compilation
Techniques, Paris, France, October 12-18, 1998. IEEE Computer Society,

214–221. https://doi.org/10.1109/PACT.1998.727253
Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang

Puffitsch, Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen,

Peter Wägemann, and Simon Wegener. 2016. TACLeBench: A Bench-

mark Collection to SupportWorst-Case Execution Time Research. In 16th
International Workshop on Worst-Case Execution Time Analysis (WCET
2016) (OpenAccess Series in Informatics (OASIcs), Vol. 55), Martin Schoe-

berl (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 2:1–2:10.

Joseph A. Fisher. 1981. Trace scheduling: A technique for global microcode

compaction. IEEE transactions on computers 7 (1981), 478–490.
David Gregg. 2001. Comparing Tail Duplication with Compensation Code

in Single Path Global Instruction Scheduling. In Compiler Construction,
10th International Conference, CC 2001 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy,
April 2-6, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2027),
Reinhard Wilhelm (Ed.). Springer, 200–212. https://doi.org/10.1007/3-
540-45306-7_14

Rajiv Gupta and Mary Lou Soffa. 1990. Region Scheduling: An Approach

for Detecting and Redistributing Parallelism. IEEE Trans. Software Eng.
16, 4 (1990), 421–431. https://doi.org/10.1109/32.54294

Wen-mei Hwu, Scott Mahlke, William Chen, Pohua Chang, Nancy Warter,

Roger Bringmann, Roland Ouellette, Richard Hank, Tokuzo Kiyohara,

Grant Haab, John Holm, and Daniel Lavery. 1993. The Superblock:

An Effective Technique for VLIW and Superscalar Compilation. The
Journal of Supercomputing 7 (05 1993), 229–248. https://doi.org/10.1007/
BF01205185

ISO. 2011. C11 Standard. http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1570.pdf ISO/IEC 9899:2011.

Justus Fasse. 2021. Code Transformations to Increase Prepass Scheduling
Opportunities in CompCert. Master Thesis of Science. Université Grenoble

Alpes. https://www-verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-
MSc-Thesis_2021.pdf

Tanya M. Lattner. 2005. An Implementation of Swing Modulo Scheduling
with Extensions for Superblocks. Master’s thesis. Computer Science Dept.,

University of Illinois at Urbana-Champaign, Urbana, IL. https://llvm.
org/pubs/2005-06-17-LattnerMSThesis.html

M. Lee, P. Tirumalai, and T. Ngai. 1993. Software pipelining and superblock

scheduling: compilation techniques for VLIW machines. In [1993] Pro-
ceedings of the Twenty-sixth Hawaii International Conference on System
Sciences, Vol. i. 202–213 vol.1. https://doi.org/10.1109/HICSS.1993.270744

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009). https://doi.org/10.1145/1538788.1538814

Xavier Leroy. 2009b. A formally verified compiler back-end. Journal of
Automated Reasoning 43, 4 (2009), 363–446. http://xavierleroy.org/publi/
compcert-backend.pdf

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing

for C and C++ compilers with YARPGen. Proc. ACM Program. Lang. 4,
OOPSLA (2020), 196:1–196:25. https://doi.org/10.1145/3428264

David Monniaux and Cyril Six. 2021. Simple, light, yet formally verified,

global common subexpression elimination and loop-invariant code mo-

tion. In LCTES ’21: 22nd ACM SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, and Tools for Embedded Systems, Virtual
Event, Canada, 22 June, 2021, Jörg Henkel and Xu Liu (Eds.). ACM, 85–96.

https://doi.org/10.1145/3461648.3463850
George C. Necula. 2000. Translation validation for an optimizing compiler.

In Programming Language Design and Implementation (PLDI). ACM Press,

83–94. https://doi.org/10.1145/349299.349314
Nicolas Nardino. 2021. Register-Pressure-Aware Prepass-Scheduling for Com-

pCert. Bachelor Thesis of Science. ENS de Lyon. https://www-verimag.
imag.fr/~boulme/CPP_2022/NARDINO-Nicolas-BSc-Thesis_2021.pdf

Louis-Noël Pouchet. 2012. the Polyhedral Benchmark suite. http://web.cs.
ucla.edu/~pouchet/software/polybench/

Arun Rangasamy. 2021. Superblock Scheduler for Code-Size Sensitive

Applications. Slides presented at LLVM developers’ meeting. https:
//llvm.org/devmtg/2021-02-28/slides/Arun-Superblock-sched.pdf

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-case reduction for C compiler bugs. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank

Tip (Eds.). ACM, 335–346. https://doi.org/10.1145/2254064.2254104
Silvain Rideau and Xavier Leroy. 2010. Validating register allocation and

spilling. In Compiler Construction (CC 2010) (LNCS, Vol. 6011). Springer,
224–243. http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013.

Translation validation for a verified OS kernel. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’13,
Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac

Flanagan (Eds.). ACM, 471–482. https://doi.org/10.1145/2491956.2462183
Ghassan Shobaki, Maxim Shawabkeh, and Najm Eldeen Abu Rmaileh.

2013. Preallocation Instruction Scheduling with Register Pressure

Minimization Using a Combinatorial Optimization Approach. ACM
Trans. Archit. Code Optim. 10, 3, Article 14 (September 2013), 31 pages.

https://doi.org/10.1145/2512432
Cyril Six. 2021. Optimized and formally-verified compilation for a VLIW

processor. Ph.D. Dissertation. Université Grenoble Alpes. https://hal.
archives-ouvertes.fr/tel-03326923

Cyril Six, Sylvain Boulmé, and David Monniaux. 2020. Certified and efficient

instruction scheduling: application to interlocked VLIW processors. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 129:1–129:29. https://doi.org/
10.1145/3428197

Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evaluating

value-graph translation validation for LLVM. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. ACM, 295–305.

https://doi.org/10.1145/1993498.1993533
Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification of Trans-

lation Validators: a Case Study on Instruction Scheduling Optimiza-

tions. In Principles of Programming Languages (POPL). ACM Press, 17–27.

https://doi.org/10.1145/1328438.1328444
Jean-Baptiste Tristan. 2009. Formal verification of translation validators.

Ph.D. Dissertation. Université Paris 7 Diderot.

YoufengWu and James R. Larus. 1994. Static branch frequency and program

profile analysis. In Proceedings of the 27th Annual International Sympo-
sium on Microarchitecture, San Jose, California, USA, November 30 - De-
cember 2, 1994, Hans Mulder and Matthew K. Farrens (Eds.). ACM / IEEE

Computer Society, 1–11. https://doi.org/10.1109/MICRO.1994.717399
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and

understanding bugs in C compilers. In Programming Language Design
and Implementation (PLDI). ACM Press, 283–294. https://doi.org/10.
1145/1993498.1993532

https://www.diva-portal.org/smash/get/diva2:1450658/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1450658/FULLTEXT01.pdf
https://hal.archives-ouvertes.fr/tel-03356701
https://doi.org/10.1109/PACT.1998.727253
https://doi.org/10.1007/3-540-45306-7_14
https://doi.org/10.1007/3-540-45306-7_14
https://doi.org/10.1109/32.54294
https://doi.org/10.1007/BF01205185
https://doi.org/10.1007/BF01205185
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://www-verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-MSc-Thesis_2021.pdf
https://www-verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-MSc-Thesis_2021.pdf
https://llvm.org/pubs/2005-06-17-LattnerMSThesis.html
https://llvm.org/pubs/2005-06-17-LattnerMSThesis.html
https://doi.org/10.1109/HICSS.1993.270744
https://doi.org/10.1145/1538788.1538814
http://xavierleroy.org/publi/compcert-backend.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/349299.349314
https://www-verimag.imag.fr/~boulme/CPP_2022/NARDINO-Nicolas-BSc-Thesis_2021.pdf
https://www-verimag.imag.fr/~boulme/CPP_2022/NARDINO-Nicolas-BSc-Thesis_2021.pdf
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
https://llvm.org/devmtg/2021-02-28/slides/Arun-Superblock-sched.pdf
https://llvm.org/devmtg/2021-02-28/slides/Arun-Superblock-sched.pdf
https://doi.org/10.1145/2254064.2254104
http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2512432
https://hal.archives-ouvertes.fr/tel-03326923
https://hal.archives-ouvertes.fr/tel-03326923
https://doi.org/10.1145/3428197
https://doi.org/10.1145/3428197
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1109/MICRO.1994.717399
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Postpass Scheduler for AArch64
	3 Superblock vs Basic-Block Scheduling
	4 Selection and Extension of Superblocks
	4.1 Principles of our Static Branch Prediction
	4.2 Acquiring Prediction Information
	4.3 Path Duplication and Selection from Predictions
	4.4 Formally Verified Checker of Path Duplications

	5 Rewriting for Better Scheduling
	5.1 KVX Speculative Loads
	5.2 Expanding Operations on RISC-V
	5.3 Register Renaming
	5.4 If-Lifting: Moving Up Side Exits in Superblocks

	6 Oracle of the Superblock Scheduler
	7 Formally Verified Superblock Scheduler
	7.1 Definition of the RTLpath IR
	7.2 Bisimulation of RTLpath and RTL Executions
	7.3 Path-Executions Equivalence Modulo Liveness
	7.4 Design of the Certified RTLpath Scheduler
	7.5 Certifying the RTLpath Simulation Test
	7.6 Verified Rewritings during Symbolic Execution

	8 Experimental Evaluation
	9 Related Works and Conclusions
	Acknowledgments
	References

