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A detailed parametric analysis is presented, where the recent method
based on the Reservoir Computing paradigm, including its statistical
robustness, is studied. It is observed that the prediction capabilities
of the Reservoir Computing approach strongly depend on the random
initialisation of both the input and the reservoir layers. Special em-
phasis is put on finding the region in the hyper-parameter space where
the ensemble-averaged training and generalization errors together with
their variance are minimized. The statistical analysis presented here
is based on the Projection on Proper Elements method.
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1. Introduction

The numerical modelling of multi-scale and complex systems has been
continuously growing in the last decade, reaching very high levels of
fidelity and accuracy. Some examples can be found in the modelling of
turbulence in nuclear fusion plasmas [1], in the prediction of weather
and climate in the atmosphere [2], in the multi-scale methods in sys-
tems biology [3] and in the analysis of the financial market [4]. This
growing phase has inevitably led to the requirement of extremely ef-
ficient numerical resources, with the current development of exa-scale
high-performance-computing systems, in order to run such very de-
manding simulations. In some practical applications, however, the
elapsed computational time for the exploitation of these numerical
modellings represent the bottleneck of the aforementioned validation
and/or prediction analyses. Furthermore, in parallel with the im-
provement of the employed numerical techniques, the incorporation of

Complex Systems, Volume (year) 1–1+; year Complex Systems Publications, Inc.



2

newly discovered physical processes or improved complex multi spatio-
temporal scale interactions into the models makes the development
of classical numerical methods even more challenging. For these rea-
sons, the application of the rapidly advancing Machine Learning (ML)
algorithms has gained a lot of attraction in the framework of the data-
driven modelling of complex dynamical systems. The advantages of
using such an approach goes from the acceleration of the simulations
due to the highly reduced computational cost, to the quality improve-
ment of the physical assessment of the numerical outcomes.

Within the several possible ML techniques applied to the forecast-
ing of complex systems, the Reservoir Computing (RC) has shown
appealing features, such as the simplicity and the speed of the training
process, and revealed to be able to achieve state-of-the-art results, com-
pared to other Artificial Intelligence Systems (AISs). The RC method
takes inspiration from the paradigm of the reservoir computers, which
were developed in two independent studies of the early current century
[5, 6]. Due to the difficulty of designing efficient recurrent neural net-
work (RNN) architectures and the subsequent inaccuracy of simplistic
RNNs [7, 8], Jaeger and Maass proposed the approach of the reservoir
computing, which differs from the standard RNN in being essentially
split into two levels. The internal layer is composed by the so-called
reservoir, which is a randomly initialised RNN. The output level, usu-
ally called readout, is a feed-forward layer which realizes an optimized
output function in order to obtain the predicted vector. In our case,
as in the case of the RC proposed by Jaeger (the Echo State Network
(ESN) [5, 9, 10, 11, 12, 13, 14]), the output function is obtained from a
linear regression. The weights of the connected nodes of the reservoir
are fixed randomly, whereas the readout layer is trained to obtain its
weights. For more details on the application of the RC technique on
the forecasting of dynamical systems one can refer to recent contribu-
tions such as, e.g., Refs. [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
Furthermore, theoretical efforts have been spent throughout the last
decade to study the underlying mechanism of the RC algorithm [27,
28, 29, 30, 31, 32, 33, 34]. Among those results, detailed insights prove
that a configuration of the weights of the readout layer Wout exists for
which the RC-ESN output dynamics is topologically connected to the
input chaotic system [32, 34]. However, the capability of the RC al-
gorithm to find those weights, for which the difference with the input
data in the training phase is minimized, still remains elusive.

The present study is motivated by recent contributions [18, 22] in
which RC paradigm is used to predict the dynamics of the well-known
Lorenz chaotic system [35]. The Lorenz system is given by the equa-
tions:
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ẋ = Fx (x, y, z; a) = a (y − x)

ẏ = Fy (x, y, z; b) = x (b− z)− y
ż = Fz (x, y, z; c) = xy − cz

(1a)

(1b)

(1c)

These equations were derived for the first time by Lorenz, after simpli-
fying a set of partial differential equations describing the motion of a
fluid in between two layers of the atmosphere. Therefore, the parame-
ters a, b and c have a real physical meaning, especially b, which corre-
spond to the convection rate. The purpose of this study is to validate
and evaluate the accuracy of the RC method applied for reconstructing
the dynamics of the Lorenz system. The reported statistical analyses,
based on the Projection of Proper elements method [36, 37, 38], demon-
strate that the large randomness of the RC approach is strongly related
to the random initialisation of the reservoir network components and
is highly affected by the chosen configuration parameters. Large vari-
ation of the error in the prediction phase is obtained for a broad set of
parameters of the reservoir, leading to strong inaccuracy in predicting
the time evolution of the Lorenz trajectories for a significant sample of
realisations. The results presented in recent contributions [18, 22] are
shown to fall within a narrow region of the scanned parameter series.
Nevertheless, the prediction error of such a narrow favorable region is
affected by large statistical variation as well, making the reconstructed
dynamics by this specific ML technique frequently not reliable.

The remainder of the paper is organized as follows: the specific RC
approach that has been applied on the Lorenz system [35] and the eval-
uation techniques, including the Projection on Proper elements method
[36, 37, 38], are described in Section 2; Section 3 is divided into five
subsections, illustrating the principal results that are achieved. Dif-
ferent hyper-parameters of the reservoir network and of the model are
considered and deeply analyzed, with statistical insight of the proba-
bility distribution function of the errors; dedicated analysis on the time
evolution of the Lorenz coefficients is carried out; the main conclusions
are summarized in Section 4.

2. Methods

In this paper we produce the data set by solving the Lorenz system
given by Equations 1 using a 4th order Runge-Kutta method (RK4).
This integration will produce the data set {xi, yi, zi}, with N the max-
imum number of time steps. We will use ∆t = 0.02 and N = 6250.
Such data set will be divided into a training set and a prediction set,
with respective lengths ntrain = 5000 and npred = 1250, such that
ntot = ntrain + npred. The training set will be used to compute the
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parameters of the AIS and the prediction set will be used to test the
predictive capabilities of the AIS.

2.1 Reservoir Computing Setup

Figure 1: Schematic representation of the reservoir computing
paradigm.

Here we follow exactly the methodology employed by Pathak et
al. in Refs. [18, 22] with the same set of parameters they used to build
the RC. The architecture of the AIS is shown in figure 1 and will be
briefly explained in the following. The input vector is called u(t) ∈ R3

and contains the three components of the Lorenz system, x, y and
z. It is fed into the reservoir, represented by a square matrix whose
element (i, j) indicates the connection between the neuron i and the
neuron j. Such matrix is called A ∈ RDr×Dr , with Dr the number of
neurons. If the element Ai,j = 0, the neurons i and j are not con-
nected. Between the input and the reservoir, one needs an input layer
Win ∈ R3×Dr , mathematically representing an application from R3 to
RDr . Both the reservoir matrix and the input layer are randomly ini-
tialised. The elements of both Win and A are drawn from a uniform
distribution function in [-1,1], with an additional multiplying scaling
factor γscal = 0.1 applied only to the input layer elements. The ele-
ments of the reservoir are re-scaled so that the largest magnitude of the
eigenvalues (the so-called spectral radius) is equal to the desired value
ρ. In the present study, based on the example of Refs. [18, 22], the
reservoir matrix A is given by a sparse Erdős-Rènyi network [39, 40],
with an average degree of d = 6. It is to be noted that, since the
degree of the Erdős-Rènyi network is fixed to d = 6, the rewiring prob-
ability p = d/Dr is decreased (resp. increased) when Dr is increased
(resp. decreased) and therefore the connectivity matrix of the neural
network becomes sparser (resp. less sparse). The results can be re-
produced also with less weakly connected network [32], and therefore
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the choice of the sparse Erdős-Rènyi network is made only to be con-
sistent with the aforementioned publications. As it will be presented
in the following, the number of reservoir neurons and the spectral ra-
dius of the adjacency matrix are widely scanned and the impact of
each couple of input parameters on the measured errors is then eval-
uated. It must be stressed that the Echo State Property [5], which
was introduced as a necessary feature for the effectiveness of the RC
technique, was originally linked to the rule of thumb ρ < 1 for the
reservoir network. However, this latter consideration has been proven
not to be a necessary criterion for the ESP to hold [41, 42]. Hence,
detailed studies in this framework [43, 44, 45] proposed less restrictive
conditions, thereby allowing to explore the hyper-parameter space also
for the spectral radius ρ > 1 of the adjacency matrix A. Justified by
this, the analyzed range of ρ values is extended also beyond the unity,
as it will be presented in the following.

Each neuron of the reservoir is characterised by a state r (t), which
represents the activation of the neuron (−1: de-activated, +1: acti-
vated), computed at each time step by a tanh activation function:

r(t+ ∆t) = tanh(A · r(t) + Win · u(t)) (2)

One can note that the recurrence in the RC paradigm is essentially
considered in Equation 2, where the neuron states at the ith time step
ri are linked to the neuron states at the previous time steps (ri−1,
ri−2, ri−3, and so on). This is also illustrated in the schematic view
of the RC architecture of Fig. 1. The particular choice of using the
activate function of Equation 2 is made in order to follow the example
of Refs. [18, 19, 22], nonetheless diverse RC architectures have been
already exploited successfully [46, 47, 48]. The underlying idea of the
reservoir computing is to predict the dynamics of the system at the
time step n+ 1, i.e. un+1 by means of the relation:

un+1 = Wout · rn + cout (3)

The weights of the readout layer Wout ∈ R3×n can be subsequently
computed by minimizing the difference between the actual u(t) and
the predicted v(t) Lorenz trajectories for each time step of the training
phase. Therefore, in order to train the reservoir computing, one has to
find Wout and c ∈ R3 minimizing the following quadratic form:

||Wout · r̃ + c− v||2 (4)

for all the time steps of the training phase, where ||q||2 = qT · q.
The so-called ”ridge regression parameter” is set to zero, i.e. β = 0,
since the over-fitting is already avoided [18]. Moreover, it is to be
noted that the assumption of symmetry in computing the first two
components x→ −x and y → −y of the Lorenz equations [19, 18, 25]
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in the predicted vector v is retained, in order to be consistent with
the assumption made in Refs. [18, 22, 19]. For this reason, Equation 4
includes r̃ instead of r. The modified neuron state matrix r̃ presents the
second half of the third row given by the nonlinear combination r̃i = r2i
(for i > Dr/2). However, the same analysis has also been carried out
relaxing such symmetry assumption with very similar results.

Then, the minimization problem described in Equation 4 reduces to
a linear regression [5], whose solution in the training phase is:

W∗
out = (U ·RT ) · (R ·RT )−1 (5)

where U ∈ R3×n is the array containing the actual dynamics of the
Lorenz system, R ∈ R3×n the array containing the neuron states (with
the nonlinear combination as described above and in Ref. [18]) and
W∗

out is the particular solution of the minimization problem. As a
result, the readout layer Wout is trained and thereby fixed. Hence, the
same procedure can be applied in the prediction phase. Indeed, the
neuron states are now computed using the predicted vector by:

r(t+ ∆t) = tanh(A · r(t) + Win · v(t)) (6)

and subsequently applied as:

vn+1 = Wout · vn (7)

for the entire prediction phase. The vector vn+1 = [x̃, ỹ, z̃]n+1 contains
the components of the Lorenz dynamics predicted by the RC approach
at the time step n+ 1.

With respect to traditional RNNs, the RC architecture benefits from
the possibility of training the readout layer at once, which reduces
significantly the elapsed time for the training phase [49], and from the
absence of the vanishing gradient issue [50, 25].

Table 1 summarizes the principal parameters of the analyzed RC
configurations.

2.2 Error Quantification through the PoPe Method

The AIS predictive capabilities were evaluated in Refs. [18, 22] based
on the ability to predict the climate, i.e. the ergodic properties of the
chaotic system quantified by the Lyapunov exponents. In the present
Letter, we employed a different criterion, based on the Projection on
Proper elements (PoPe) using the Euclidean distance as the measure
to quantify the error of the system to reproduce the Lorenz dynamics.
The PoPe method is described in detail in Refs. [36, 37, 38] and here
we provide only a brief explanation for our purposes.

Let us assume that we have a set of data d = {xi, yi, zi}1≤i≤npred
provided by the RC. The PoPe method is employed to determine to
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Table 1: Reservoir parameters that has been used for the standard
simulations, if not otherwise clearly noted. As explained in the main
body of the Letter, the parameters are: β the ridge regression param-
eter, γscal the scaling factor applied to the input layer Win, Dr the
reservoir number of neurons, ρ the spectral radius of the reservoir net-
work, d the average degree of the Erdős-Rènyi network, ∆t the time
step of the considered Lorenz dynamics, ntrain and npred the number
of time step in the training and prediction phase respectively, and δ
the period of the moving time window for the error calculation. Very
similar parameters have been used also in Ref. [18].

Parameter Value
β 0
γscal 0.1
Dr [50, 610]
ρ [0.5, 2.5]
d 6

∆t 0.02
ntrain 5000
npred 1250
δ 1.25

what extent the set of data d, produced by the the RC technique, has
been generated by the Lorenz system given by Equation 1. This is
done by computing the coefficients (a, b, c) that better fit d.

For this purpose, let us note that the Lorenz system can be rewritten
as follows 

ẋ = a (y − x) + αx

xz + y + ẏ = bx+ αy

−xy + ż = −cz + αz

(8a)

(8b)

(8c)

where we have included (αx, αy, αz) for the sake of generality. Such ex-
pression highlights the linear dependence on the parameters (a, b, c, αx, αy, αz).
Therefore, the calculation of the coefficients which better fit the RC
predictions is reduced to a linear regression. To do this, the time
derivatives on the LHS of Equations 8 are computed from d using an
arbitrarily high precision method (in the present work we use a 4th

order finite difference scheme). These derivatives are noted
(
˜̇x, ˜̇y, ˜̇z

)
.

The Lorenz equations can then be rewritten in a matrix form, com-
bining the RC-predicted trajectories di with the expression of the com-
puted time derivatives

Mi = Ni · Γ (9)

with Mi = (˜̇xi, ˜̇yi + xizi + yi, ˜̇zi − xiyi), Ni = [(yi − xi, xi,−zi), (1, 1, 1)]
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and Γ = [(a, b, c), (αx, αy, αz)]. The linear regression consists in calcu-
lating Γ? = [(a?, b?, c?), (α?x, α

?
y, α

?
z)] which minimizes

ε =

n∑
i=1

(Mi −Ni · Γ?)2 (10)

Hence, it translates into the condition

∂ε/∂Γ? = −
n∑
i=1

2NT
i · (Mi −Ni · Γ?) = ~0 (11)

Further mathematical derivations lead to:

Γ? = (NT ·N)−1 · (NT ·M) (12)

where M and N are the matrices containing the considered data points,
i.e. M = {M1,M2, ...,Mn} and N = {N1, N2, ..., Nn}. Therefore, the
coefficients (a?, b?, c?, α?x, α

?
y, α

?
z) better fitting the RC-predicted trajec-

tories can be compared to the ones that were used for the numerical
integration of the Lorenz system, namely (a, b, c, 0, 0, 0). Such com-
parison provides the error εpred between the numerical integration of
1 (what we call the exact solution) and the prediction made by the
AIS. The error is finally expressed as the euclidean distance between
the two set of coefficients, i.e.:

εpred =
√

(a− a?)2 + (b− b?)2 + (c− c?)2 + α?2x + α?2y + α?2z (13)

Note also that another way to measure the prediction error can be
used, where the distance between the exact and the predicted trajec-
tory are computed. However, for chaotic time series this is not a useful
quantity, since any small error get amplified. Therefore, even though
the systems are physically close to each other, their time series can
be very disparate. For this reason, we better quantify the prediction
error through Relation 13. Let us stress also that the prediction error
is computed based on the coefficients (a?, b?, c?, α?x, α

?
y, α

?
z) via a linear

regression using 3npred data points. Therefore, the prediction error
may depend on the length of the prediction phase npred.

It is worth to highlight that the PoPe method requires the prior
knowledge of the system governing equations. For this reason, using
the PoPe method for evaluating the prediction accuracy of the model-
free RC technique is not generally allowed. Nevertheless, the purpose
of the present study is the parametric validation of the RC algorithm in
reconstructing the Lorenz dynamics, whose equations are fully avail-
able. For this reason, the use of the PoPe method to evaluate the
quality of the RC prediction is justified.
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In this paper, we quantify the accuracy of the RC approach to pre-
dict Lorenz dynamics through a scan on the number of neurons Dr and
the spectral radius ρ of the Erdős-Rènyi network. In addition, we ex-
plore the impact of the length of the prediction phase on the prediction
error, Equation 13. As already stated, the RC approach is based on
the fact that all the parameters of the system are initialised randomly,
except those of the output layer. This implies that the training phase
is reduced to a simple linear regression. But this also implies that
the results may depend on the random initialisation of the parame-
ters. To overcome this difficulty, for each point in our scan (Dr, ρ), we
perform N = 500 realisations. Each of them will be different, since
the initialisation of the network and of the input layer is random. For

each realisation s we calculate ε
(s)
pred and we use the ensemble averaged

quantity, 〈εpred〉rls = 1
N

∑
s ε

(s)
pred, where the subscript rls stands for

realisation.
The prediction error can be calculated in two different ways: (1)

for time windows whose left endpoint is set to 0 and the right end-
point is upper-bounded by tpred = 25 and increasing for each time
window as κδ, with δ = 1.25 and κ ∈ [1, 2, ..., n] denoting the number
of the time window; (2) for moving time windows of the same length
and whose endpoints are increasing as [κδ, (κ+ 1)δ], with δ = 1.25 and
κ ∈ [0, 1, 2, ..., n]. In other words, in the first way the error is computed
over time windows whose lengths are increasing, considering therefore
the dynamics from tpred = 0 up to κδ; and in the second way, the
prediction error εpred is calculated over moving time windows of fixed
length δ = 1.25. In the following, we use the first method to compute
the errors. We call this method increasing-time-window procedure.
In this way the dynamics of the entire considered prediction phase is
taken into account in calculating the deviation from the actual Lorenz
trajectories. Nonetheless, it could be useful to compare these results
with the moving average error, i.e. the second procedure described here
above, as it is done for instance in section 3.3. The choice of the time
window length of δ = 1.25 yields a sufficient number of points to cal-
culate the linear regression and the subsequent predicted coefficients
(a?, b?, c?, α?x, α

?
y, α

?
z) in each time window of the moving error proce-

dure. However, if not otherwise noted, the standard procedure for
computing the errors is the increasing-time-window procedure.

Finally, it is also instructive to quantify the training error εtrain,
which is computed using the same Euclidean distance as in equation
13, but applied only to the training phase.
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(a) (b)

Figure 2: A scan of the error 13, in logarithmic scale, over the input
parameters Dr and ρ of the reservoir network is displayed for the train-
ing and the prediction phase, in panel (a) and (b) respectively. The
errors are averaged over the whole set of realisations (N = 500) for
each couple (Dr, ρ). Highlighted with red markers are the configura-
tion employed in Ref. [18].

3. Results

The training and prediction errors averaged over all the realisations
are plotted in figures 2(a) and (b), respectively, fixing the length of the
prediction phase to tpred = 25, i.e. npred = 1250. The isocontours of
the averaged training and prediction errors are represented in logarith-
mic scale as a function of the number of neurons Dr and the spectral
radius ρ of the reservoir network. The error in the prediction phase
is calculated for the entire prediction time, i.e. tpred = [0, 25]. It is
observed that the training error is minimum in a rather narrow region
in the (Dr, ρ) plane. Moreover, mild variations of (Dr, ρ) may lead
to an abrupt increase of the training error. This means that there is
a strong restriction in the allowed values of Dr and ρ. It is particu-
larly important to realise that increasing the number of neurons does
not necessarily reduce the averaged training error. Moreover, we can
observe that the averaged prediction error is significant, increased by
several orders of magnitude with respect to the training error. The
values selected in [18] were Dr = 300 and ρ ∈ {1.2, 1.45}, which fall
into the beneficial narrow region where the training error is minimal,
as the markers in figure 2(a) show. Yet, it is observed that the aver-
aged prediction error is far from being negligible, considering the entire
prediction phase tpred = 25. Within the set of scanned parameters in
figure 2, a region where 〈εpred〉rls is minimized is noted for Dr > 400
and ρ > 1.5. In the remainder of the paper, such a region, and the
configuration included therein, will be called favorable. It is stressed
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again that, although the ESP originally required the spectral radius
to be ρ < 1, the range of values of the spectral radius leading to op-
timal forecasting is obtained for ρ > 1, consistently with the results
of Ref. [51]. Furthermore, the region where Dr > 300 and ρ < 1.2
presents the largest measured averaged errors of the analyzed range of
parameters in the prediction phase. For this reason, it will be termed
as the unfavorable region of the (Dr, ρ) plane. It must be noted that,
although in a different framework from the present parametric vali-
dation study, very similar dependencies of the errors on the spectral
radius have also been reported in a recent publication [45].

3.1 Large Statistical Variation of the Errors due to Random Initialisation

(a) (b)

Figure 3: The standard deviation σ of the logarithm in base 10 of the
errors, for both training (a) and prediction (b) phases, within the set of
N = 500 realisations is displayed for the same scans reported in figure
2. The large variation within the whole set of realisations can be thus
appreciated.

It is also observed that the averaged errors in both training and
prediction phases for each couple (Dr, ρ) may be accompanied by a
large variation within the set of performed realisations. In figure 3, the
standard deviation σ of the averaged errors within the set of N = 500
realisations is plotted as a function of the number of neurons Dr and
the spectral radius ρ for the training and the prediction phases in (a)
and (b), respectively. The set of realisations is the same displayed in
figure 2, and the errors shown in panel (b) for the prediction phase
are calculated for tpred = [0, 25], consistently with figure 2. The large
dispersion that can be appreciated by measuring σ demonstrates the
strong impact of the randomness on the prediction of Lorenz chaotic
trajectories by the RC technique. The plot in figure 3(a) provides
additional evidence that the possible efficient configurations of this AIS
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based on the RC approach for the prediction of chaotic trajectories are
limited to a narrow region in the (Dr, ρ) plane. Furthermore, similarly
to what has been observed in figure 2, the difference of the standard
deviation for the set of realisations between the training phase and
the prediction phase is significant, especially in the favorable region of
the scan. Indeed, this proves the more frequent occurrence of large
error events in the prediction phase, which are then responsible also
for the increase of the averaged prediction error within the set of the
realisations with respect to the training phase.

Figure 4: The dynamics of the three components of the Lorenz sys-
tem, predicted by the RC, is shown for the two configurations studied in
Ref. [18], i.e. (Dr, ρ) = (300, 1.2) (left column) and (Dr, ρ) = (300, 1.45)
(right column). The black dotted curves are the actual chaotic trajec-
tories obtained through numerical integration of the Lorenz equations
with the RK4 method (labelled as Ground truth in the legend). Red
and blue curves show respectively the best and a non-favorable solu-
tion obtained through RC technique over the whole set of N = 500
realisations.

Insightful information on the randomness of the RC prediction can
be found by further analysing the two specific study-cases described in
Ref. [18]. From the statistically-relevant averaged results illustrated in
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figure 2, one can infer that the case with (Dr, ρ) = (300, 1.45) performs
better than the case with (Dr, ρ) = (300, 1.2) (respectively, red dia-
mond and red star in figure 2), as the 〈εpred〉rls is minor for the former
than for the latter case. This result might not be in full agreement with
what is reported in Ref. [18], where the case with (Dr, ρ) = (300, 1.45)
is shown to be less performing to predict chaotic trajectories, with re-
spect to the case with (Dr, ρ) = (300, 1.2). This might be due to the
random initialization of the input layer and the reservoir array. Indeed,
for one single realization, the case with (Dr, ρ) = (300, 1.2) can perform
better than that with (Dr, ρ) = (300, 1.45), consistently with Ref. [18].
This is illustrated in figure 4, where the time traces of x, y and z are
plotted for Dr = 300 and the two values ρ = 1.2 (left column panels)
and ρ = 1.45 (right column panels). In each panel, the realisation with
minimum error is plotted by a red curve. Another randomly chosen
realization is plotted by the blue curve. As a reference, the exact solu-
tion is given by the dashed black curve. It is observed that depending
on the realization, the case ρ = 1.2 can perform better or worse than
the case ρ = 1.45.

3.2 Statistical Analysis on the Error Distribution

Given the large statistical variation exhibited by the measured errors,
we analyse the relevance of using the mean value as an indicator of the
error for each single (Dr, ρ) configuration within the set of realisations.
The histograms of log10(εpred) for four couples (Dr, ρ) configurations
are shown in figure 5. The same analysis on the error in the train-
ing phase log10(εtrain) revealed analogous results. These four different
cases are chosen to represent: (a) a favorable case, (b) and (c) the
same cases studied by Pathak et al. in Ref. [18] and (d) a case in
the unfavorable region of the (Dr, ρ) plane. In this particular analy-
sis, the number of realisations has been increased up to N = 5000 to
improve the statistical relevance of the data set, and the histograms
are captured in nbins = 100 bins evenly spaced. As can be seen, the
histograms are shifted to large error values going from panel (a) to
panel (d). In the four panels, the Gaussian probability density func-
tion (PDF), whose mean and standard deviation are respectively equal
to the statistical mean and standard deviation of the corresponding set
of realisations, is over-plotted with black dashed lines. In this way, it
is straightforward to compare the histograms and the Gaussian PDFs.
Whereas for panels (b) and (c) the distribution of the error over the
set of realisations follows a Gaussian, for panels (a) and (d) the his-
tograms exhibit a departure from the normal PDF. In particular for
the configuration (Dr, ρ) = (550, 0.9), an inset with the rightmost tail
of the distribution function is displayed in a log-log plot. In this way,
it is possible to appreciate the deviation for the large-error events of

Complex Systems, Volume (year) 1–1+



14

(a) (b)

(c) (d)

Figure 5: The error in logarithmic scale in the prediction phase, cal-
culated at tpred = 25, of an incremented set of N = 5000 realisations
is shown in histogram plots for four different RC configurations. The
distribution is binned in nbins = 100 samples. The black dashed curves
represent the unimodal normal PDF, whose mean value and standard
deviation are the mean value and the standard deviation of the error
distribution functions for the corresponding configuration.

such configuration from the tail of the Gaussian distribution. This de-
viation is present in all the analyzed configurations of the unfavorable
region of the (Dr, ρ) plane. Therefore, it is demonstrated the accuracy
of using the statistical mean, i.e. the first moment of the distribution
function, to quantify the error in both training and prediction phases
for a significant range of analyzed configurations. Yet, the unfavorable
region of the (Dr, ρ) plane presents a non-negligible deviation from the
Gaussian distribution, especially concerning the large error events.

Additionally, it could be observed that the slight deviation of the
histograms from the normal distribution function, especially in panel
(d), can be explained by studying the third and fourth standardized
moments of the PDF, i.e. the skewness µ3 and the kurtosis µ4 respec-
tively. The skewness measures the loss of asymmetry of a distribution
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function. For a symmetric PDF the skewness is null (µ3 = 0), hence
a positive (negative) value indicates that the data-set is skewed to the
right (left) with respect to the principal mode - the mean value for
a unimodal Gaussian PDF. On the other hand, the kurtosis property
measures the flatness of the PDF. Generally, the kurtosis is compared
to the kurtosis of a Gaussian distribution function, which is equal to
3 (µ4 = 3). Therefore, it is commonly used the excess kurtosis µ̃4,
which is the kurtosis re-scaled to 3 (µ̃4 = µ4 − 3). A large excess
kurtosis thus indicates that the distribution has strongly populated
tails. Therefore, by inspecting the loss of asymmetry (skewness) and
strength of the tails (excess kurtosis) together, it is possible to evalu-
ate the behaviour of the measured PDFs. The measured distribution
function in figure 5(a) and (d) reveal a positive skewness, denoting a
major broadening towards large error values, as can be also inferred
from the plots. Whereas for the configuration (Dr, ρ) = (470, 2.2) the
skewness is mildly above zero, the RC with (Dr, ρ) = (550, 0.9) shows
a four-time larger value of the skewness, which evidences the more fre-
quent occurring of large error events. For this latter configuration the
re-scaled fourth moment, the excess kurtosis, is positive and large indi-
cating that the distribution of the data-set is strongly peaked around
the mean value. In conclusion, the statistical properties of the cases in
panels (a), (b) and (c) indicate that the distribution functions could
be well approximated with a Gaussian around the corresponding mean
values. On the other hand, for the unfavorable case in panel (d), the
statistical mean value is strongly affected by a more frequent occurring
of large-error events.

3.3 Dependence of the Error on the Prediction Phase Length

To shed some light on the validity of the RC to reconstruct the Lorenz
dynamics, we additionally explore the dependence of the prediction
error on the maximum length of the prediction phase. As illustrated
in Ref. [18], the AIS based on the RC approach correctly predicts the
short-term trajectories, while significantly deviating from the actual
Lorenz trajectories in the long-term phase. The considered length of
the prediction phase has thereby a strong impact on the computed er-
ror. Therefore, we analyse the dependence of the averaged prediction
error εpred on the length of the prediction phase in the two different
procedures that have been described at the end of section 2.2. The
results are illustrated in figure 6. Hence, in panels (a)-(c) the predic-
tion error is calculated for time windows whose period is [0, κδ], with
δ = 1.25 and κ = [1, 2, ..., n], up to tpred = 25. Indeed, panels (d)-
(f) represent the prediction error calculated in the second fashion, for
which the period of the time windows is [κδ, (κ + 1)δ], with δ = 1.25
and κ = [0, 1, 2, ..., n]. The two procedures are labelled in the figure
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Figure 6: The error in the prediction phase is displayed as a function
of the length of the prediction phase for different configurations. The
prediction error is calculated at increasing width of the time windows
in panels (a)-(c), whereas with moving time window of fixed period
δ = 1.25 in panels (d)-(f). The configurations reported are picked from
the whole scanned cases, with the purpose of representing: (a) and (d)
favorable cases, (b) and (e) the same cases reported in Ref. [18] and
eventually (c) and (f) cases from the unfavorable region of the (Dr, ρ)
plane explored in figure 2.

as increasing-time-window average error and moving average error, re-
spectively.

As it has already been noted, even for the favorable cases in panel
6(a) in previous sections, the 〈log10(εpred)〉rls indicator is very large
compared to the error in the corresponding training phase. It is also ob-
served that there is a strong dependence on the length of the prediction
phase in the short-term prediction. Focusing on the increasing-time-
window average procedure, after the prompt increase in the short-term
prediction, the error remains constant (after an elbow) in the long-
term prediction, consistently with Ref. [18]. Such a behaviour is ac-
tually present for the favorable configurations also when the error is
calculated with the moving average procedure, as panels (d) and (e)
show.

Furthermore, smoother curves in the time evolution of the calcu-
lated error appear when the increasing-time-window average procedure
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is employed. This is to be understood as, in this latter procedure, the
calculation has a kind of ’memory’ from previous time windows, since
the analyzed time period increases by including also the dynamics of
the previous time windows. On the other hand, there is no such ’mem-
ory effect’ in the moving average procedure, as the solution coefficients
are calculated for each time window independently from the previous
ones.

Another striking observation comes from the value of the error at the
end of the first time period of the prediction phase (tpred ∈ [0, 1.25]).
Indeed, the average prediction error 〈εpred〉rls already presents value
much larger than the error evaluated for training phase for the same
configuration. The difference between these two values can also be
inferred from the plots in figure 2. Especially for the favorable configu-
rations, the difference could be also more than 4 orders of magnitude.
Therefore, the RC approach could show a strong disparity from the
expected dynamics also for tpred < 2.5, i.e. for only 3 ∼ 4 oscillations
of the Lorenz system. This could essentially be due to two reasons: ei-
ther the reservoir layers are failed to be trained and the error is thereby
propagated in the prediction phase inevitably, or the RC technique pre-
dicts strongly different dynamics in the short-term phase. The former
condition, for which the training phase already produces a large error
and thus the reservoir layers are not well-trained, is less frequent, as
the lower mean values of the error in figure 2(a) and the standard devi-
ations in figure 3(a) illustrate. Nevertheless, if a large error event occur
in the training phase, this inevitably produces a large error event also
in the prediction phase, since the RC is ill-trained and so unable to
recover the correct Lorenz dynamics. The latter condition, for which
the RC network is well-trained but fails in predicting the short-term
dynamics, is indeed the most frequent. As a result, the average error
in the first time window of the prediction phase is much higher than
the one measured in the training phase.

3.4 Dependence of the Error on the Train Phase Length

It is now considered the effect of the length of the training phase on the
error in predicting the Lorenz trajectories by means of the RC tech-
nique. In figure 7, the dependence of both 〈εtrain〉rls and 〈εpred〉rls on
the length of the training phase is displayed for various chosen reser-
voir configurations. The plots illustrate the result for ntrain > 1000,
as for smaller number of time steps the RC definitely fails in being
trained and subsequently in predicting the chaotic dynamic of the sys-
tem. The parameters of the various configurations are the same an-
alyzed in panels (a) and (b) (and also (d) and (e)) of figure 6. The
error in the prediction phase is considered for the entire prediction
phase tpred = [0, 25]. A striking observation about the training phase
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Figure 7: The errors in the training (a) and in the prediction phase
(b) are shown as a function of the length of the training phase for four
different input configurations of the reservoir network. The configura-
tions are the same analyzed also in figures 5 and 6. The abscissas is
expressed both in length of the training phase in normalized time ttrain
and in number of time steps ntrain in the training phase.

for the configurations with (Dr, ρ) = (430, 2.3) and (Dr, ρ) = (470, 2.2)
is the non-monotonic behaviour of the function. Indeed, for a narrow
range of the training phase length, the 〈εtrain〉rls curves presents a min-
imum. Such a behaviour has been found also in other configurations
within the favorable region of the (Dr, ρ) plane. Instead, for the con-
figuration setups with (Dr, ρ) = (300, 1.2) and (Dr, ρ) = (300, 1.45),
the same analyzed by Pathak et al. in [18], the error in the training
phase is basically decreasing with the increasing number of considered
time steps for training the system until a plateau is reached. This
plateau could be expected due to the quasi-periodicity of the chaotic
oscillations of the Lorenz system. Regarding the prediction phase, the
behaviours of all the detailed configurations resemble. After a sharp
decrease for ntrain > 1000, the curves mildly continue to decrease until
ntrain = 4000 ∼ 5000, where they become averagely constant. There-
fore, the increase of the number of time steps in the training phase
beyond ntrain = 10000 leads to enhanced elapse time and complexity
of the system, without improving the prediction of the chaotic trajec-
tories significantly. Consistent results have been recovered also in Ref.
[25], although a modified version of the Lorenz 96 chaotic model [52]
was employed as test-bed system instead of the original Lorenz system
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here studied. Furthermore, it is to be noted the jagged behaviour of
〈εpred〉rls in function of the number of time steps ntrain. Consecutive
points of this particular scan could lead to very different results. Thus,
increasing ntrain does not automatically lead to an improvement of the
results, but it could be indeed detrimental in average.

3.5 Studies on the Time Evolution of the Predicted Lorenz Coefficients

Figure 8: The coefficients (ã, b̃, c̃, α̃x, α̃y, α̃z) corresponding to the best
solution of the RC application for the configurations also explored in
Ref. [18] are shown in the first two columns. The horizontal dashed
lines represent the values of the relative coefficients in the actual Lorenz
system. In the third column, the predicted dynamics of these two
configurations are compared to the actual Lorenz dynamics (labeled
’Ground truth’).

Additional analyses have been carried out on the evolution in time
of the coefficients (ã, b̃, c̃, α̃x, α̃y, α̃z) which better fit the prediction ob-
tained by means of the RC technique. In the Lorenz system, such coeffi-
cients are constant throughout the whole time trajectory. This assump-
tion, together with the constraint of having (α̃x, α̃y, α̃z) = (0, 0, 0), is
crucial for the validity of the Lorenz system. Therefore, in order to en-
sure the reliability of the predicted dynamics of the chaotic system, the
fitted coefficients have been plotted for two different RC configurations,
which minimizes the prediction error at the end of the prediction phase
εpred(tpred = [0, 25]), in figure 8. These two configurations are the same
analyzed by Pathak et al. in [18], i.e. (Dr, ρ) = (300, 1.2) and (Dr, ρ) =
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(300, 1.45). As it has already been explained, (ã, b̃, c̃, α̃x, α̃y, α̃z) are the
coefficients which better fit the Lorenz equations for the RC predicted
dynamics in the prediction phase. In this particular analysis, the coeffi-
cients are calculated for consecutive moving time windows of the predic-
tion phase with a period of δ = 1.25. The same procedure has already
been described in section 3.3 when the calculation of moving error has
been applied to produce the figures 6(d)-(f). We repeat that this choice
of δ = 1.25 enables to have sufficient elements in each time window for
the calculation of such predicted coefficients by linear regression tech-
niques and to grasp, thereby, their time dependence in the prediction
phase. Thus, in the first two columns of figure 8, the coefficients of
the solution are plotted against the time of the prediction phase tpred,
while in the rightmost column the actual Lorenz dynamics are com-
pared to each component of the AIS predicted systems. However, it is
observed that in this optimized case the setup with (Dr, ρ) = (300, 1.45)
performs better than (Dr, ρ) = (300, 1.2), consistently with what is dis-
played in figures 6(b) and 6(b) and (e). Indeed, the three predicted
coefficients for (Dr, ρ) = (300, 1.45) oscillates around the actual ini-
tial Lorenz coefficients (a, b, c) (highlighted in black horizontal dashed
lines in the panels of the first column) throughout the whole prediction
phase. The deviations from the exact coefficients of the studied Lorenz
system appear almost negligible (±5%). Regarding indeed the case
with (Dr, ρ) = (300, 1.2), a significant deviation is noted in the time
window around tpred = 11. Nevertheless, this deviation does not im-
pair the whole prediction phase, as the actual coefficients are promptly
recovered after the deviation occurring. If the third column of figure 8
is inspected for the configuration (Dr, ρ) = (300, 1.2) (blue curves), it is
possible to see that around tpred = 11 there is a pattern loss, which de-
termines the high spike in the calculation of the predicted coefficients.
Yet, such an instantaneous deviation from the exact Lorenz trajectory
does not prejudice the overall dynamical properties of the predicted
system.

However, as it has already been noted, the solution plotted in figure
8 are the predictions that minimizes εpred(tpred = 25) within a statisti-
cally relevant set of N = 5000 realisations for each RC configuration.
Therefore, the reader must be cautious on evaluating it, since in the
same sample of realisations cases with large measured errors were fre-
quently observed, as the average prediction error in figure 2 and the
PDF of the prediction error in figure 5 demonstrate. The optimized
cases reported in this section, indeed, are located in the tail of the
corresponding PDF, and therefore the probability of their occurrence
is quite low.

A more detailed analysis on the α coefficients is performed and
the results are illustrated in figure 9. Here, the PDF of the α co-
efficients (α̃x, α̃y, α̃z) for the configuration with (Dr, ρ) = (300, 1.45)
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Figure 9: The probability distribution function of the coefficients
(α̃x, α̃y, α̃z) for the RC configuration with (Dr, ρ) = (300, 1.45) is shown
in histograms for three different time windows of an incremented set
of N = 5000 realisations. The distribution is binned in nbins = 500
samples. The standard deviation of the PDFs is shown in figure 10 for
the entire prediction phase.

Figure 10: The evolution in time of the standard deviation σ of the α
coefficient PDFs diplayed in figure 9 is shown in logarithmic scale for
the prediction phase up to tpred = 25. The green dashed vertical lines
represent the time windows displayed in figure 9.

is plotted for three different time windows in the prediction phase,
i.e. tpred = ([0, 1.25], [11, 12.5], [23.5, 25]). The PDFs are binned in
nbins = 500. The same analysis has been carried out also for other
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configurations in the favorable region of the (Dr, ρ) plane, yielding
similar results. What can be inferred here is that the distribution func-
tions of the α̃ coefficients are centered around zero, strongly broadening
with increasing time in the prediction phase. Measuring the width of
the PDFs, one can notice that it is significantly enhanced going from
tpred = 1.25 to tpred = 12.5 for all the three coefficients, whereas no such
a difference is measured from tpred = 12.5 to tpred = 25. To corrobo-
rate this result, the standard deviation σ of the α̃ coefficients within
the set of N = 5000 realisations is plotted in logarithmic scale against
tpred. The green vertical dashed lines represent the upper boundary of
the analyzed time windows. It is observed that already after the first
time window, σ increases of more than two orders of magnitude. Then,
it reaches a quasi-stationary phase with jagged behaviours. Therefore,
as already proved by figure 9, the frequency of of large value events
occurring is higher already after the first time window, but it does
not increase additionally in the rest of the prediction phase. How-
ever, the standard deviation presents some spikes (especially for α̃y
and α̃x), which are symptomatic of a more frequent occurring of the
large value events. These large value events, indeed, are correlated
with the large error events in the prediction phase, as the relation 13
proves. To conclude, the analysis here performed shows that in the pre-
dicted Lorenz system the α̃ coefficients, measured by the PoPe method,
are centered around zero. However, quite frequently they differ from
the null value, indicating that the actual Lorenz dynamics is definitely
impaired. Moreover, the solutions displayed in figure 8 are only repre-
sentative of the tail of the probability distribution, as the frequency of
their occurrence is very low. Hence, even for favorable configurations,
the accuracy of such a RC approach must be evaluated cautiously.

4. Conclusions

In this study, we have analyzed the validity of the reservoir computing
ML technique applied to reconstruct the dynamical coefficients of the
predicted trajectories of the Lorenz system, a well-known chaotic sys-
tem, by the Projection on Proper elements method. Such a method is
briefly explained in section 2 (more details can be found in Refs. [37,
38]). The validity of the RC technique is statistically measured by run-
ning N = 500 realisations for a large set of configuration parameters.
Thus, it has been shown that a good accuracy is achieved only for a
small range of (Dr, ρ) configurations of the reservoir. Yet, the error
in the prediction phase is significantly increased with respect to the
error in the training phase, with a significantly large variation of the
error, as figure 3 shows. This implies that quite frequently the RC
approach produces predictions strongly affected by large errors of the
Lorenz system. It is shown that this is essentially due to the intrin-
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sic randomness of the RC technique, which inevitably leads to have
large error events frequently also for the favorable configurations of
the network. Additional scans on the relevant parameters of the ML
technique such as the length of both training and prediction phases are
carried out, showing that the range of validity of this RC approach is
even further narrowed. Indeed, a minimum number of time steps in
the training phase is required to achieve acceptable results, as figure
7 illustrates, but only for predicting the short-term dynamics of the
Lorenz system. The deviation from the exact Lorenz dynamics in the
long-term prediction phase is shown to become very large. Such re-
sults are also analyzed deeper by means of detailed studies on the time
evolution of the Lorenz coefficients computed by the AIS. It is shown
that the large variation of the Lorenz coefficients computed from the
predicted solution can be significant. Therefore, the solution predicted
by the AIS based on the RC approach is not necessarily representative
of a Lorenz system.

This paper, in the context of the RC approach to reconstruction of
complex dynamical series, is helpful to establish the range of validity
of this AIS technique. It also suggests that further developments of the
RC paradigm, as recently proposed in, e.g. , Refs. [53, 54], are required
in order to robustly achieve a good accuracy in predicting chaotic time
series.
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