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Spectral inequality for an Oseen operator in a two dimensional

channel.

Rémi Buffe∗, and Ludovick Gagnon†

April 9, 2021

Abstract
We prove a Lebeau-Robbiano spectral inequality for the Oseen operator in a two dimensional

channel, that is, the linearized Navier-Stokes operator around a laminar flow, with no-slip boundary
conditions. The operator being non-self-adjoint, we place ourself into the abstract setting of [12],
and prove the spectral inequaltiy through the derivation of a proper Carleman estimate. In the spirit
of [4], we handle the vorticity near the boundary by using the characteristics sets of Pϕ or Qϕ0 in
the different microlocal regions of the cotangent space. As a consequence of the spectral inequality,
we derive a new estimate of the cost of the control for the small-time null-controllability.
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†Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France. E-mail :ludovick.gagnon@inria.fr.
This research was partially funded by the French Grant ANR ODISEE (ANR-19-CE48-0004-01) and by the French Grant
ANR TRECOS (ANR-20-CE40-0009-01).

1



5 Proof of the spectral inequality 21
5.1 An observation from an arbitrary large interior domain up to the boundary . . . . . . . . 21
5.2 Observability in the interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 End of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1 Introduction

In this paper, we consider the spectral inequality for the Navier-Stokes equation, with no-slip condition,
in a 2-dimensional channel linearized around a Poiseuille flow. Denote Ω = T× (0, L) the spatial domain,
where L > 0 and T is the one dimensional torus. For T > 0, the incompressible Navier-Stokes equation
with no-slip boundary conditions is

∂tu−∆u+ (u · ∇)u+∇p = 0, (x, y, t) ∈ Ω× (0, T ),

div (u) = 0, (x, y, t) ∈ Ω× (0, T ),

u(x, 0, t) = u(x, L, t) = 0, (x, t) ∈ T× (0, T ),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(1)

where the intial data u0 belongs to the space H, defined in (8). It is well-known that there exists a
corresponding weak Leray solution to (1) that belongs to C0([0, T ];H) ∩ L2((0, T );V ) (see for instance
[2], Thoerem V.I.4), where V is also defined in (8) below. The Poiseuille flow is a laminar velocity field
satisfying the no-slip condition,

U(y) =

(
U1(y)

0

)
, U1(0) = U1(L) = 0, (2)

with U ∈ (C∞(0, L))2. The linearized Navier-Stokes equation around the 2-dimensional Poiseuille flow
writes 

∂tu−∆u+ U1(y)∂xu+

(
u2∂yU1(y)

0

)
+∇p = 0, (x, y, t) ∈ Ω× (0, T ),

div (u) = 0, (x, y, t) ∈ Ω× (0, T ),

u(x, 0, t) = u(x, L, t) = 0, (x, t) ∈ T× (0, T ),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(3)

with u0 ∈ H. The spatial operator of (3) is the Oseen operator [18]. Note that up to changing u by
e−κtu, for κ > 0, one may write

∂tu−∆u+ U1(y)∂xu+

(
u2∂yU1(y)

0

)
+∇p+ κu = 0, (x, y, t) ∈ Ω× (0, T ),

div (u) = 0, (x, y, t) ∈ Ω× (0, T ),

u(x, 0, t) = u(x, L, t) = 0, (x, t) ∈ T× (0, T ),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.

(4)

From now on, we refer to (4) as the Oseen equation. The shift by κ of the Oseen operator is introduced
so as to gain the monotonicity of the Oseen operator (see Section 1.2), and has no consequences on the
nature of our control results. Indeed, let us first introduce the null-controllability of the Oseen equation.
Let ω be an open subset of Ω, and consider

∂tu−∆u+ U1(y)∂xu+

(
u2∂yU1(y)

0

)
+∇p+ κu = χωf, (x, y, t) ∈ Ω× (0, T ),

div (u) = 0, (x, y, t) ∈ Ω× (0, T ),

u(x, 0, t) = u(x, L, t) = 0, (x, t) ∈ T× (0, T ),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(5)

where χω denotes the characteristic function of the open set Ω. The small-time null-controllability can
be stated as follows: for any control time T > 0 and any initial data u0 ∈ H, does there exist a control
function f ∈ L2((0, T );L2(ω)) such that the solution u of (5) satisfies u(T ) = 0 ? In the affirmative
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case, one is generally led to study the cost of the control, that is the estimation of the constant CT > 0
(depending on T > 0 and ω) of the continuity map between the control and the initial data,

||f ||L2((0,T );L2(ω)) ≤ CT ||u0||H .

Following the Lebeau-Robbiano strategy [13] (see also [10, 15, 17]) for the controllability of parabolic
operators using the spectral inequality, we shall prove,

Theorem 1.1 Let ε > 0. Then, there exists C > 0 such that for all T > 0, for all initial data u0 ∈ H,
there exists f ∈ L2((0, T );L2(ω)) such that the solution u of (5) satisfies

u(T ) = 0,

and such that the following estimate holds

||f ||2L2((0,T );L2(ω)) ≤ Ce
C

T1+ε ||u0||2L2(Ω). (6)

The null-controllability result stated in Theorem 1.1 is not new as it falls within the framework of
Fernández-Cara, Guerrero, Yu, Imanuvilov and Puel [7]. Indeed, considering the linearization of the
Navier-Stokes equation (1) around smooth solutions U satisfying U ∈ L∞((0, T ) × Ω))n and ∂tU ∈
L2((0, T );Lσ(Ω))n for some σ > 1, they proved notably, using the strategy of Fursikov and Imanuvilov
[8], the small-time null-controllability of the linearized equation. The optimal control cost was however
not reached for small time in [7].

Recently, Chaves-Silva and Lebeau have obtained in [4] the optimal cost of controllability CT = Ce
C
T

for the Stokes system in dimension greater or equal to 2, that is the Navier-Stokes equation linearized
around zero, improving the cost of control of [7] in this specific case. The control cost obtained of [4] is
a consequence of the spectral inequality for the Stokes system in combination of the Lebeau-Robbiano
strategy [13, 17].

Concerning small-time global controllability to trajectories of the nonlinear Navier-Stokes equation
with no-slip boundary condition (1), we refer to the work of Coron, Marbach, Sueur and Zhang [6] (see
also the references therein). In [6], the return method [5] was used, with a little help of a phantom
force, to drive the solution to zero in arbitrarly small time, by using a trajectory with good transport
properties and by analyzing the solution around this trajectory. One of the principal difficulties of [6] is
to deal with the boundary layers. One way of removing this little phantom force is to understand the
stability (or instability) of such as Poiseuille (or even Couette), and having a precise knowledge of the
cost of control. The present paper can be seen as a first step in this direction, although the present work
does not allow us to track the dependency of CT with respect to the size of the potentials.

Our main result is to derive a spectral inequality for the Oseen equation (4) in the spirit of [4]. We
refer to Section 1.3 for a precise statement and Section 1.4 for insights on the nature of the result. We
begin by considering the equation on the vorticity v = ∂xu2 − ∂yu1 for (4),

∂tv −∆v + U1(y)∂xv + (∂2
yU1)u2 + κv = 0, (x, y, t) ∈ Ω× (0, T ),

div (u) = 0, (x, y, t) ∈ Ω× (0, T ),

v(x, 0, t) = −∂yu1(x, 0, t), v(x, L, t) = −∂yu1(x, L, t), (x, t) ∈ T× (0, T ),

v(x, y, 0) = rot u0(x, y), (x, y) ∈ Ω.

(7)

At first sight, the Oseen equation (4) can be thought to be a perturbation of the Stokes equation (or
equivalently (7) a perturbation of the equation on the vorticity for the Stokes system), and classical
arguments could allow one to absord these lower terms in the Carleman estimates established in [4].
However, the divergence free condition on the velocity field u reveals a strong non-local term linking the
vorticity to the velocity for (7) of the form u2 = ∆−1∂xv. Furthermore, this internal coupling does not
allow us to prove unique continuation property for the augmented elliptic operator on the vorticity in
the s direction as opposed to [4] (see Section 1.4 for the definition of the augmented elliptic operator and
Remark 5.6 for the lack of propagation of smallness in the s direction). This lead us to place ourselves in
the original framework of [13], where the obtained spectral inequality is expressed with a local integral in
the s-variable, as it is the case here (see Theorem 1.8). Since the works of [10, 15] for the heat operator,
using propagation of smallness in the s direction, spectral inequalities has been reformulated with an
observation from {s = 0} × ω, which would yield, in the present setting

‖u‖2L2(Ω) ≤ Ce
K
√

Λ

∫
ω

|u|2 dx, ∀u ∈ ΠΛH.
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The lack of unique continuation in the s-direction forces us to prove only Theorem 1.8. Finally, the Oseen
operator is non self-adjoint, and therefore we shall use the work of [12], where the Lebeau-Robbiano
strategy is generalized for a class of non self-adjoint operators. Before stating the spectral inequality, let
us introduce the functional framework as well as some spectral properties of the Oseen operator.

1.1 Functional framework

Let us recast equation (4) into a semi-group formalism. First we introduce the following Hilbert spaces,

V := {u ∈ H1
0 (Ω)2, div u = 0}, H := {u ∈ L2(Ω)2, div u = 0, u · ν|∂Ω

= 0}, (8)

endowed by their usual norms, and where ν denotes the outward normal vector at the boundary. We
define the Stokes operator,

A0u := −P∆u, A0 : D(A0) ⊂ H −→ H,

where P : L2(Ω)2 → H stands for the standard Leray projection (the orthogonal projection of L2(Ω) on
H), with domain D(A0) := V ∩H2(Ω)2. We moreover define,

Ã1u = U1(y)∂xu+

(
u2∂yU1(y)

0

)
+ κu,

and the operator A1 : D(A1) ⊂ H −→ H defined by A1u := PÃ1, of domain, D(A1) := V ∩ H1(Ω)2.
Finally, the Oseen operator is defined by A : D(A) = D(A0) ⊂ H → H,

A := A0 +A1, (9)

and one can write (4) with the semi-group formalism,{
d

dt
u+Au = 0,

u|t=0
= u0.

1.2 Spectral properties of the Oseen operator

We recall the Weyl asymptotic formula for the two dimensional Stokes operator, obtained in [16]. The
operator A0 being positive, self-adjoint and with compact resolvent, there exists a sequence of positive
eigenvalues (µk)k∈N going to +∞, and a sequence of eigenfunctions φk ∈ H satisfying A0φk = µkφk.

Theorem 1.2 Let N(µ) = ]{µk < µ}. Then, there exists C > 0 such that,

N(µ) ∼
k→+∞

Cµ.

We recall here [12, Proposition 2.1], in the particular case A1 is q-subordinate to A0, with q = 1/2, that
we shall use in what follows.

Proposition 1.3 Assume that

• <
(
Au, u

)
≥ 0;

• A0 is a positive self-adjoint with compact resolvent and densely defined operator;

• There exists C > 0 such that for every u ∈ D(A
1/2
0 ) we have,∣∣∣(A1u, u

)∣∣∣ ≤ C

2
||A1/2

0 u||1/2H ||u||
1/2
H . (10)

Then

• D(A) = D(A0) ⊂ D(A1) ⊂ H and has a compact resolvent;

• Sp(A) ⊂ {z ∈ C, |=z| ≤ C|z|1/2}.
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The Oseen operator falls within the hypothesis of Proposition 1.3, provided κ > 0 large enough to ensure
the positivity.

Proposition 1.4 Let U ∈ (C∞(0, L))2 defined by (2). Then, there exists κ > 0 sufficiently large such
that the operator A defined by (9) satisfies Sp(A∗) ⊂ {z ∈ C, |=z| ≤ C|z|1/2}.

From Proposition 1.4, we have that there exists C0 > 0 such that Sp(A) ⊂ {z ∈ C, |=z| < C0(<z)1/2}.
We fix such C0 > 0 here and below.

We are now ready to define the spectral projectors on the eigenspaces of A∗, following [12].

Definition 1.5 Let Λ1 < Λ2 < · · · < Λk < . . . a sequence of real numbers going to infinity and such that
Λk /∈ <Sp(A) for all k ∈ N∗. We define the following contours in the complex plane γk := {z ∈ C, <z =

Λk, |=z| < C0Λk} ∪ {z ∈ C, <z ≤ Λ
1/2
k , |=z| = C0(<z)1/2}. We also define the spectral projectors,

ΠΛk : H −→ H

u 7−→ 1

2iπ

∫
γk

(A∗ − z)−1udz.

We finally recall the following estimate of the resolvent along the contours γk (see [12, Theorem 2.5] with
p = 1, q = 1/2). Note that we can take p = 1, because of the Weyl formula of Theorem 1.2.

Theorem 1.6 There exists C > 0 such that for all k ∈ N, for all z ∈ γk,

||(A∗ − z)−1||L(H,H) ≤ CeC
√

Λk

As a corollary, we shall use the following result, at several places.

Corollary 1.7 For every holomorphic function f , for all u ∈ ΠΛkH, there exists C > 0 such that,

||f(A∗)u||L2(Ω) ≤ sup
z∈γk
|f(z)|CeC

√
Λk ||u||L2(Ω).

Proof. We follow here [12]. One has, by holomorphic functional calculus,

||f(A∗)u||L2(Ω) = ||f(A∗)ΠΛku||L2(Ω) =

∣∣∣∣∣∣∣∣ 1

2iπ

∫
γk

f(z)

A∗ − z
udz

∣∣∣∣∣∣∣∣
L2(Ω)

≤ sup
z∈γk
|f(z)|meas(γk) sup

z∈γk
||(A∗ − z)−1||L(H,H)||u||L2(Ω)

≤ sup
z∈γk
|f(z)|CeC

√
Λk ||u||L2(Ω).

2

1.3 Main result

Our main result is to establish the following spectral inequality for the Oseen operator.

Theorem 1.8 Let S0 > 0. Let ω ⊂ Ω be a nonempty open set. Then, there exists C,K > 0, and
ϕ ∈ C∞0 (0, S0) such that, for every Λ > 1, we have

‖u‖2L2(Ω) ≤ Ce
K
√

Λ

∫∫
(0,S0)×ω

∣∣∣ϕ(s)(A∗)−1/2 sinh(s(A∗)1/2)u
∣∣∣2 dxds,

for all u ∈ ΠΛH.

Remark 1.9 As we believe that Lebeau-Robbiano spectral inequalities are interesting on their own, inde-
pendently on applications, it is important to note that Theorem 1.8 also hold for the operator A. Indeed
this spectral inequality is obtained through a direct application of the Carleman estimates proved below,
and a careful inspection of the proofs show that it is also valid for the operator A. Indeed, A∗ and A only
differs by their lower order terms, that is A1 and A∗1 respectively. Proofs are written with A∗1 having in
mind applications to control, but also work with A1.
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1.4 The augmented operator

The proof of Theorem 1.8 is an adaptation of the work of Chaves-Silva and Lebeau [4] to our frame-
work. First it is now classical to prove such spectral inequality by deriving a Carleman estimate for an
augmented elliptic operator. More precisely, we introduce,

XΛ :=
{

(A∗)−1/2 sinh(s(A∗)1/2)ũ, ũ ∈ ΠΛH
}
. (11)

Then, the augmented operator corresponds to, for any u ∈ XΛ, (−∂2
s +A∗)u = 0, (s, x, y) ∈ Z,

u|s=0
= 0, (x, y) ∈ Ω,

∂su|s=0
= ũ, (x, y) ∈ Ω,

(12)

where,
Z = (0, S0)× Ω,

for some S0 > 0. However, as pointed out in [4], unique continuation property does not hold for system
(12), mainly due to the pressure. One of the main ideas of [4], that we shall follow here, is to remove
the pressure term by considering instead the equation on the vorticity. But that approach has two
major difficulties. The first one is the lack of information of the trace of the vorticity at the boundary.
This difficulty is handled, as in [4], with techniques coming from the microlocal analysis for boundary
value problems. More specifically, we exploit crucially the fact that the conjugation of the augmented
elliptic operator by two different weights yields two different characteristic sets. Hence, we are able to
recover the desired estimates using the appropriate conjugated operator in each microlocal region (see
Section 3.3). This requires to make sure that these estimates with different weights can be patched
together, which is accomplished in Section 4.2.4. The second one is the coupling between the vorticity
and the velocity in the interior of the domain due to the low order terms. To overcome this difficulty,
we apply successively two Carleman estimates. The drawback however is that we lose the propagation
of smallness in the s-direction (as opposed to [4]). That is precisely the reason for using the original
strategy of Lebeau-Robbiano [13], developped for non-self-adjoint operators in [12], as it is the case here.
We conclude this section with some results on the regularity of the augmented elliptic operator. First,
note that by elliptic regularity, one has the following lemma.

Lemma 1.10 Let u ∈ XΛ. Then, ∀k ∈ N, one have u ∈ Hk(Z).

Proof. Let u = (A∗)−1/2 sinh(s(A∗)1/2)ũ, for some ũ ∈ ΠΛH. By the classical elliptic regularity and
the resolvent estimate of Corollary 1.7, there exist C1 > 0, and C2 > 0 (that depends on Λ) such that,

||u(s, .)||H2(Ω) ≤ C||A∗u||L2(Ω) ≤ C2||ũ||L2(Ω).

From Definition 1.5 and by holomorphic functionnal calculus, for all k ∈ N, one has (A∗)ku ∈ D(A∗).
and consequently, by elliptic regularity, one has

||u||H2k(Ω) . ||A∗u||Hk−2(Ω) . ||(A∗)ku||L2(Ω) . ||ũ||L2(Ω).

from the resolvent estimate of Corollary 1.7. Derivatives in s of u can also be estimated in L2((0, S0);Hk(Ω))
by again using the definition of u and the resolvent estimate.

2

We shall also use a different formulation of (12) in the core of the proof of the Carleman estimate, by
introducing the pressure term.

Lemma 1.11 For all u ∈ XΛ, there exists q ∈ C∞(Z) such that,{
−∂2

su−∆u+ Ã∗1u+∇q = 0, (s, x, y) ∈ Z,
div u = 0, (s, x, y) ∈ Z.

(13)

Proof. We follow [2]. Let φ ∈ V be a test function. One has, for s ∈ (0, S0),

0 =
(
(−∂2

s +A∗)u, φ
)
H

=
(
−∂2

su, φ
)
L2 + (A∗u, φ)V ′,V

=
(
−∂2

su, φ
)
L2 + (−P∆u, φ)V ′,V + (A∗1u, φ)V ′,V

=
(
−∂2

su, φ
)
L2 + (−∆u, φ)H−1,H1

0
+ (A∗1u, φ)V ′,V

=
(
−∂2

su−∆u+A∗1u, φ
)
H−1,H1

0
.

6



As a result, using Theorem IV.2.3 in [2], there exists q ∈ L2 such that,

−∂2
su−∆u+A∗1u+∇q = 0.

Moreover, the regularity of q follows from Lemma 1.10.
2

1.5 Notations and semi-classical norms

We conclude the introduction by introducing notations that shall be used throughout the article. We
also recall the standard definitions for semi-classical operators as well as semi-classical norms. We also
introduce the definition of a particular class of tangential semi-classical operators that shall be used in
Section 4.2.2.

1.5.1 Notations

We recall that,
Z = (0, S0)× Ω,

for some S0 > 0. Let us also define for later conveniences,

Y = (S̃0, S0 − S̃0)× Ω,

for S̃0 < S0/2. Since Y denote a localization in the s variable, we will use the abuse of notation ∂Y to
denote {{y = 0} ∪ {y = L}} ∩ Y .

Now let u ∈ XΛ (hence, u solves (12)), and define here and below,

v := rot(u), (14)

which satisfies in Ω,
− ∂2

sv −∆v + rot (A∗1u) = 0. (15)

In what follows,
w(s, x, y) = eϕ(s,y)/hv(s, x, y).

where the weight function ϕ is defined below in (24). We also define the localized functions we shall
work with throughout the article, with q defined by Lemma 1.11,

W (s, x, y) = χ(s, x, y)w(s, x, y), V (s, x, y) = χ(s, x, y)v(s, x, y),
U(s, x, y) = χ(s, x, y)u(s, x, y), Q(s, x, y) = χ(s, x, y)q(s, x, y)
U(s, x, y) = χ1(s)u(s, x, y), V(s, x, y) = χ1(s)v(s, x, y),
W(s, x, y) = χ1(s)w(s, x, y), Q(s, x, y) = χ1(s)q(s, x, y),

(16)

where χ(s, x, y) = χ1(s)χ2(x)χ3(y) and where χ1(s), χ2(x), χ3(y) are smooth cut-offs in each variable
satisfying near a point (s0, x0, y = 0) ∈ (0, S0)× T× {y = 0} :

χ1(s) =

{
1 if |s− s0| < S1,

0 if |s− s0| > 2S1,
χ3(y) =

{
1 if y < Y1,

0 if y > Y1,
(17)

for some 0 < 2S1 < S̃0 (that is, suppχ ⊂ Y ) and some Y1 < L/4. The localization χ(s, x, y) is defined
likewise near a point (s0, x0, y = L) ∈ (0, S0)× T× {y = L}.

Finally, C > 0 is a generic constant which may change from one line to another.

1.5.2 Pseudo-differential operators and semi-classical norms

We introduce the variable z = (s, x, y) ∈ R × T × R and the tangential variable z′ to be defined as
z′ = (s, x) ∈ R× T, as well as their Fourier counterparts ζ = (σ, ξ, η) ∈ R× N× R and ζ ′ = (σ, ξ). Note
that (z, ζ) ∈ R × T × R × R × N × R := T ∗(R × T × R) and (z′, ζ ′) ∈ R × T × R × N := T ∗(R × T). We
emphasize that the differential operators ∇,∆ and rot only act on the physical variables x, y. We shall
also use the notation ∇z :=

t
(∂s, ∂x, ∂y), as well as ∆z = ∇2

z when needed.
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Semi-classical operators

Here we recall some facts on semi-classical pseudo-differential operators with a small parameter h,
say 0 < h ≤ h0. We shall denote by Smsc the space of smooth functions a(z, ζ, h), with 0 < h ≤ h0 as
a small parameter, that satisfy the following behavior at infinity: for all multi-indices α, β there exists
Cα,β > 0 such that, ∣∣∣∂αz ∂βζ a(z, ζ, h)

∣∣∣ ≤ Cα,β(1 + |ζ|2)(m−|β|)/2,

for all (z, ζ) ∈ T ∗(R×T×R). For a ∈ Smsc , we define pseudo-differential operator of order m, denoted by
A = Op(a):

Au(z) :=
1

(2hπ)3

∑
ξ∈ 1

2πhZ

∫
R2

∫
R×T×R

ei
(z−z̃)·ζ

h a(z, ζ, h)u(z̃)dz̃dσdη,

One says that a is the symbol of A. We shall denote by Ψm
sc the set of pseudo-differential operators

of order m and denote by σ(A) (resp. σ(a)) the principal symbol of the operator A (resp. the symbol
a). We refer to [9] to precise definitions of pseudo-differential operators. Thus, define D = h∂/i, then
σ(D) = ξ. We shall also denote by Dmsc the space of semi-classical differential operators, i.e the case when
the symbol a(x, ξ, h) is a polynomial function of order m in ξ. We recall here the composition formula
of pseudo-differential operators. Let a ∈ Smsc and b ∈ Sm′sc , m,m′ ∈ R, we have

Op(a) ◦Op(b) = Op(c),

for some c ∈ Sm+m′

sc .

Tangential semi-classical operators

In the section we consider pseudo-differential operators which only acts in the tangential direction z′,
viewing the variable y as a parameter. We define SmT,sc as the set of smooth functions b(z, ζ ′, h) defined
for h a small parameter, say 0 < h < h0, satisfying the following behavior at infinity: for all multi-indices
α ∈ Nn, β ∈ Nn−1 there exists a constant Cα,β > 0 such that,∣∣∣∂αx ∂βζ′b(z, ζ ′, h)

∣∣∣ ≤ Cα,β(1 + |ζ ′|2)(m−|β|)/2,

for all (z, ζ ′, h) ∈ T ∗(R × T)×]0, 1[. For b ∈ SmT,sc, we define a tangential pseudo-differential operator
B := OpT (b) of order m by,

Bu(x) :=
1

(2hπ)2

∑
ξ∈h−1Z

∫
R

∫
R×T

ei
(z′−z̃′)·ζ′

h b(z, ζ ′, h)u(z̃′)dz̃′dσ

As in the previous section, we define Ψm
T,τ as the set of tangential pseudo-differential operators of order

m, and DmT,τ the set of tangential differential operators of order m. We shall use this class of pseudo-
differential operators in Section 4.2.1, that is the region where |ξ| is small.

Semi-classical norms

We first define the following semi-classical Sobolev tangential norms, for traces of functions on R×T
at {y = 0} or {y = L}

|u|m,sc := |OpT ((1 + |ζ ′|2)
m
2 )u|L2(R×T).

For m ∈ N, this semi-classical norm is equivalent to
∑
|α|≤m h

|α||∂|α|z′ u|L2(R×T), uniformly for h ∈ (0, 1).
We also define the following semi-classical norms, in the interior of the domain R× Ω,

||u||2m,sc :=

m∑
k=0

||∂ky OpT ((1 + |ζ ′|2)
m−k

2 )u||2L2(R×T×[0,L]).

As above, if m ∈ N, this semi-classical norm is equivalent to
∑
|α|≤m h

|α|||∂|α|z u||L2(R×T×[0,L]), uniformly

for h ∈ (0, 1).

Below, we shall the following semi-classical trace lemma, that can be found in [14, Section 5 (eq. 44)].

Lemma 1.12 There exists C > 0 such that for all u ∈ H1(R× T× [0, L]), for h ∈ (0, 1),

|u|y=L
|0,sc + |u|y=0

|0,sc ≤ Ch−1/2||u||1,sc. (18)
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2 From the spectral inequality to the cost of control

In this section, using the works of [12], we show that the spectral inequality of Theorem 1.8 allows one
to prove an observability inequality for the Oseen equation, with optimal cost of control. We consider
the following controlled system :{

d
dtu+Au = Pχωf, (x, y, t) ∈ Ω× (0, T ),

u|t=0
= u0 ∈ H, (x, y) ∈ Ω.

(19)

where χ is the characteristic function of an open subset ω ⊂ Ω, and f is the control function.

Theorem 2.1 Let ε > 0.There exists C > 0 such that for all T > 0, for all initial data u0 ∈ H, there
exists f ∈ L2(0, T ; Ω) such that the solution u of (19) satisfies

u(T ) = 0,

and such that the following estimate holds

||f ||2L2(0,T,L2(Ω)) ≤ Ce
C

T1+ε ||u0||2L2(Ω) (20)

The constant appearing in (20) is referred as the cost of controllability. Controllability of linearized
Navier-Stokes equations is already known (see for instance [7], where the author used a global Carleman
estimate for the parabolic operator) but the cost of control is not optimal. The work of [4] exhibited for
the first time the optimal behavior of this constant as T → 0 for the Stokes equation. The above spectral
inequality of Theorem 1.8 allows us to obtain almost the same result for the Oseen operator, using
an adaptation of the arguments of [13, 12, 17]. The proof relies on the well-known Lebeau-Robbiano
strategy. In [12], in a abstract setting, the author showed that spectral inequality of the form of Theorem
1.8 for non-self-adjoint operators satisfying the properties of Proposition 1.4 implies null-controllability
for the parabolic problem (19). However, cost of controllability was not derived in this article. Here, we
then adopt the strategy of [17] in Lemma 2.7 and Theorem 2.6 to obtain the cost of control (20). Note
that there is a little loss in the power of T in (20), as we may expect to have ε = 0 as in [4].

2.1 Controllability of the low frequencies

We first recast Theorem 1.8 into the formalism of [12].

Corollary 2.2 Let S0 > 0 and ω ⊂ Ω be a nonempty open set. Then, there exists C,K > 0, and
ϕ ∈ C∞0 (0, S0) such that, for every Λ > 1, we have

‖u‖2L2(Ω) ≤ Ce
K
√

Λ

∫∫
(0,S0)×ω

∣∣∣ϕ(s) sinh(s(A∗)1/2)u
∣∣∣2 dxds,

for all u ∈ ΠΛH.

Proof. Note that
√
A∗ is an isomorphism on ΠλH. Using the resolvent estimate of Corollary 1.7, we

obtain

||
√
A∗u||L2(Ω) = ||

√
A∗ΠΛu||L2(Ω) =

∥∥∥∥ 1

2iπ

∫
γk

(A∗ − z)−1
√
A∗udz

∥∥∥∥
L2(Ω)

≤ CeC
√

Λ||u||L2(Ω).

Hence, applying Theorem 1.8 to v =
√
A∗u proves Corollary 2.2. 2

Now we consider the parabolic control problem for the low frenquencies,{
d
dtu+Au = Pχωf, (x, y, t) ∈ Ω× (0, T ),

u|t=0
= u0 ∈ ΠΛH.

(21)

The controllability of parabolic equations (21) of the lower frequencies for non-self-adjoint operators has
been already developed in [12] in an abstract setting. From Proposition 1.4 and Corollary 2.2, we obtain
Theorem 2.3, as they fall into the hypothesis of [12]. More precisely, Theorem 2.3 is [12, Theorems 4.9
and 4.10] in our setting, with q = 1/2.
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Theorem 2.3 Let γ > 1 and let T ∗ > 0. There exists C > 0 such that for all 0 < T < T ∗, for all
u0 ∈ ΠΛH, there exists f ∈ L2((0, T );L2(Ω)) such that the solution of (21) satisfies ΠΛu(T ) = 0, with
control cost

||f ||2L2((0,T );L2(Ω)) ≤ Ce
C(
√

Λ+ 1
Tγ )||u0||2L2(Ω).

Let us consider the dual counterpart of (21) (along with the change of variables t→ (T − t)).{
d
dtu+A∗u = 0

u|t=0
= u0 ∈ ΠΛH.

(22)

The following observability inequality then holds, coming from the duality between controllability and
observability, noting that the adjoint of the control operator Pχω satisfies (Pχω)∗u = u|ω .

Corollary 2.4 Let γ > 1 and let T ∗ > 0. There exists C > 0 such that for all 0 < T < T ∗, and for all
Λ > 0,

||u(T )||2H ≤ CeC(
√

Λ+ 1
Tγ )

∫ T

0

∫
ω

|u(t, x)|2dtdx,

for all u solution of (22).

2.2 Decay of the semigroup

Following the idea of the Lebeau-Robbiano strategy, one shall need the following estimate of the natural
dissipation of the higher frequencies (see [12], Proposition 4.12 with θ = 1/2 for a proof : note that one
can take θ = 1/2 since in our case, q = 1/2 from Proposition 1.4, and p = 1 from Theorem 1.2).

Proposition 2.5 There exists C > 0, Λ0 > 0, such that for all Λ ≥ Λ0 and for all t > 1√
Λ

,

||SA(t) (I −ΠΛ) ||2L(H) ≤ Ce
C
√

Λ−tΛ.

2.3 Derivation of an observability inequality

Let u be solution of the following Oseen equation{
d
dtu+A∗u = 0,

u|t=0
= u0 ∈ H.

(23)

Theorem 2.6 Let γ > 1 and T ∗ > 0. There exists C > 0 such that for every 0 < T < T ∗,

||u(T )||2L2(Ω) ≤ Ce
C
Tγ

∫ T

0

∫
ω

|u(t, x)|2dtdx,

with u solution of (23).

Proof. We only provide a sketch of the proof, as it is classical, and sufficient to apply Lemma 2.7 in
combination with Lemmata 4.1 and 4.2 in [4]. The main idea is to consider of proper partition of the
interval [0, T ] = ∪∞k=0[aj , aj+1], and apply Lemma 2.7 between t = aj and t = aj+1 and sum over j. As
the left hand side provides a telescopic sum, one obtains the result. We refer to [17, 4] for more details.
2

Lemma 2.7 There exist T ∗ > 0 and m ∈ (0, 1) such that,

F (t)||u(t)||2H − F (mt)||u0||2H ≤
∫ t

0

∫
ω

|u(t, x)|2dtdx,

holds for all u solution of (23), for all t ∈ [0, T ∗], with F of the form F (t) = K1e
−K2
tγ , with γ > 1.
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Proof. One shall denote by u = v + w where v = ΠΛ and w = (1 − ΠΛ)u. Note that Corollary 2.4
applies for v and Proposition 2.5 applies for w. To this end, one sets,

f(t) = C1e
C1(
√

Λ+ 1
Tγ ), g(t) = C2e

C2

√
Λ−tΛ.

Hence, applying Corollary 2.4 and Proposition 2.5, up to translating time 0 → T1, for 0 < T1 < T < T ∗,

for every Λ > Λ0, with Λ0 > 0 sufficiently large, and T ∗ < Λ
− 1

2
0 ,

||u(T )||2H ≤ C
(
||v(T )||2H + ||w(T )||2H

)
≤ C

(
f(T − T1)

∫ T

T1

∫
ω

|v(t, x)|2dtdx+ ||w(T )||2H

)

≤ C

(
f(T − T1)

∫ T

T1

∫
ω

|u(t, x)|2dtdx+ 2f(T − T1)

∫ T

T1

∫
Ω

|w(t, x)|2dtdx+ ||w(T )||2H

)

≤ C

(
f(T − T1)

∫ T

T1

∫
ω

|u(t, x)|2dtdx+ 2f(T − T1)(T − T1)g(T − T1)||w(T1)||2H + ||w(T )||2H

)

≤ C

(
f(T − T1)

∫ T

T1

∫
ω

|u(t, x)|2dtdx+ (2f(T − T1)(T − T1)g(T − T1)g(T1) + g(T )) ||w(T )||2H

)

≤ C

(
f(T − T1)

∫ T

T1

∫
ω

|u(t, x)|2dtdx+ (2f(T − T1)(T − T1) + 1) g(T )||w(T )||2H

)
.

Let us set T1 = (1− ε)T , which implies,

(Cf(εT ))−1||u(T )||2H − (Cf(εT ))−1 (2f(εT )εT + 1) g(T )||w(T )||2H ≤
∫ T

(1−ε)T

∫
ω

|u(t, x)|2dtdx.

Setting (εT )1+γΛ = 1 (note that it is in accordance with hypothesis of Proposition 2.5) yields,

(Cf(εT ))−1 (2f(εT )εT + 1) g(T ) = 2
C2

C
(εT )e

C2

(εT )
γ+1

2

− 1
ε(εT )γ

+
1

CC1
e

C2

(εT )
γ+1

2

− 1
ε(εT )γ

−C1(
C1

(εT )
γ+1

2

+ 1
(εT )γ

)

.

Hence, there exists ε0 > 0 and C3, C4, C5, C6 > 0 such that for every ε < ε0, one has,

(Cf(εT ))−1 (2f(εT )εT + 1) g(T ) ≤ C3e
− C4
ε(εT )γ ,

and

(Cf(εT ))−1 ≥ C5e
− C6

(εT )γ .

Taking again ε0 sufficiently small, there exist K1,K2 > 0 such that for all 0 < ε < ε0,

F (T )||u(T )||2H − F
(
T

2

)
||w(T )||2H ≤

∫ T

0

∫
ω

|u(t, x)|2dtdx,

with F (t) = K1e
−K2
Tγ . This ends the proof. 2

3 Conjugated operators and weight function properties

In this section, we begin by introducing the different weight functions that shall be used in the Carleman
estimates, as well as the conjugated operators. We then set the ground for the analysis of the boundary
terms arising in the Carleman estimates (dealt in Section 4.2) by splitting the cotangent space of ∂Y in
different regions and by analyzing the roots of the principal symbols of Qϕ0 and Pϕ.

3.1 Augmented operator conjugated by the weight function

Near the boundaries {y = 0} and {y = L}, we shall work with the following weight function,

ϕ(s, y) := eγψε(s,y), (24)
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where ψε(s, y) is smooth and satisfies,

ψε(s, y) =

{
y − ε(s− s0)2 in a neighborhood of {y = 0},
(L− y)− ε(s− s0)2 in a neighborhood of {y = L}.

(25)

where ε > 0 shall be fixed small and γ > 0 shall be fixed large in what follows. In order to prove a proper
Carleman estimate in Section 4, one shall work with three slightly different conjugated operators.

We shall denote by,

Pϕ := h2eϕ/h(−∂2
s −∆)e−ϕ/h

= − h2∂2
s − h2∆− ((∂yϕ)2 + (∂sϕ)2) + 2h(∂yϕ∂y + ∂sϕ∂s) + h2(∂2

yϕ+ ∂2
sϕ),

with semiclassical principal symbol given by,

pϕ(s, y, ξ, η, σ) = σ2 + η2 + ξ2 − ((∂yϕ)2 + (∂sϕ)2) + 2i(∂yϕη + ∂sϕσ), (26)

where (σ, ξ, η) denotes the Fourier variables of the space variables (s, x, y). Defining the weight function
ϕ0,

ϕ0(s) := ϕ(y = 0, s) = ϕ(y = L, s), (27)

we shall also use the following conjugated operator,

Qϕ0 := h2eϕ0/h(−∂2
s −∆)e−ϕ0/h

= − h2∂2
s − h2∆− (∂sϕ0)2 + 2h(∂sϕ0)∂s + h2∂2

sϕ0, (28)

with semiclassical principal symbol given by,

qϕ0(s, ξ, η, σ) = σ2 + η2 + ξ2 − (∂sϕ0)2 + 2i(∂sϕ0)σ.

Finally, we introduce a third conjugated operator that shall be needed in Section 5,

−∆ϕ := h2eϕ/h(−∆)e−ϕ/h

=− h2∆− |∇ϕ|2 + 2h∇ϕ · ∇+ h2∆ϕ, (29)

with a semiclassical principal symbol,

δϕ(s, x, y, ξ, η) = η2 + ξ2 − |∇ϕ|2 + 2i∇ϕ ·
(
ξ
η

)
.

3.2 Sub-ellipticity condition

Under the action of the conjugaison, elliptic operators such as P , Q or −∆ defined in the previous section
are not elliptic. To handle characteristics sets, one shall use the sub-ellipticity property, defined in what
follows.

Definition 3.1 Let U be an open set of R3. We say that (P,ϕ) satisfies the Hörmander’s sub-ellipticity
condition in U if |∇zϕ| = |(∂sϕ,∇ϕ)| ≥ C > 0 on U and if

pϕ(s, x, y, σ, ξ, η) = 0 =⇒ 1

2i
{pϕ, pϕ} > 0. (30)

In what follows, one shall also need a slightly different sub-ellipticity definition, with the same weight
function but for the (not-augmented) - Laplace operator given by (29). Indeed, when considering (15),
one observes that the vorticity v is coupled with the velocity u due to the lower-order terms. One shall
pay attention that, for the same weight function ϕ, the Carleman estimates given below applies both for
v (associated with the operator Pϕ) and for u (associated with the operator −∆).

Definition 3.2 We say that (−∆, ϕ) satisfies the sub-ellipticity condition in U if |∇ϕ| ≥ C > 0 on U
and if,

δϕ(s, x, y, ξ, η) = 0 =⇒ 1

2i
{δϕ, δϕ} > 0. (31)

It is now well-known (see [11] for instance) that the convexified weight given by (24) satisfies the sub-
ellipticity conditions of definitions 3.1 and 3.2, for γ > 0 chosen sufficiently large, in a neighbohood of
the boundary {y = 0} or {y = L}, since one has |∂yϕ| 6= 0. The sub-ellipticity condition is a necessary
condition for the derivation of a Carleman estimate with loss of a power h1/2 in the inequality of Theorem
4.1 and Theorem 4.2.
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|ξ|

|σ|

E+

E−2

E−1
V

U

Figure 1: Representation of the microlocal regions of the cotangent space of ∂Y and illustration of the
characteristic sets CharQϕ0

⊂ U and CharPϕ ⊂ V .

3.3 Microlocal regions

Following the ideas of [4], we introduce three different microlocal regions in the cotangent space of ∂Y .
First we define,

E+ := {(σ, ξ) ∈ R2, |ξ|2 > 2 sup(∂sϕ0)2}, E− := {(σ, ξ) ∈ R2, |ξ|2 < 3 sup(∂sϕ0)2},

and we shall also split E− = E−1 ∪ E
−
2 where,

E−1 := {(σ, ξ) ∈ E−, |σ| < 2δ}, E−2 := {(σ, ξ) ∈ E−, |σ| > δ},

for a small δ > 0 that shall be fixed in what follows. This microlocal decomposition of the phase space
are represented in Figure 1, and are motivated by the position of the roots of Qϕ0

and Pϕ obtained in
Section 3.4 and the strategy of the proof detailed in the beginning of Section 4.2.

3.4 Roots properties

It is classical when dealing with boundary value problems to consider the principal symbols of the
operators Pϕ and Qϕ0

as polynomials in the conormal variable η. We first analyse the behavior of the
roots of the principal symbol qϕ0

.

3.4.1 Analysis of Qϕ0

As the weight function ϕ0 does not depend on the x, y variables, the symbol qϕ0 can be decomposed as
follows,

qϕ0
(s, σ, ξ, η) = (η − r+(s, σ, ξ))(η − r−(s, σ, ξ)). (32)

Lemma 3.3 We have in E+,

• −(r±(s, σ, ξ))2 = σ2 + ξ2 − (∂sϕ0)2 + 2i∂sϕ0σ, r± ∈ S̃1
T,sc,

• r+ = −r−,

• | Im r±| ≥ C > 0,

From the last point, we make the following convention ± Im r± ≥ C > 0.

Proof. The first two points come from the definition of qϕ0
. For the last point, notice that, in E+, we

have, Re((r±(s, σ, ξ))2) = (∂sϕ0)2 − σ2 − ξ2 ≤ −c < 0, which is sufficient to conclude that ± Im r± ≥
C > 0. 2

Note in particular from the third point that in the region E+, the operator Qϕ0
is elliptic, since there

is no real characteristic set (characteristics sets are represented in Figure 1).
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3.4.2 Analysis of Pϕ

Second, we analyze the roots of Pϕ. As above, we write,

pϕ(s, y, σ, ξ, η) = (η − ρ+(s, y, σ, ξ))(η − ρ−(s, y, σ, ξ)), (33)

where ρ±(s, y, σ, ξ) := −i∂yϕ ±m(s, y, σ, ξ) ∈ S̃1
T,sc, with −m2 = ξ2 + σ2 − (∂sϕ)2 + 2i(∂sϕ)σ, and by

convention Re(m) ≥ 0. We shall use this polynomial form in the region E−1 . Hence, we shall need the
following lemma, that describes the position of the roots in the complex plane in that microlocal region.

Lemma 3.4 In E−1 , we have,

• for y ∈ (0, L) in a neighborhood of {y = 0}, we have Im ρ± ≤ −c < 0,

• for y ∈ (0, L) in a neighborhood of {y = L}, we have Im ρ± ≥ c > 0.

Proof. On E−1 , we have |σ| < 2δ and, using the definition of ϕ, |ξ|2 < 3cε2. Hence, |m2| ≤ c(δ2 + ε2).
Therefore, for δ and ε chosen sufficiently small, we have that Im ρ± has the same sign than −∂yϕ. Yet,
∂yϕ > 0 near y = 0, and ∂yϕ < 0 (see (25) for an explicit expression of ϕ in a neighborhood of the
boundaries.) 2

One note that in fact, ∂νϕ|y∈{0,L} < 0, where ν is the unit outward normal vector of the boundary
{y = 0} ∪ {y = L}. From now on, δ is fixed in what follows such that Lemma 3.4 holds true. Note that
Lemma 3.4 shows that the operator Pϕ is elliptic in the microlocal region E−1 (a projection on (ξ, σ) of
characteristic set of Pϕ is represented in Figure 1).

4 A Carleman estimate near the boundary

4.1 Estimates for the volume terms

We shall use the following result in [4] as a black box. It is worth noticing that their result applies
with the weight function defined in (27) since the weight function satisfies the sub-ellipticity condition
of Definition 3.1 and moreover satisfies ∂νϕ ≤ −c < 0 on the support of W (defined in (16)). We recall
that we denoted by ∂Y the boundaries {y = 0} and {y = L}.

Theorem 4.1 There exist h0 > 0, C > 0 such that,

h||eϕ/hV ||2L2(Y ) + h3||eϕ/h∇zV ||2L2(Y ) ≤ C
(
h4||eϕ/h(∂2

s + ∆)V ||2L2(Y )

+ h|eϕ0/hV|∂Y |
2
L2(∂Y ) + h3|eϕ/h∇z′V|∂Y |

2
L2(∂Y )

)
,

for all 0 < h ≤ h0, for all V of the form (16).

Using the particular form of the function V and the divergence free condition, one may recover an
estimate on the velocity U .

Theorem 4.2 There exist h0 > 0, C > 0 such that,

h||eϕ/hV ||2L2(Y ) + h3||eϕ/h∇zV ||2L2(Y ) + ||eϕ/hU ||2L2(Y ) + h2||eϕ/h∇U ||2L2(Y )

≤ C
(
h4||eϕ/h(∂2

s + ∆)V ||2L2(Y ) + h3||eϕ/h[∆, χ]u||2L2(Y )

+ h3||eϕ/h[∇, χ]v||2L2(Y ) + h|eϕ0/hV|∂Y |
2
L2(∂Y ) + h3|eϕ/h∇z′V|∂Y |

2
L2(∂Y )

)
, (34)

for all 0 < h ≤ h0, for all U, V of the form (16).

Proof. Using commutation with cut-off functions, and the divergence free condition on u, we obtain,

h3||eϕ/h∆U ||2L2(Y ) . h3||eϕ/hχ∆u||2L2(Y ) + h3||eϕ/h[∆, χ]u||2L2(Y )

. h3||eϕ/hχ∇zv||2L2(Y ) + h3||eϕ/h[∆, χ]u||2L2(Y )

. h3||eϕ/h∇zV ||2L2(Y ) + h3||eϕ/h[∆, χ]u||2L2(Y ) + h3||eϕ/h[∇z, χ]v||2L2(Y ). (35)

Now observe that classical the Carleman estimate holds for ∆ϕU , near the boundary ∂Y , as U satisfies
homogeneous Dirichlet boundary condition, and falls into the scope of Definition 3.2. We recall it here,
adapted to our setting (see for instance [1, 13]).
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Theorem 4.3 Let z0 ∈ ∂Y and let ϕ ∈ C∞(Y ) such that the pair (−∆, ϕ) satisfies Definition 3.2 in a
neighborhood of z0 in Y . Then, there exists h0 > 0 such that,

||eϕ/hU ||2L2(Y ) + h2||eϕ/h∇U ||2L2(Y ) . h3||eϕ/h∆U ||2L2(Y ), (36)

for all U defined in (16).

Using (36) to the right-hand side of (35) (up to shrink the cut-off function χ if necessary), we obtain the
sought result. 2

4.2 Estimates of the boundary terms

The main difficulty in using estimate (34) lies in the estimation of the trace terms in the right-hand side,
since we do not have any straightforward information on the traces of v (or equivalently V ). To overcome
this difficulty, we shall perform several microlocalizations and use the splitting of the cotangent space of
∂Y : E+, E−1 and E−2 . Each region shall have a different treatment.

• E−1 is the low-frequency region. It is now well-known (see [14]) that one can estimate the two
boundary traces of the solution by the source term, without any prescribed boundary conditions,
since from Lemma 3.4, near {y = 0}, both roots have negative imaginary part and the domain is
on the side {y > 0}, and near {y = L} both roots have positive imaginary parts and the domain
is on the side {y < L}. For such discussion, one also refers to [1, 3].

• E+ is a high-frequency region in the ξ variable. There, we shall perform an elliptic estimate on u
(recall the relation rot u = v) using the ellipticity of Qϕ0

in that region (see Lemma 3.3) and the
knowledge of a Dirichlet boundary condition on the vector field u.

• E−2 is the remaining region. Using the arguments of [4], we shall prove an analytic estimate in the
(s, σ) variable by a Paley-Wiener type theorem.

This section deals with this program. Before doing so, we first recall that, due to the homogeneous
boundary condition U|∂Y = 0, we have W|∂Y = ∂yU1, where U =

t
(U1, U2) denote the tangential and

perpendicular component of U respectively.

4.2.1 Estimates in E−1
We start with the low frequency region. Let θ−1 (ξ, σ) = α1(ξ)β1(σ), with α, β bounded smooth functions
of order zero such that supp θ−1 ⊂ E

−
1 . From classical elliptic boundary value problems methods (see for

instance [3], Proposition 6.1-8), we have the following result.

Proposition 4.4 There exists h0 > 0 and C > 0 such that,

h|Op(θ−1 )W |2L2(∂Y ) + h3|∇z′ Op(θ−1 )W |2L2(∂Y ) ≤ C
(
h4||PϕW ||2L2(Y )+

h4||∇zW ||2L2(Y ) + h2||W ||2L2(Y )

)
, (37)

for all 0 ≤ h ≤ h0 and for all W of the form (16).

4.2.2 Estimates in E+

We continue with the high frenquency region in the variable ξ. Let θ+(ξ) be a bounded smooth function
such that supp θ+ ⊂ E+. In the present section, we shall work globally with respect to the (x, y) variables,
but locally with respect to the s variable, in order to avoid truncation coming from ∇χp to appear. To
do this, we recall (16)

U = χ1(s)u, Q = χ1q,

and we shall consider the following system,{
−∂2

sU−∆U +∇Q = F, (s, x, y) ∈ R× Ω,

div U = 0, (s, x, y) ∈ R× Ω,
(38)
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and obtain estimates on U, since u satisfies (13). Introduce the following functions U := eϕ0/hU, F :=
h2eϕ0/hF, Q := heϕ0/hQ. As a result, we shall work with the operator Qϕ0

(defined in (28)). Hence, U
satisfies the following conjugated system,{

Qϕ0U + h∇Q = F , (s, x, y) ∈ R× Ω,

div U = 0, (s, x, y) ∈ R× Ω.

We emphasize that the weight function ϕ0 only depends on the variable s. A key point of this section is
that Qϕ0

is elliptic on E+ (see Lemma 3.3). Note also that we have homogeneous boundary condition.

Proposition 4.5 There exists h0 > 0 and C > 0 such that,

||OpT (θ+)U||22,sc + h3|eϕ0/h OpT (θ+)(∂yu1)|∂Y |
2
1,sc ≤ Ch4||eϕ0/h[∂2

s , χ1]u||21,sc, (39)

for all 0 ≤ h ≤ h0 and for all U of the form (16).

Remark that the estimate of the boundary term eϕ0/h OpT (θ+)(∂yu1)|∂Y is precisely the boundary terms
appearing in the right-hand side of (34), microlocalized in the E+ region.

Proof. The proof is based on integration by parts, noting that the computations are valid because of
the regularity of the function u (see Lemma 1.10). We recall that Qϕ0

= −h2∆z−(∂sϕ0)2 +2h(∂sϕ0)∂s+
h(∂2

sϕ0). Let us denote by U1 = OpT (θ+)U , Q1 = OpT (θ+)Q and F1 = OpT (θ+)F . As θ+ is a Fourier
multiplier in the x direction, it commutes with all the involved operators and we have the following
system, 

Qϕ0
U1 + h∇Q1 = F1, (s, x, y) ∈ R× Ω,

div U1 = 0, (s, x, y) ∈ R× Ω,

U1|y=0
= U1|y=L

= 0, (s, x) ∈ R× T,

(40)

Multiplying the first line of (40) by U1 and integration by parts yields,

h2

∫
Z

|∇zU1|2 −
∫
Z

(∂sϕ0)2|U1|2 . ||F1||2L2(Z).

Note that on the support of θ+, we have h|Dx| > 2 sup |∂sϕ0|2, and consequently, there exists C > 0
such that,

||U1||21,sc ≤ C||F1||2L2(Z). (41)

Denoting G1 := F1 + (∂sϕ0)2U1 − 2h(∂sϕ0)∂sU1 − h(∂2
sϕ0)U1, (40) reads

−∆zU1 + h∇Q1 = G1, (s, x, y) ∈ R× Ω,

div U1 = 0, (s, x, y) ∈ R× Ω,

U1|y=0
= U1|y=L

= 0, (s, x) ∈ R× T,

(42)

and G1 satisfies, using (41),
||G1||2L2(Z) ≤ C||F1||2L2(Z). (43)

Differentiating the second line of (42), we have div ∂2
sU1 = 0, and consequently, multiplying the first

line by ∂2
sU1 and integrating by parts, we have

h2||∂2
sU1||2L2(Z) ≤ C||F1||2L2(Z). (44)

Setting H1 := G1 + h2∂2
sU1, we have,

−∆U1 + h∇Q1 = H1, (s, x, y) ∈ R× Ω,

div U1 = 0, (s, x, y) ∈ R× Ω,

U1|y=0
= U1|y=L

= 0, (s, x) ∈ R× T,

(45)

with the estimate
||H1||2L2(Z) ≤ C||F1||2L2 .
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Note that we reduce the problem to the derivation of an elliptic estimate of a semi-classical Stokes system.
Hence, it is well-known by ellipticity, that there exists C > 0 such that

||U1||22,sc ≤ C||F1||2L2(Z). (46)

Hence, by the trace formula (18), we deduce that

h3|(∂yU1)|∂Y |
2
L2((0,S0)×T) . h2||∂yU1||21,sc . ||U1||22,sc . ||F1||2L2(Z).

It remains to estimate h5|∇s,x(∂yU1)|∂Y |2L2((0,S0)×T). To do this, we differentiate (40) in the tangential

(s, x) direction, and then 
Qϕ0
U2 + h∇Q2 = F2, (s, x, y) ∈ R× Ω,

div U2 = 0, (s, x, y) ∈ R× Ω,

U2|y=0
= U2|y=L

= 0, (s, x) ∈ R× T,

(47)

where U2 := ∇s,xU1, F2 = ∇s,xF1 + [(∂sϕ0)2,∇s,x]U2 + 2h[∂sϕ0,∇s,x]∂sU1 + h[∂2
sϕ0,∇s,x]U2 and Q2 =

∇s,xQ1. From (46), we can estimate,

||F2||2L2(Z) . ||F1||2L2(Z) + ||∇s,xF1||2L2(Z).

Yet, arguing as above, one can obtain an elliptic estimate on U2 given by,

||U2||22,sc . ||F2||2L2(Z) . ||F1||2L2(Z) + ||∇s,xF1||2L2(Z),

which yields, using again (18),

h5|∇s,x(∂yU1)|∂Y |
2
L2((0,S0)×T) = h5|(∂yU2)|∂Y |

2
L2((0,S0)×T) ≤ h

4||∂yU2||21,sc . h2||U2||22,sc . h2||F2||2L2(Z)

. h2||F1||2L2(Z) + h2||∇s,xF1||2L2(Z).

Summing up, we have proved that there exists C > 0 such that,

||U1||22,sc + h2||∇s,xU1||22,sc + h3|(∂yU1)|∂Y |
2
1,sc ≤ C

(
||F1||2L2(Z) + h2||∇s,xF1||2L2(Z)

)
.

We end the proof by noting that F1 := h2A∗1U1 + h2[∂2
s , χ1]U , and the sought result follows by taking

h > 0 sufficiently small. 2

4.2.3 Estimates in E−2
In this section, we shall use the particular form of the function U , mainly the analyticity in the s variable,
to estimate the boundary traces in the remaining region E−2 . Analyticity allow us to gain exponential
decay as h→ 0 here. Let θ−2 (σ, ξ) := α2(ξ)β2(σ) ∈ S̃0

T,sc such that supp θ−2 ⊂ E
−
2 .

Proposition 4.6 There exists h0, c0 > 0 and C such that,

|Op(θ−2 )W|∂Ω
|21,sc . CeCΛ1/2+2

1−c0
h ||ũ||2L2(Ω). (48)

for all h ∈ (0, h0] and where ũ and W are defined in (11) and (16).

Proof. The beginning of the proof mimmicks the one in [4]. First note that, one has, for all n ∈ N,

OpT (θ−2 )W|∂Ω
=

1

2πh

∫
e
isσ
h β2(σ)

(∫
e
−itσ
h χ1(t)eϕ0(t)/h OpT (α2)v(t, x, 0)dt

)
dσ

=
1

2πh

∫
e
isσ
h β2(σ)

(∫
dn

(dt)n
hne

−itσ
h

(−iσ)n
χ1(t)eϕ0(t)/h OpT (α2)v(t, x, 0)dt

)
dσ

= − 1

2πh

∫
e
isσ
h β2(σ)

(∫
hne

−itσ
h

(−iσ)n
dn

(dt)n

(
χ1(t)eϕ0(t)/h OpT (α2)v(t, x, 0)

)
dt

)
dσ

= − 1

2πh

∫
e
isσ
h β2(σ)

(∫
hne

−itσ
h

(−iσ)n
e
ϕ0(t,σ)

h Mn(t, x)dt

)
dσ,
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where we wrote Mn(t, x) = e−
ϕ0(t)
h

dn

(dt)n

(
χ1(t)eϕ0(t)/h OpT (α2)v(t, x, 0)

)
. In what follows, we shall focus

on,

I :=

∫
e
−itσ
h eϕ0(t)/hMn(t, x)dt =

∫
e
iφ
h Mn(t, x)dt,

with φ(t, σ) := −tσ − iϕ0(t). By definition of the weight function ϕ0, we have,

φ(t, σ) = −tσ − i
(
ϕ0(s0)− εγ(t− s0)2 +O(ε2)

)
. (49)

Note that the integrand of I is analytic on the set where χ1 = 1. We thus introduce the following change
of contour in the complex plane,

t 7→ g(t) := t− i σ

< σ >
κ(t), κ ∈ C∞0 (R), (50)

with suppκ ⊂ {χ1 = 1}, κ(t) ∈ [0, κ0] and κ(t) = κ0 on an interval of the type (−ε0 + s0, ε0 + s0) ⊂
{χ1 = 1}. We recall that < σ >= (1 + σ2)1/2 stands for the Japanese bracket. We have,

Imφ(g(t), σ) =
σ2

< σ >
κ(t)− ϕ0(s0) + εγ(t− s0)2 − εγ σ2

< σ >2
κ(t)2 +O(ε2),

and we see that for ε > 0 and κ0 > 0 chosen sufficiently small (and fixed from now on), there exists
c0 > 0 such that,

Imφ(g(t), σ) ≥ c0 − ϕ0(s0),

since |σ| bounded from below by a strictly positive constant on the support of β2(σ). Hence, we shall
perform the following change of contour in the integral of I using the analyticity,

|I| =
∣∣∣∣∫

R
e
iφ
h Mn(t, x)dt

∣∣∣∣ =

∣∣∣∣∫
γ

e
iφ
h Mn(t, x)dt

∣∣∣∣ =

∣∣∣∣∫
R
e
iφ(g(t),σ)

h Mn(g(t), x)g′(t)dt

∣∣∣∣
.e(ϕ0(s0)−c0)/h

∫
R
|Mn(g(t), x)| dt.

As a result, using the fact that |ξ| is uniformly bounded from above in that microlocal region, using trace
formulas, and taking n = 4 for instance, we have, by definition of the semi-classical norms,

|OpT (θ−2 )W|∂Ω
|21,sc . |OpT (θ−2 )W|∂Ω

|20 + h2|OpT (θ−2 )∂sW|∂Ω
|20

.
∫
∂Ω

h2n−2

∣∣∣∣∫
R
ei
sσ
h σ−nIdσ

∣∣∣∣2 dsdx+

∫
∂Ω

h2n−2

∣∣∣∣∫
R
ei
sσ
h σ−n+2Idσ

∣∣∣∣2 dsdx
. h2n

∫
∂Ω

∣∣∣∣sup
σ
|I|
∣∣∣∣2 dxds

. e2
ϕ0(s0)−c0

h

∫
∂Ω

(∫
R
M4(t, x)dt

)2

dxds

. e2
ϕ0(s0)−c0

h |M4|20 . e2
ϕ0(s0)−c0

h ||M4||2H1(Z),

where we used in the last line a trace formula. Note that there exist m ∈ R and C > 0 such that,

|M4| ≤ Chm
4∑
k=0

|∂ks v(g(s), x, y)|, |∇zM4| ≤ Chm
4∑
k=0

|∂ks∇zv(g(s), x, y)|,

Hence,

|Op(θ−2 )W|∂Ω
|21,sc . Chme2

1−c0
h

4∑
k=0

||∂ks v(g(.), ., .)||2H1(Z).

Using the particular form of v given by (14), one obtains,

|Op(θ−2 )W|∂Ω
|21,sc . Chme2

1−c0
h

4∑
k=0

||∂ksu(g(.), ., .)||2H2(Z).
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Note that by elliptic estimates of the Stokes operator A0 = A∗0, one has for all k ∈ {0, . . . , 4},

||∂ksu(g(.), ., .)||H2(Z)

. ||∂ksA∗0u(g(.), ., .)||L2(Z)

. ||∂ksA∗u(g(.), ., .)||L2(Z) + ||∂ksA∗1u(g(.), ., .)||L2(Z)

. ||∂ksA∗u(g(.), ., .)||L2(Z) + ||∂ksu(g(.), ., .)||H1(Z)

. ||∂ksA∗u(g(.), ., .)||L2(Z) +
(
∂ksA

∗
0u(g(.), ., .), ∂ksu(g(.), ., .)

)
. ||∂ksA∗u(g(.), ., .)||L2(Z) +

(
∂ksA

∗u(g(.), ., .), ∂ksu(g(.), ., .)
)
−
(
∂ksA

∗
1u(g(.), ., .), ∂ksu(g(.), ., .)

)
. ||∂ksA∗u(g(.), ., .)||L2(Z) + ||∂ksu(g(.), ., .)||L2(Z) + ||∂ksA∗1u(g(.), ., .)||L2(Z)||∂ksu(g(.), ., .)||L2(Z),

which yields, using the Young inequality,

||∂ksu(g(.), ., .)||H2(Z) . ||∂ksA∗u(g(.), ., .)||L2(Z) + ||∂ksu(g(.), ., .)||L2(Z).

Now we use the particular form of u given by (11), and the resolvent estimate of Corollary 1.7 to obtain
for j = 0, 1,

||∂ks (A∗)ju(g(.), ., .)||L2 =
1

2
||(A∗)j− 1

2 ∂ks

(
eg(s)(A

∗)1/2

− e−g(s)((A
∗)1/2

)
ũ||L2(Z)

. Λm̃CeCΛ1/2

||ũ||L2 . C̃eC̃Λ1/2

||ũ||L2 ,

for some C̃ > 0 independent on Λ. Summing up, up to taking c0 slightly smaller and h0 sufficiently
small, one has,

|Op(θ−2 )W|∂Ω
|1,sc . C̃eC̃Λ1/2+

1−c0
h ||ũ||L2 ,

which is the sought result. 2

4.2.4 Patching boundary estimates together

In this section, we patch all the above microlocal estimates and we absorb the remainder by taking the
Carleman parameter h > 0 small enough. First, we start by patching the estimates on the boundary
trace W|∂Ω

.

We set Y` = {z ∈ Y, d(z, ∂Y ) > 1
` }. One shall use Y` for ` taken sufficiently large, in order to obtain

an observation inequality from the interior up to the boundary. The large parameter ` depends on the
small parameter ε > 0, and shall be fixed below. We recall that χ1 is defined in Section 1.5.1.

Proposition 4.7 There exists c0 > 0, h0 > 0, ` > 0, and C > 0 such that,

||eϕ/hU||2L2(Y ) + h2||eϕ/h∇U||2L2(Y ) + h||eϕ/hV||2L2(Y ) + h3||eϕ/h∇zV||2L2(Y )

≤C
(
h2||eϕ0/h[∂2

s , χ1]u||21,sc + h4||eϕ/h[∂2
s , χ1]v||2L2(Y )

+ CeCΛ1/2

e2
1−c0
h ||ũ||2L2(Z) + h||eϕ/hV||2L2(Y`)

+ h3||eϕ/h∇V||2L2(Y`)

+ ||eϕ/hU||2L2(Y`)
+ h2||eϕ/h∇U||2L2(Y`)

)
, (51)

for all h ∈ (0, h0].

Note that the two last terms correspond to an observation from the interior of Z.

Proof. Let (Φi)i∈I be a finite partition of unity of a neighborhood N of the boundary ∂Y , satisfying∑
i∈I Φi = 1 on N such that Theorem 4.2 holds for every Φi. Note that this partition does exist, by

compactness of N . Applying Theorem 4.2 for such χ = (χ1Φi) yields,

h||eϕ/h(χ1Φi)v||2L2(Y ) + h3||eϕ/h∇z(χ1Φi)v||2L2(Y ) + ||eϕ/h(χ1Φi)u||2L2(Y ) + h2||eϕ/h∇(χ1Φi)u||2L2(Y )

≤ C
(
h4||eϕ/h(∂2

s + ∆)(χ1Φi)v||2L2(Y ) + h3||eϕ/h[∆, (χ1Φi)]u||2L2(Y )

+ h3||eϕ/h[∇, (χ1Φi)]v||2L2(Y ) + h|eϕ0/h((χ1Φi)v)|∂Y |
2
L2(∂Y ) + h3|eϕ/h∇z′((χ1Φi)v)|∂Y |

2
L2(∂Y )

)
, (52)
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for all 0 < h ≤ h0, for all u ∈ XΛ, and v = rot u. Now we combine propositions 4.4, 4.5 and 4.6 to
estimate the boundary terms by,

h|eϕ0/h((χ1Φi)v)|∂Y |
2
L2(∂Y ) + h3|eϕ/h∇z′((χ1Φi)v)|∂Y |

2
L2(∂Y )

.CeCΛ1/2+2
1−c0
h ||ũ||2L2(Ω) + h2||eϕ0/h[∂2

s , χ1]u||21,sc
+ h4||eϕ/hP (χ1Φi)v||2L2(Y ) + h4||eϕ/h∇z(χ1Φi)v||2L2(Y ) + h2||eϕ/h(χ1Φi)v||2L2(Y ). (53)

Note that the power h2 in front of ||eϕ0/h[∂2
s ,Φ]u||21,sc is natural since the relation between u and v given

by v = rot v is not semi-classical. Combining (52) and (53) implies,

h||eϕ/h(χ1Φi)v||2L2(Y ) + h3||eϕ/h∇z(χ1Φi)v||2L2(Y ) + ||eϕ/h(χ1Φi)u||2L2(Y ) + h2||eϕ/h∇(χ1Φi)u||2L2(Y )

≤C
(
h4||eϕ/h(∂2

s + ∆)(χ1Φi)v||2L2(Y ) + h3||eϕ/h[∆, (χ1Φi)]u||2L2(Y )

+ h3||eϕ/h[∇, (χ1Φi)]v||2L2(Y ) + CeCΛ1/2+2
1−c0
h ||ũ||2L2(Ω) + h2||eϕ0/h[∂2

s , χ1]u||21,sc

+ h4||eϕ/h∇z(χ1Φi)v||2L2(Y ) + h2||eϕ/h(χ1Φi)v||2L2(Y )

)
. (54)

We have,

||eϕ/h(∂2
s + ∆)(χ1Φi)v||2L2(Y )

. ||eϕ/h(χ1Φi)(∂
2
s + ∆)v||2L2(Y ) + ||eϕ/h[∂2

s + ∆, χ1Φi]v||2L2(Y )

. ||eϕ/h(χ1Φi) rot A∗1u||2L2(Y ) + ||eϕ/h[∂2
s + ∆, χ1Φi]v||2L2(Y )

. ||eϕ/h(χ1Φi)A
∗
1v||2L2(Y ) + ||eϕ/h(χ1Φi)[rot , A∗1]u||2L2(Y ) + ||eϕ/h[∂2

s + ∆, χ1Φi]v||2L2(Y ). (55)

Combining (54) and (55), as A∗1 and [rot , A∗1] are differential operators of order 1, one obtains, by taking
0 < h < h0 sufficiently small,

h||eϕ/h(χ1Φi)v||2L2(Y ) + h3||eϕ/h∇z(χ1Φi)v||2L2(Y ) + ||eϕ/h(χ1Φi)u||2L2(Y ) + h2||eϕ/h∇(χ1Φi)u||2L2(Y )

≤C
(
h4||eϕ/h[∂2

s + ∆, (χ1Φi)]v||2L2(Y ) + h3||eϕ/h[∆, (χ1Φi)]u||2L2(Y )

+ h3||eϕ/h[∇, (χ1Φi)]v||2L2(Y ) + CeCΛ1/2+2
1−c0
h ||ũ||2L2(Ω) + h2||eϕ0/h[∂2

s , χ1]u||21,sc

+ h4||eϕ/h∇z(χ1Φi)v||2L2(Y ) + h2||eϕ/h(χ1Φi)v||2L2(Y )

)
.

Hence, by summing over i ∈ I, we obtain,

h||eϕ/hχ1v||2L2(N ) + h3||eϕ/h∇zχ1v||2L2(N ) + ||eϕ/hχ1u||2L2(N ) + h2||eϕ/h∇χ1u||2L2(N )

≤C
∑
i∈I

(
h4||eϕ/h[∂2

s + ∆, (χ1Φi)]v||2L2(Y ) + h3||eϕ/h[∆, (χ1Φi)]u||2L2(Y )

+ h3||eϕ/h[∇, (χ1Φi)]v||2L2(Y ) + CeCΛ1/2+2
1−c0
h ||ũ||2L2(Ω) + h2||eϕ0/h[∂2

s , χ1]u||21,sc

+ h4||eϕ/h∇z(χ1Φi)v||2L2(Y ) + h2||eϕ/h(χ1Φi)v||2L2(Y )

)
.

Remark that all commutators of of differential operator with Φi provides lower order terms, and can be
absorbed by the left-hand side when evaluated in the neighborhood N of the boundary ∂Y , by taking
0 < h < h0 sufficiently small. Thus,

h||eϕ/hχ1v||2L2(N ) + h3||eϕ/h∇zχ1v||2L2(N ) + ||eϕ/hχ1u||2L2(N ) + h2||eϕ/h∇χ1u||2L2(N )

≤C
∑
i∈I

(
h4||eϕ/h[∂2

s , χ1]v||2L2(Y ) + h4||eϕ/h[∆,Φi]χ1v||2L2(Y \N ) + h3||eϕ/h[∆,Φi]χ1u||2L2(Y \N )

+ h3||eϕ/h[∇, (χ1Φi)]v||2L2(Y \N ) + CeCΛ1/2+2
1−c0
h ||ũ||2L2(Ω) + h2||eϕ0/h[∂2

s , χ1]u||21,sc

+ h4||eϕ/h∇z(χ1Φi)v||2L2(Y \N ) + h2||eϕ/h(χ1Φi)v||2L2(Y \N )

)
.
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Now we observe that by definition U = χ1 and V = χ1v, and moreover there exists ` > 0 sufficiently
large satisfying supp(χ1) ∩ (Y \ N ) ⊂ Y`. As a result we can write,

h||eϕ/hV||2L2(N ) + h3||eϕ/h∇zV||2L2(N ) + ||eϕ/hU||2L2(N ) + h2||eϕ/h∇U||2L2(N )

≤C
(
h4||eϕ/h[∂2

s , χ1]v||2L2(Y ) + h4||eϕ/h[∆,Φi]χ1v||2L2(Y`)
+ h3||eϕ/h[∆,Φi]χ1u||2L2(Y`)

+ h3||eϕ/h[∇, (χ1Φi)]v||2L2(Y`)
+ CeCΛ1/2+2

1−c0
h ||ũ||2L2(Ω) + h2||eϕ0/h[∂2

s , χ1]u||21,sc

+ h4||eϕ/h∇z(χ1Φi)v||2L2(Y`)
+ h2||eϕ/h(χ1Φi)v||2L2(Y`)

)
.

All the commutators in the right-hand side, are at maximum H1 norms, and as the estimate outside N
is immediate, we finally obtain,

||eϕ/hU||2L2(Y ) + h2||eϕ/h∇U||2L2(Y ) + h||eϕ/hV||2L2(Y ) + h3||eϕ/h∇zV||2L2(Y )

≤C
(
h2||eϕ0/h[∂2

s , χ1]u||21,sc + h4||eϕ/h[∂2
s , χ1]v||2L2(Y )

+ CeCΛ1/2

e2
1−c0
h ||ũ||2L2(Z) + h||eϕ/hV||2L2(Y`)

+ h3||eϕ/h∇V||2L2(Y`)

+ ||eϕ/hU||2L2(Y`)
+ h2||eϕ/h∇U||2L2(Y`)

)
,

which is the sought result. 2

5 Proof of the spectral inequality

The strategy to prove the spectral inequality is divided into two parts. The first one rely on the derivation
of an observation of a neighborhood of the boundary from an arbitrary large domain in the interior. The
second one is more classical, and rely on the propagation of smallness in the interior, where Carleman
estimates are known. However, due to the lack of unique continuation in the s variable, one has to be
cautious. The two subsections below are respectively devoted to each part.

5.1 An observation from an arbitrary large interior domain up to the bound-
ary

Lemma 5.1 For all ` > 0 there exists C > 0 such that

||ũ||L2(Ω) ≤ CeC
√

Λ||u||L2(Y`),

for all u ∈ XΛ of the form (11).

Proof. We recall that the cut-off functions are defined by χ(s, x, y) = χ1(s)χ2(x)χ3(y) and where
χ1(s), χ2(x), χ3(y) are smooth cut-offs in each variable satisfying near a point (s0, x0, y = 0) ∈ (0, S0)×
T× {y = 0} :

χ1(s) =

{
1 if |s− s0| < S1,

0 if |s− s0| > 2S1,
χ3(y) =

{
1 if y < Y1,

0 if y > 2Y1,
(56)

for some 0 < 2S1 < S̃0 (that is, suppχ ⊂ Y ) and some Y1 < L/4. The localization χ(s, x, y) is defined
likewise near a point (s0, x0, y = L) ∈ (0, S0)× (0, L1)× {y = L}.

We then define the following regions of the open set Z by,

O1 := suppχ′1,

O2 :=

{
(s, x, y) ∈ O1 | d(y, ∂Ω) <

1

2
ε(S1 − s0)2

}
,

O3 := suppχ1 ∩
{

(s, x, y) ∈ O1 | d(y, ∂Ω) ≥ 1

2
ε(S1 − s0)2

}
.

and
W0 :=

{
(s, x, y) ∈ Y | ψε(s, y) ≥ −(S1 − s0)2εδ

}
,

with δ ∈ (0, 1) that shall be fixed in the proof of the following lemma. Note that U = u on W0.
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Lemma 5.2 We have,
sup
O2

ϕ− inf
W0

ϕ < 0 and 1− c0 − inf
W0

ϕ < 0.

for δ taken sufficiently small.

Proof. We first estimate,

sup
O2

ψε = sup
O2

(−ε(s− s0)2 + d(y, ∂Ω)) = −ε(S1 − s0)2 + sup
O2

d(y, ∂Ω) < −1

2
ε(S1 − s0)2,

and
inf
W0

ψε ≥ −(S1 − s0)2εδ,

which proves the first inequality of Lemma 5.2. We also have

1− c0 − inf
W0

ϕ < 1− c0 − e−λ(S1−s0)2εδ < 0,

for δ taken sufficiently small. 2

We analyze the first two terms of the right-hand side of (51). We have on the one hand,

h2||eϕ0/h[∂2
s , χ1]u||21,sc . h2e

supO1
ϕ0

h

(
||u||2H1(Z) + ||∂su||2H1(Z)

)
. (57)

On the other hand,

h4||eϕ/h[∂2
s , χ1]v||2L2(Y ) = h4||eϕ/h[−∂2

s , χ1]v||2L2(O2) + h4||eϕ/h[−∂2
s , χ1]v||2L2(O3)

. h4e
supO2

ϕ

h

(
||v||2L2(Z) + ||∂sv||2L2(Z)

)
+ h4||eϕ/h[−∂2

s , χ1]v||2L2(O3). (58)

Note that terms located in O3 are interior terms, which corresponds to observation terms. Plugging
these two estimates in (51) yields,

||eϕ/hU||2L2(Y )+h
2||eϕ/h∇zU||2L2(Y ) + h3||eϕ/hV||2L2(Y ) + h||eϕ/h∇zV||2L2(Y )

≤C
(
h2e

supO1
ϕ0

h

(
||u||2H1(Z) + ||∂su||2H1(Z)

)
+ h4e

supO2
ϕ

h

(
||v||2L2(Z) + ||∂sv||2L2(Z)

)
+ h4||eϕ/h[−∂2

s , χ1]v||2L2(O3) + CeCΛ1/2

e2
1−c0
h ||ũ||2L2(Z)

+ h||eϕ/hV||L2(Y`) + h3||eϕ/h∇zV||L2(Y`)

+ ||eϕ/hU||L2(Y`) + h2||eϕ/h∇zU||L2(Y`)

)
. (59)

Remark that by definition,
sup
O1

ϕ0 ≤ sup
O2

ϕ. (60)

Now, we estimate, using the particular form of u given by (11),

||u||2H1(Z) + ||∂su||2H1(Z) . (A∗0u, u) + (A∗0∂su, ∂su)

. (A∗u, u) + (A∗∂su, ∂su)− (A∗1u, u)− (A∗1∂su, ∂su)

. (A∗u, u) + (A∗∂su, ∂su) + ||u||H1(Z)||u||L2(Z) + ||∂su||H1(Z)||∂su||L2(Z),

which finally yields, using the Young inequality,

||u||2H1(Z) + ||∂su||2H1(Z) . (A∗u, u) + (A∗∂su, ∂su) + ||u||L2 + ||∂su||L2 . (61)

From the particular form of u given by (11) and from the resolvent estimate of Corollary 1.7, one has,

||u||2H1(Z) + ||∂su||2H1(Z) . CeC
√

Λ||ũ||L2(Ω). (62)

Note that we also have,

||v||2L2(Z) + ||∂sv||2L2(Z) ≤ ||u||
2
H1(Z) + ||∂su||2H1(Z)

. (A∗u, u) + (A∗∂su, ∂su) + ||u||L2 + ||∂su||L2

. CeC
√

Λ||ũ||L2(Ω). (63)
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From (59), (60), (62) and (63), one deduces,

||eϕ/hU||2L2(Y ) .
(
e

supO2
ϕ

h CeC
√

Λ + CeCΛ1/2

e2
1−c0
h

)
||ũ||L2(Ω)

+ h||eϕ/hV||L2(Y`) + h3||eϕ/h∇zV||L2(Y`)

+ ||eϕ/hU||L2(Y`) + h2||eϕ/h∇zU||L2(Y`) + ||eϕ/h[−∂2
s , χ1]v||2L2(O3). (64)

Let us obtain a lower bound for the left hand side of (64). We have,

||u||2L2(W0) .e
−

infW0
ϕ

h

(
e

supO2
ϕ

h CeC
√

Λ + CeCΛ1/2

e2
1−c0
h

)
||ũ||L2(Ω)

+ e−
infW0

ϕ

h

(
h||eϕ/hV||L2(Y`) + h3||eϕ/h∇zV||L2(Y`) + ||eϕ/hU||L2(Y`)

+ h2||eϕ/h∇zU||L2(Y`) + ||eϕ/h[−∂2
s , χ1]v||2L2(O3)

)
. (65)

Using again the resolvent estimate of Corollary 1.7, one obtains,

||ũ||2L2(Ω) . CeC
√

Λ
(
e−

infW0
ϕ

h (e
supO2

ϕ

h CeC
√

Λ + CeCΛ1/2+2
(1−c0)
h )||ũ||L2(Ω)

+ e−
infW0

ϕ

h

(
h||eϕ/hV||L2(Y`) + h3||eϕ/h∇zV||L2(Y`)

+ ||eϕ/hU||L2(Y`) + h2||eϕ/h∇zU||L2(Y`) + ||eϕ/h[−∂2
s , χ1]v||2L2(O3)

))
.

From Lemma 5.2, setting 1
h = k

√
Λ, for k ∈ R+ sufficiently large, yields that there exists C > 0 such

that,

||ũ||2L2(Ω) ≤ Ce
C
√

Λ
(
||V||2L2(Y`)

+ ||∇zV||2L2(Y`)
+ ||U||2L2(Y`)

+ ||∇zU||2L2(Y`)
+ ||[−∂2

s , χ1]v||2L2(O3)

)
. (66)

Remark that only observation terms remains in the right hand side of (66). Let Y` ⊂ Ỹ` b Z and let
Θ ∈ C∞0 (Ỹ`) such that Θ = 1 on Y`. Note that,

||[−∂2
s , χ1]v||2L2(O3) . ||v||

2
H1(Y`)

, (67)

for a sufficiently large parameter `. Let us finish the proof by writing,

||∇zV||2L2(Y`)
. ||Θ∇zv||2L2(Ỹ`)

+ ||v||2L2(Y`)

≤
∫
Ỹ`

Θ∇zv · ∇zvdz + ||v||2L2(Y`)

= −1

2

∫
Ỹ`

∇zΘ · ∇z|v|2dz −
∫
Ỹ`

Θ∆zvvdz + ||v||2L2(Y`)

=
1

2

∫
Ỹ`

∆Θ|v|2dz +

∫
Ỹ`

Θ rot A∗1uvdz + ||v||2L2(Y`)

=
1

2

∫
Ỹ`

∆Θ|v|2dz +

∫
Ỹ`

ΘA∗1vvdz +

∫
Ỹ`

Θ[A∗1, rot ]uvdz + ||v||2L2(Y`)

. ||v||L2(Ỹ`)
+ ||Θ∇zv||L2(Ỹ`)

||v||L2(Ỹ`)
+ ||u||H1(Ỹ`)

||v||L2(Ỹ`)
+ ||v||2L2(Y`)

,

which implies, using the Young inequality,

||∇zV||2L2(Y`)
≤ C

(
||v||2

L2(Ỹ`)
+ ||u||2

H1(Ỹ`)

)
≤ 2C||u||2

H1(Ỹ`)
.

Using the same arguments than above, in combinaison with (67), allows us to write, up to taking Ŷ`
slightly larger than Ỹ`,

||V||L2(Y`)+||∇zV||L2(Y`)+||U||L2(Y`)+||∇U||L2(Y`)+||[−∂
2
s , χ1]v||2L2(O3) . CeC

√
Λ||u||L2(Ŷ`)

||ũ||L2(Ω).

(68)
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Indeed, let Ỹ` ⊂ Ŷ` b Z and let Θ̃ ∈ C∞0 (Ŷ`) such that Θ̃ = 1 on Ỹ`,

||∇zu||2L2(Ỹ`)
= ||∇u||2

L2(Ỹ`)
+ ||∂su||2L2(Ỹ`)

=
(

Θ̃∇u,∇u
)
L2(Z)

+
(

Θ̃∂su, ∂su
)
L2(Z)

.

∣∣∣∣(Θ̃u,∆u
)
L2(Z)

∣∣∣∣+

∣∣∣∣(∇Θ̃ · ∇u, u
)
L2(Z)

∣∣∣∣+

∣∣∣∣(Θ̃∂2
su, u

)
L2(Z)

∣∣∣∣+

∣∣∣∣((∂sΘ̃)∂su, u
)
L2(Z)

∣∣∣∣
. ||Θ̃u||L2(Y )||∆u||L2(Z) +

∣∣∣∣((∆Θ̃)u, u
)
L2(Z)

∣∣∣∣+

∣∣∣∣(Θ̃A∗u, u
)
L2(Z)

∣∣∣∣+

∣∣∣∣((∂2
s Θ̃)u, u

)
L2(Z)

∣∣∣∣
. ||u||L2(Ŷ`)

||A∗u||L2(Z),

where we used in the last inequality the elliptic regularity of the Stokes operator. Thus, by the resolvent
estimate of Corollary 1.7, we have

||∇zu||2L2(Ỹ`)
. CeC

√
Λ||u||L2(Ŷ`)

||ũ||L2(Ω). (69)

Estimates (66) and now implies, by the Young inequality

||ũ||L2(Ω) ≤ CeC
√

Λ||u||L2(Ŷ`)
,

which is the sought result. 2

5.2 Observability in the interior

We construct the weight function by using the following theorem (see for instance [19]).

Theorem 5.3 There exists ψ̃ ∈ C∞(Ω) such that,

• ψ̃ > 0, in Ω,

• ψ̃|∂Ω
= 0,

• |∇ψ̃| ≥ C > 0 on Ω \ ω̃.

One then defines ψβ(s, x, y) = ψ̃(x, y)− β|s− s0|2 and ϕ = eλψβ , where β, λ are large parameters, that
shall be fixed in what follows. Let s1 < s2 < s3 < s4, such that s0 ± s4 ∈ (0, S0), that shall be fixed in
what follows. We define (see Figure 2 for a sketch of the different sets),

• A1 := ((s0 − s3, s0 − s2) ∪ (s0 + s2, s0 + s3))× Ω,

• A2 := (s0 − s2, s0 + s2)× ω,

• A3 := (s0 − s2, s0 + s2)× Ã3, where Ã3 := {(x, y) ∈ Ω, d((x, y), ∂Ω) < 1
2`},

• A4 := (s0 − s1, s0 + s1)× Ã4, where Ã4 := {(x, y) ∈ Ω; d((x, y), ∂Ω) > 3
4`} \ ω,

• Ã5 := {(x, y) ∈ Ω; d((x, y), ∂Ω) > 3
4`}.

Lemma 5.4 Let 0 < s1 < s2 < s3 < s4 as above. There exist µ > 0 and C > 0 such that,

||u||H1(A4) ≤ C||u||1−µH2(Z)||u||
µ
H2(A2),

for all u of the form (11).

Proof. Let γ ∈ (0, 1). Let us set δ = − 1
2

(
supÃ3

ψ̃ − infÃ4
ψ̃
)

, and fix β ≥ 1 such that δ
βγ−1 >

δ + supΩ ψ̃ − infÃ4
ψ̃ which is always possible by taking β > 1 sufficiently large. Remark that δ > 0 for

` > 0 taken sufficiently large. One now set s1 and s2 such that,

|s1|2 =
δ

β
, |s2|2 =

δ

βγ
.
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| |
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A1

Figure 2: The geometry in the interior of Ω× (0, S0).

Note that the following inequalities hold,

sup
A3

ψβ − inf
A4

ψβ = sup
Ã3

ψ̃ − inf
Ã4

ψ̃ + δ < 0, (70)

sup
A1

ψβ − inf
A4

ψβ = sup
A1

ψ̃ − inf
A4

ψ̃ + δ(1− β1−γ) < 0, (71)

sup
A2

ψβ − inf
A4

ψβ > 0. (72)

Hence, one moreover can remark that s3 > 0 can be chosen as small as we want (and so it is for s1

and s2) by taking β > 0 sufficiently large. From now on, parameters δ, β and γ are fixed, and all the
constants involved in the computations below depend on them. Let us define the smooth cut-off function
Θ(s, x, y) = Θ1(s)Θ2(x, y) ∈ C∞0 (Z) such that

Θ1 =

{
1 on (s0 − s2, s0 + s2),

0 on (0, S0) \ (s0 − s3, s0 + s3),
Θ2 =

{
1 on {d((x, y), ∂Ω) ≥ 1

2`} \ ω,
0 on ω̃ ∪ {d((x, y), ∂Ω) < 1

4`}.
(73)

Let V be the interior of supp Θ. One have that there exists λ such that the weight function ϕ satisfies
the two sub-ellipticity conditions of definitions 3.1 and 3.2 on the open set V . The parameter λ is fixed
from now on. Thus, the following two Carleman estimates holds on V for such a weight function ϕ.

Theorem 5.5 Let V be an open set in Y . Let ϕ be a weight function satisfying the conditions of
Definition 3.1 on V . Then, there exist h0 > 0 and C > 0 such that,

h||e 1
hϕf ||2L2(V ) + h3||e 1

hϕ∇zf ||2L2(V ) ≤ Ch
4||e 1

hϕ(−∂2
s −∆)f ||2L2(V ), (74)

for all f ∈ C∞0 (V ), h ≤ h0, and such that

h||e 1
hϕf ||2L2(V ) + h3||e 1

hϕ∇f ||2L2(V ) ≤ Ch
4||e 1

hϕ∆f ||2L2(V ), (75)

for all f ∈ C∞0 (V ), h ≤ h0.

Remark 5.6 The key point here is that the two above Carleman estimates will allow us to handle the
low order terms. However, to have (74) and (75) at the same time, one needs |∇zϕ| 6= 0 and |∇ϕ| 6= 0
on V , which is satisfied only by removing (0, S0)× ω̃ from the support of Θ (see (73)). This is precisely
why we will not be able here to propagate the smallness in the s direction.

Let us apply the estimate (74) to f = Θv := Θ rot (u), where u is of the form (11). We recall that the
function v satisfies,

−∂2
sv −∆v + rot A∗1u = 0,

which implies that f satisfies,

− ∂2
sf −∆f = −Θ rot A∗1u+ [Θ, ∂2

s + ∆]v. (76)
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Estimate (74) yields, for h sufficiently small,

h||e 1
hϕΘv||2L2(V ) + h3||e 1

hϕΘ∇zv||2L2(V ) . h4||e 1
hϕ
(
−Θ rot A∗1u+ [Θ, ∂2

s + ∆]v
)
||2L2(V )

. h4||e 1
hϕΘ rot A∗1u||2L2(V ) + h4||e 1

hϕ[Θ, ∂2
s + ∆]v||2L2(V )

. h4||e 1
hϕΘA∗1v||2L2(V ) + h4||e 1

hϕΘ[rot , A∗1]u||2L2(V ) + h4||e 1
hϕ[Θ, ∂2

s + ∆]v||2L2(V ) (77)

Now, remark that, using the divergence free condition,

||e 1
hϕ∆ (Θu) ||2L2(V ) . ||e

1
hϕΘ∇zv||2L2(V ) + ||e 1

hϕ[∆,Θ]u||2L2(V ). (78)

Estimate (75) for f = Θu yields, for h sufficiently small,

||e 1
hϕΘu||2L2(V ) + h2||e 1

hϕΘ∇u||2L2(V ) . h3||e 1
hϕ∆ (Θu) ||2L2(V ). (79)

Combining (77), (78) and (79), we obtain,

||e 1
hϕΘu||2L2(V ) + h2||e 1

hϕΘ∇u||2L2(V ) + h||e 1
hϕΘv||2L2(V ) + h3||e 1

hϕΘ∇zv||2L2(V ) . h4||e 1
hϕΘA∗1v||2L2(V )

+ h4||e 1
hϕΘ[rot , A∗1]u||2L2(V ) + h4||e 1

hϕ[Θ, ∂2
s + ∆]v||2L2(V ) + ||e 1

hϕ[∆,Θ]u||2L2(V ).

Note that, taking h > 0 sufficiently small, one can absorb the low order terms in the right hand side of
the above inequality to have,

||e 1
hϕΘu||2L2(V ) + h2||e 1

hϕΘ∇u||2L2(V ) + h||e 1
hϕΘv||2L2(V ) + h3||e 1

hϕΘ∇zv||2L2(V )

. h4||e 1
hϕ[Θ, ∂2

s + ∆]v||2L2(V ) + h3||e 1
hϕ[∆,Θ]u||2L2(V ). (80)

The two remaining terms in the right hand side of the above inequality are localized in regions where Θ
varies. Estimate (80) implies,

e
1
h infA4

ϕ
(
||u||2H1(A4) + ||v||2H1(A4)

)
.

3∑
k=1

e
1
h supAk

ϕ
(
||u||2H1(Ak) + ||v||2H1(Ak)

)
,

which is equivalent to,(
||u||2H1(A4) + ||v||2H1(A4)

)
.

3∑
k=1

e
1
h (supAk

ϕ−infA4
ϕ)
(
||u||2H1(Ak) + ||v||2H1(Ak)

)
.

From (70), (71) and (72), there exist ν1, ν2 > 0 such that,

(
||u||2H1(A4) + ||v||2H1(A4)

)
. e

ν1
h

(
||u||2H1(A2) + ||v||2H1(A2)

)
+ e−

ν2
h

(
||u||2H1(Z) + ||v||2H1(Z)

)
.

Optimizing this estimate with respect to h > 0 implies that there exists C > 0 and µ ∈ (0, 1) such that

||u||H1(A4) ≤ C||u||1−µH2(Z)||u||
µ
H2(A2).

The estimate over A2 being immediate this ends the proof of Lemma 5.4. 2

As Lemma 5.4 only provides an estimate on domain A4 which may be arbitrary small, we use the
following lemma to recover the full estimate on Y` that we need having in mind to use Lemma 5.1.

Lemma 5.7 There exist and ˜̀> `, µ > 0 and C > 0 such that,

||u||H1(Y`) ≤ C||u||
1−µ
H2(Z)||u||

µ

H2(( 1
˜̀,S0− 1

˜̀)×ω)
,

for all u of the form (11).

Proof. Let A2 := (sk0 − sk2 , s0 + s2) × ω and Ak5 := (sk0 − sk1 , s0 + s1) × Ã5, where Ã5 := {(x, y) ∈
Ω; d((x, y), ∂Ω) > 3

4`}. Remark that there exists a finite numberM , and a sequence of (sk0)k∈{1,...,M ⊂ Y`,
such that,

Y` ⊂
⋃
k=1

Ak5 .

Thus, applying Lemma 5.4 for each Ak2 and Ak5 , k = 1, . . . ,M , yields the result, by noting that Ak2 ⊂
( 1

˜̀, S0 − 1
˜̀)× ω, for all k ∈ {1, . . . ,M}. 2

26



5.3 End of the proof

Now we finish the proof of Theorem 1.8. It is sufficient to combine Lemmata 5.1 and 5.4, to obtain,

||ũ||L2(Ω) ≤ CeC
√

Λ||u||L2(Y`) ≤ Ce
C
√

Λ||u||1−µH2(Z)||u||
µ

H2(( 1
˜̀,S0− 1

˜̀)×ω)
.

Assuming,

||u||H1(Z) . C̃eC̃
√

Λ||ũ||L2(Ω), (81)

yields immediatly the result by taking ϕ ∈ C∞0 (0, S0) such that ϕ = 1 on ( 1
˜̀, S0− 1

˜̀). The estimate (81)
follows from the resolvent estimate of Corollary 1.7. 2
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