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Abstract

The mantled floral phenotype of oil palm (Elaeis guineensis) affects somatic embryogenesis-derived individuals and is
morphologically similar to mutants defective in the B-class MADS-box genes. This somaclonal variation has been previously
demonstrated to be associated to a significant deficit in genome-wide DNA methylation. In order to elucidate the possible
role of DNA methylation in the transcriptional regulation of EgDEF1, the APETALA3 ortholog of oil palm, we studied this
epigenetic mark within the gene in parallel with transcript accumulation in both normal and mantled developing
inflorescences. We also examined the methylation and expression of two neighboring retrotransposons that might interfere
with EgDEF1 regulation. We show that the EgDEF1 gene is essentially unmethylated and that its methylation pattern does
not change with the floral phenotype whereas expression is dramatically different, ruling out a direct implication of DNA
methylation in the regulation of this gene. Also, we find that both the gypsy element inserted within an intron of the EgDEF1
gene and the copia element located upstream from the promoter are heavily methylated and show little or no expression.
Interestingly, we identify a shorter, alternative transcript produced by EgDEF1 and characterize its accumulation with respect
to its full-length counterpart. We demonstrate that, depending on the floral phenotype, the respective proportions of these
two transcripts change differently during inflorescence development. We discuss the possible phenotypical consequences
of this alternative splicing and the new questions it raises in the search for the molecular mechanisms underlying the
mantled phenotype in the oil palm.
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pour le développement) and FloriPalm projects (between CIRAD and FELDA/FASSB (Federal Land Development Authority/Agricultural Services Sdn Bdh). BAC
sequencing was funded by Genoscope (AAP2007/8). WYH is the recipient of a PhD grant from CIRAD and AIRD (Agence inter-établissements de recherche pour le
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Introduction

The first clue to the epigenetic origin of the mantled somaclonal

variation in the oil palm (Elaeis guineensis Jacq.), which is only visible

in the flowers and fruits of adult somatic embryo-derived palms,

emerged from the observation of its highly variable incidence and

severity combined with its ability to revert spontaneously [1]. Since

then, the occurrence of alterations in DNA methylation patterns

and gene expression in both in vitro-cultivated and adult variant

tissues has been documented [2–7]. The strong resemblance

between the morphology of the variant flowers (displaying a

homeotic conversion of male floral organs into female ones) and

mutants for B-class MADS-box genes involved in petal and stamen

identity [8] led to the assumption that the expression of this gene

subfamily could be affected in mantled palms. Indeed, previous

studies from Adam et al. [9,10] showed that the putative B-class

gene orthologs identified in oil palm are globally downregulated in

developing mantled inflorescences with respect to their normal

counterparts. Among these genes, EgDEF1, which is most similar

to Arabidopsis thaliana’s APETALA3 and Antirrhinum majus’ DEFI-

CIENS, undergoes the strongest decrease in transcript accumula-

tion in both male and female mantled inflorescences at all

developmental stages [10]. What remains to be determined is

whether DNA methylation, which is significantly impaired in

mantled palms inflorescences, could also be involved in the

downregulation of this organ identity gene in the context of the

variant phenotype. Such a correlation has been found in

Arabidopsis thaliana mutants that are depleted in genome-wide

DNA methylation while displaying both targeted methylation-

based transcriptional silencing of MADS-box genes involved in

floral morphogenesis and floral development defects [11,12].

In the present work, we investigated DNA methylation within

the proximal promoter sequence and the start of the coding

sequence of the EgDEF1 gene through both bisulfite sequencing
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and McrBC-PCR approaches. The identification of the complete

genomic sequence of the EgDEF1 gene revealed the presence of an

oversized fifth intron and the occurrence of two Transposable

Elements (TEs) located respectively within the enlarged intron of

EgDEF1 and upstream of its putative promoter sequence.

Although most TEs are maintained in a ‘‘default’’ silenced state

by the host genome, they can be reactivated in methylation-

defective backgrounds or in stress conditions, such as in vitro

culture, and alter the expression of neighboring genes [13–15].

Alternatively, the repressive epigenetic marks targeting the TEs

can ‘‘spread’’ toward adjacent genes, impairing their expression

[16,17]. In order to explore the possibility of an interference of TE

regulation on gene expression in the context of the mantled floral

phenotype, we investigated the DNA methylation of the two

elements and their expression was estimated by real-time

quantitative PCR (rt-qPCR). Finally, we hypothesized that the

large size of EgDEF1’s intron 5 could, in some cases, induce

aberrant transcription or splicing events, ultimately leading to the

production of shorter transcripts. We assessed this possibility by

using 39-RACE and the accumulation pattern of one such

alternative transcript was examined in developing inflorescences

by rt-qPCR. In the aim of better understanding the potential of the

truncated transcript to interfere with its full-length counterpart, we

compared their respective abundances within each inflorescence

stage between the two floral phenotypes by performing absolute

quantitation of each transcript. While the molecular mechanisms

underlying this alternative transcription are still unknown, our

findings point to interesting new directions for research on the

mantled variation.

Material and Methods

Ethics statement
The sampling of the plant material used in the experiments was

covered by Material Transfer Agreements (MTAs) between the

involved Institutions.

Plant material and histological analyses
Both male and female immature inflorescences originating from

normal and mantled clonally propagated tenera (dura x pisifera) oil

palms [18] were sampled at FELDA (Federal Land Development

Authority, Malaysia) Tun Razak Estate and at the LaMé CNRA

(Centre National de la Recherche Agronomique) Principal

Research Station in Côte d’Ivoire. Clonal palms originating from

the same mother palm, regenerated under the same somatic

embryogenesis-based protocol and planted on the same date in the

same plot were selected. The genetic origin of plant material used

in the present study is given in Table S1.

Inflorescence series were obtained by sampling all the inflores-

cences of a given palm located between leaves of order +4 and +18

(the youngest expanding leaf being of order 0) and flowers were

dissected as described previously [19]. One half of the dissected

flower tissues was either flash-frozen in liquid nitrogen or

immersed in RNAlater solution (Ambion), then stored at either

280uC or 220uC until processed for the extraction of nucleic

acids. In parallel, the remaining half was fixated for future

histological analyses through two times 5 minutes vacuum

infiltration in 26 PBS, 4% paraformaldehyde buffer, then rinsed

three times in 16 PBS. Dehydration was then achieved through

two successive 1-h immersions in 50% then 70% ethanol.

Histological analyses were performed as previously described

[19] in order to determine the developmental stage of flower

tissues. Stage 3 inflorescences from FC2317 palms were used in

our methylation studies. Approximately 300 inflorescences sam-

pled from 10 genotypically distinct normal/mantled regenerant

palms were analyzed in order to identify near-complete develop-

mental series (i.e. inflorescences of the same sex ranging from stage

0 to stage 5 and displayed on the same palm) for both sexes and

within the same clonal line (FC2405). Samples used in our rt-

qPCR experiments therefore reflect the range of inflorescence

stages present on each palm at the time of sampling.

Nucleic acids extraction and purification
Genomic DNA and/or total RNAs were extracted using the

DNeasy Plant Mini Kit and the RNeasy Plant Mini Kit (Qiagen)

respectively, according to the recommendations of the manufac-

turer. Purity and concentration of the eluted nucleic acids were

estimated using a NanoDrop ND-100 spectrophotometer (Thermo

Scientific) and their integrity was assessed by electrophoretic

separation and visualization under UV light. Due to the instant

oxidization occurring upon dissecting inflorescence tissues at stages

4 and 5, most of the corresponding RNA extracts were too

degraded to be used in the subsequent qPCR experiments.

Identification of the EgDEF1 genomic sequence
Using the full-length cDNA sequence of EgDEF1 (accession

number AY739700.1) as a template for 59-oriented primer design,

we performed chromosome walking on genomic DNA sampled

from a palm of FC166 origin using the GenomeWalker Kit with

the Advantage 2 Polymerase (both from Clontech) according to

the supplier’s recommendations. This first step allowed us to

recover a genomic fragment extending from nucleotide positions -

1833 to +12 relatively to the ATG of the gene. This genomic

fragment was then used as a probe to screen high density filters

from an oil palm BAC genomic library constructed from a seed-

derived individual of L2T origin [20]. Four positive clones

showing identical hybridization patterns were isolated and one,

named Eg133H20, was sequenced by Genoscope (Evry, France).

Finally, the structure of the EgDEF1 gene was confirmed through

further chromosome walking on FC166 genomic DNA, using the

primers shown in Table S2. Sequence similarity searches were

performed using the BLASTN (version 2.2.27+ [21]) and

BLASTX [22] programmes.

Southern blot
Seven micrograms of oil palm genomic DNA extracts were

digested in parallel by either EcoRI, HindIII or BamHI restriction

enzymes (Promega) according to the manufacturer’s instructions.

The eletrophoretic separation of digestion products was performed

as described previously [3] before transfer on a GeneScreenPlus

membrane (Perkin Elmer). DNA templates for probe synthesis

were obtained through the PCR amplification of regions

corresponding to a sequence located immediately upstream of

the EgDEF1 gene (P1 probe), or to an internal section of each

retroelement under study (P2 probe for the gypsy element, P3 probe

for the copia element). The respective locations of the probes are

illustrated in Figure 1A, probe sizes and primer sequences are

given in Table S3. After purification using the Qiaquick kit

(Qiagen), 25 ng of PCR product were radiolabeled with

[a-32P]dCTP using the Random Primer DNA Labeling System

Kit (Invitrogen). Hybridizations were performed at 65uC over-

night in a mix of 100 ml PerfectHybrid Plus buffer (Sigma) plus

0.4 ml herring sperm DNA (Promega) per cm2 of membrane

surface. Filters were then briefly washed at room temperature in

26 SSC, 0.1% (w/v) SDS, then at 65uC for 20 min in 26 SSC,

0.1% (w/v) SDS then at 65uC for 20 min in 16SSC, 0.1% (w/v)

SDS, before scanning the blots on a Typhoon 8600 Imager System

(Amersham).

Methylation and Expression in EgDEF1 Gene Region
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Figure 1. Structure of the EgDEF1 gene region and localization of the sequences targeted in this study. A: Structure of the genomic
region. Nucleotide positions are indicated with respect to the first coding base of the EgDEF1 gene (+1 position). Dark grey box: EgDEF1 gene; arrow:

Methylation and Expression in EgDEF1 Gene Region
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Identification of EgDEF1 transcripts by Rapid
Amplification of cDNA Ends (RACE)

Transcripts originating from the EgDEF1 gene were amplified

by 39-RACE using the SMARTTM RACE cDNA Amplification

kit and the Advantage 2 Polymerase (both from Clontech) using

3tsDEF-1 then 3tsDEF-1n as the gene-specific primer (Table S2).

RACE products were then separated by agarose gel electropho-

resis before purification using the Qiaquick PCR Purification Kit

(Qiagen). Three microliters from the final 30 mL eluate were

ligated overnight at 4uC into the pGEM-T Easy cloning vector

(Promega). The transformation of thermocompetent JM109 cells

(Promega) and plating was performed as recommended by the

supplier. Five to ten positive colonies were selected for plasmid

isolation with the Qiaprep Spin Miniprep Kit (Qiagen) and insert

sequencing (Eurofins MWG Operon, Germany). Amplifications

performed independently on normal and mantled oil palm

inflorescences from genotypes FC166 and FC2317 (Table S1)

yielded identical results.

Bisulfite sequencing
The bisulfite conversion of cytosines was performed on 500 ng

of purified DNA extract using the EZ Methylation Gold kit (Zymo

Research). Only reactions with a C-T conversion rate higher than

98% (as determined by the sequencing of 10 amplicons obtained

from the conversion of an unmethylated standard) were used in

further analyses. Bisulfite-converted DNA was then used for the

PCR amplification of selected target regions (Figure 1B–1D). The

first round of amplification was performed on 2 mL of bisulfite-

converted DNA using 10 pmol of each primer in a final volume of

50 mL according to the Advantage 2 Polymerase Kit (Clontech)

protocol. We used a ‘‘touch-down’’ programme of 5 cycles (94uC
30 s, 60uC 30 s, 72uC 30 s) then 25 cycles (94uC 30 s, 55uC 30 s,

72uC 30 s). Then 0.5 mL of the product from this first round was

used for a second round of amplification with nested or semi-

nested primer combinations using GoTaq Polymerase (Promega)

and a programme of 30 cycles (94uC 30 s, 55uC 30 s, 72uC 1 min).

The complete list of bisulfite-specific primers is displayed in Table

S4. The separation of amplification products, their purification,

cloning and the selection and sequencing of positive inserts were

performed as previously indicated. A minimum of 15 sequenced

amplicons per primer pair and per sample was analyzed using the

CyMATE software platform (http://www.cymate.org/) [23].

McrBC-PCR
The protocol was adapted from [24] and optimized for oil palm

genomic DNA. One microgram of genomic DNA was digested

overnight at 37uC by 30 U of the McrBC enzyme (New England

Biolabs) in a final volume of 40 mL. Controls containing no

enzyme (‘‘minus’’ tubes) were incubated alongside the digests

(‘‘plus’’ tubes). After heat-inactivating the enzyme (20 min at

65uC), the quality of DNA digestion was assessed by running 5 ml

from each tube on a 1% agarose gel. Amplification was conducted

on 1 mL from each tube using 2610 pmol of each primer

combination and the GoTaq Polymerase (Promega). The

programme consisted in 30 cycles of (94uC 30 s, 60uC 60 s,

72uC 3 min). The list of the primers is given in Table S4 and their

respective targets are shown in Figure 1B–1D. The presence or

absence of the expected amplification product in digested vs.

control was scored on an ethidium bromide-stained 1% agarose

gel and the corresponding band was sequenced.

cDNA synthesis and real-time quantitative PCR (rt-qPCR)
One microgram of total RNA extract was reverse-transcribed

using the ImProm II kit (Promega) according to the manufactur-

er’s instructions. In order to minimize artifacts caused by

variations in RT yields, three reactions were performed from

each RNA extract and pooled before being used as template in the

subsequent rt-qPCR. Primer pairs were selected using the

LightCycler Probe Design programme (Roche Applied Science)

(Table S5). The Efficiency of each pair was assessed by amplifying

serially diluted cDNA solutions: 2 mL of each dilution were added

to the amplification mix composed of 1.5 mL of each primer at a

2 mM concentration and 5 mL of LightCycler 480 SYBR Green I

Master mix (Roche Applied Science). Amplification was carried in

a LightCycler 480 System (Roche Applied Science) using the

following programme: 10 min at 95uC, then 45 cycles of 45 s at

95uC and 1 min at 70uC. Three independent amplifications

(technical replicates) were performed to assess the reproducibility

of results. The presence of contaminants was checked by

performing a « no RT » negative control for each RNA sample

and a « no template » negative control for each primer pair. After

completion of the run, the Efficiency (E) was inferred from the

linear regression of Crossing Point (Cp) values versus cDNA

concentrations using the formula: E = 1021/slope. Primer specificity

was assessed through melting curves analysis and the sequencing of

the amplification products. Transcript quantitation was then

performed using the optimal template concentration determined

previously, under identical amplification conditions. The fold-

change in relative expression (RE) with respect to the normal

inflorescence at stage 0 (used as calibrator) was calculated for each

transcript with the formula [25]:

RE~
Etarget

� �DCptarget

Ereferenceð ÞDCpreference

where DCp is the difference in Cp between the calibrator and the

sample for either the target or the reference transcript (in this case

the housekeeping gene EgEF1a1, accession AY550990.1).

In order to directly compare the respective accumulations of

each transcript within the inflorescences, absolute quantitation was

performed. To achieve this, we established calibration curves for

each transcript using triplicated serial dilutions of the correspond-

ing purified PCR product as the template in order to span the Cp

range obtained previously in our material. The equations of the

resulting linear regressions of Log [Copy number] vs. Cp (Figure

S1) were then used to estimate the copy number of each transcript

and calculate the following ratio:

sense of transcription. Light grey boxes: retrotransposons; black arrowheads: LTRs. P1, P2 and P3: probes used in Southern blot experiments. The
respective structures of the cDEF full-length transcript and of the alternative tDEF transcript are represented below the EgDEF1 gene structure.
Localization of the amplicons used in the DNA methylation analyses of the EgDEF1 gene (B), the Koala retrotransposon (C) and the Rider
retrotransposon (D). Fragments F1-F3, G1-G3 and C1-C3 were amplified from bisulfite-treated DNA, whereas fragments M1-M7 were amplified from
McrBC-digested DNA. The complete list of primers is provided in Table S4. Black boxes delimited by white arrowheads: 59LTRs; white boxes
embedded in grey background: EgDEF1 introns (numbered); the respective locations of the hypothetical TATA-boxes and CArG boxes (asterisks) are
indicated.
doi:10.1371/journal.pone.0091896.g001
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CopynumbertDEF

CopynumbercDEFzCopynumbertDEF

which was finally normalized across developmental stages with

respect to the slight variations in EgEF1a1 copy number.

Statistical analysis
In order to identify phenotype-associated differences, the

calculated methylation percentages and RE values were compared

between normal and mantled samples using Student’s two-tailed t-

test. Data were compared between inflorescences of the same sex

and developmental stage. For a given target sequence, methylation

percentages were compared between phenotypes both individually

for each site class (i.e. CG, CHG and CHH sites) and as an

average.

Results

Isolation of the EgDEF1 gene sequence and structure of
the genomic region

The screening of a BAC library generated from a seed-derived

L2T oil palm with EgDEF1’s putative promoter allowed the

isolation of the Eg133H20 clone (accession number KF142646).

The start of the EgDEF1 coding sequence is localized near the

middle of this 81.5 kbp genomic fragment from which the 39

extremity of the gene (corresponding to exons 6 and 7) is missing,

due to the presence of a massive intron 5 (36.3 kbp). Chromosome

walking in 39 orientation from the ATG confirmed both the

structure and sequence of the EgDEF1 gene. More walking in both

59 and 39 orientation using as reference the 39 extremity of the

EgDEF1 cDNA enabled the recovery of the missing exons, the

39end of the 5th intron matching perfectly the Eg133H20 BAC

clone border. The Southern hybridization pattern obtained using

the P1 probe confirmed the occurrence of a single copy of the

EgDEF1 gene in both L2T-related (LMC343) and non-L2T-

related (FC2317) oil palm genotypes (Figure 2A). The recent

publication of the complete genome sequence of the oil palm [26]

has allowed us to confirm the structure of the EgDEF1 gene, which

near-perfectly matches a portion of scaffold 00322 (BLASTN E

value = 0, identity 98–99%, score 5.3736104 bits). The reassem-

bled genomic sequence of the EgDEF1 gene has been deposited in

GenBank (accession number KF142645) and the gene structure is

depicted in Figure 1A.

Further annotation of the BAC clone sequence showed that the

genomic region surrounding the EgDEF1 gene contains several

sequences with similarities to Transposable Elements. Among

these, two TEs raised our interest because of their proximity to the

gene and the possibility that they could impact its regulation. One

of these elements is 10.9 kbp long and is embedded within the 5th

intron of EgDEF1, in reverse orientation with respect to the gene.

Its 59 and 39 LTRs are 837 and 815 bp long, respectively, and

sequence similarity search through BLASTX showed that it is

most similar to putative members of the Ty3/gypsy retrotranspo-

sons family detected in the genomes of the common bean (Phaseolus

vulgaris), Arabidopsis thaliana, Silene latifolia (E value = 0 for all three

of them), grapevine (Vitis vinifera) (4e-172) and rice (Oryza sativa) (6e-

163). This element, like 47% of the repeated elements detected in

the oil palm genome, has no similarity to a previously character-

ized TE family [27]. A second element of interest, located

upstream from EgDEF1 and in the same orientation as the gene, is

a much smaller retroelement (3.6 kbp) bounded by LTRs

measuring 986 (59) and 1005 bp (39) respectively. The strongest

BLASTX hits include putative Ty1/copia sequences detected in

rice (E value 2e-61) and grapevine (1e-51) as well as the Rider

retroelement of tomato (Solanum lycopersicum) (2e-53) and a member

of the Tnt1 retrotransposon family of tobacco (Nicotiana tabacum)

(2e-52). Southern blots using the P2 probe (Figure 2B) reveal a

banding pattern in accordance with a single ‘‘perfect’’ copy of the

gypsy element inserted in the oil palm genome, and 3–4 more

distantly related copies producing weaker hybridization signals. In

the non-L2T-related FC2318 genotype, the occurrence of a

supplementary BamHI restriction site in one of the two alleles of

the gene is the most likely explanation for the decreased intensity

of the e band and the parallel emergence of two supernumerary

bands (approx. 10 kbp and 2,500 bp, respectively) resulting from

its digestion. For both LMC51 (L2T-related) and FC2318 (non-

L2T-related) genotypes, hybridization patterns generated by

probes P1 and P2 are consistent with the occurrence of this

particular gypsy insertion in both alleles of the EgDEF1 gene. The

same filter was stripped and re-hybridized with the P3 probe but

the result, while suggesting a large number of hybridizing signals,

was found inconclusive as to the copy number of the copia element

(not shown). A repetition of this experiment yielded identical

results. For both retrotransposons, there was no visible amplifica-

tion of copy number in mantled oil palms when compared to

normal ones. The comparison with the oil palm genome sequence

later confirmed the occurrence of the gypsy insertion within the

intron 5 of EgDEF1 (E value = 0, identity 99%, score 1.9286104

bits), as well as the presence of shorter, partially matching

sequences in other genomic locations. As for the copia retro-

element, we found over 50 imperfect copies scattered throughout

the genome (E value = 0, maximum score 3029 bits). Since the

sequenced genome belongs to a pisifera individual [26] which

relatedness to our tenera (dura x pisifera) hybrids is unknown, we can

only assume that this particular copia insertion is variable among oil

palm genomes.

Figure 2. Determination of copy number by Southern blot. A:
EgDEF1 gene; B: gypsy retroelement. One L2T-related genotype (left:
LMC343 or LMC51) is compared to one non-L2T-related genotype
(right: FC2317 or FC2318). Lowercase letters signal the hybridizing
bands that are predicted by the in silico digestion of the Eg133H20 BAC
sequence with the appropriate restriction enzyme (a: 4,069 bp EcoRI
fragment; b: 4,841 bp HindIII fragment; c: 6,251 BamHI fragment; d:
6,138 bp HindIII fragment; e: 13,132 bp BamHI fragment), asterisks
indicate supernumerary bands.
doi:10.1371/journal.pone.0091896.g002

Methylation and Expression in EgDEF1 Gene Region
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According to the convention suggested by Wicker et al. [27], we

named these retroelements RLG_Koala_Eg133H20-1 (gypsy ele-

ment) and RLC_Rider_ Eg133H20-1 (copia element), and they are

thereafter refered to as Koala and Rider in the present paper. Both

TE sequences have been deposited in GenBank under accession

numbers KF142647 and KF142648, respectively.

Methylation analyses
Bisulfite sequencing experiments targeting the region of the

EgDEF1 gene spanning ca. 300 bp of proximal promoter sequence

to the 59 extremity of exon 4 revealed a very low percentage of

cytosine methylation. As illustrated by Figure 3A, the average

methylation rates within the different amplicons studied ranged

from 0.53 to 1.05% depending on the sex and phenotype of the

inflorescence. Furthermore, by performing a position-specific

analysis of methylation we could not detect any local accumulation

of methylation in the promoter region covered by fragments F1

and F2. This region includes motifs involved in the transcriptional

regulation of MADS-box genes such as the four putative CArG

boxes (at positions -106, -211, -229 and -278, respectively) and the

putative TATA-box (position -76) (Figure 1B and Figure S2).

However, such methylation rates do not allow a reliable

discrimination between methylated Cs and unmethylated, uncon-

verted Cs since the latter have a maximal frequency of 2% under

our experimental conditions. The results from the McrBC-PCR

analysis are consistent with the absence or near-absence of

cytosine methylation within this region (Figure 4).

The 59LTR sequence of the Koala retroelement displays strong

methylation throughout all three PCR fragments examined,

irrespective of inflorescence sex or phenotype. This is supported

by both bisulfite (Figure 3B and Figure S3) and McrBC-PCR data

(Figure 4). Overall, 94.5 to 100% of CG sites and 81 to 95% of

CHG sites are methylated, contrasting with a low level of CHH

methylation (2.6 to 5%). The differences in the average

methylation of amplicon G1 (44.4%) vs. G2 and G3 (23.2 and

23.5%, respectively) mirror the differences in site composition of

these sequences (Figure S3 and Table S6).

The amplification of G3 led to the identification of two alleles

carrying distinct Single Nucleotide Polymorphisms (SNPs) result-

ing in the occurrence of two supplementary CG sites in allele G3-

a2 compared to G3-a1 (Table S6). However, the distribution of

methylated sites across the G3 sequence is similar in both alleles

(Table S7 and Figure S3 C–D), a result that is further confirmed

by McrBC-PCR on the M5 fragment (Table S8 and Figure 4). No

statistically significant changes in DNA methylation rates are

found between normal and mantled flower phenotypes either at the

site or whole amplicon level (Table 1).

Results of the methylation analysis for the Rider retroelement

also demonstrate that its 59LTR is highly methylated (Figure 3C

and Figure 4) although the distribution of the methylated Cs is

distinct from that of Koala. First, the average methylation rate of

the amplicons decreases steadily from the 59 to the 39 extremity of

the LTR, concurrently with the decrease in both C content and

CG frequency from C1 to C3 (respectively 105 cytosines and 41%

of CG sites vs. 43 and 11.6%) (Figure 3C, Table S6 and Figure S4).

Moreover, statistically significant differences are observed in

relationship with the phenotype within all three amplicons, which

show higher CG methylation and lower CHG methylation in

Figure 3. Site-specific analysis of DNA methylation by bisulfite
sequencing. A: EgDEF1 gene; B: Koala retrotransposon; C: Rider
retrotransposon. The percentage of methylated CG, CHG and CHH sites
(where H is A, T or C) within each region investigated is represented as
red, blue and green bars respectively. The average methylation rate
throughout each sequence is represented as diamonds (because of the
scale, these percentages could not be represented on the EgDEF1

graph). N, M: inflorescence sampled on a clonal oil palm of either
normal or mantled floral phenotype, respectively. The localization of
PCR fragments on their respective target sequence is as indicated in
Figure 1.
doi:10.1371/journal.pone.0091896.g003
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mantled inflorescences of both sexes (Figure 3C and Table 1), a

conclusion that is supported by the position-specific analysis

(Figure S4).

Analysis of retrotransposons expression
The production of transcripts by Koala and Rider elements was

assessed by rt-qPCR. The accumulation of RNA produced by

Koala, as detected with the RT1-QF5/QR5 primer pair, increases

throughout both male and female inflorescence development

(Figure S5 A and B, top panels). However, the very elevated Cp

values obtained indicate that this transcript production cannot be

distinguished from the background noise and our results are highly

variable among technical replicates. As a result, the comparison of

Relative Expression (RE) between normal and mantled inflores-

cences yielded non-significant p-values in most cases. Two other

primer pairs were tested (Table S5 and Figure S6) and gave similar

results (not shown).

By contrast, the expression of Rider was readily detected using

the RT2-QF1/QR1 primer pair (Figure S5 A and B, bottom

panels) and it was found to be mostly stable throughout

development of both normal and mantled inflorescences. Moreover,

we detected statistically significant differences in RE in relation-

ship with the floral phenotype, with male and female mantled

inflorescences displaying higher expression of Rider at most

developmental stages compared to their normal counterparts.

Virtually identical results were obtained with the RT2-QF3/QR3

pair (not shown).

Analysis of EgDEF1 gene expression
The discovery of EgDEF1 gene structure raises the question of

possible dysfunctions of either transcription or pre-mRNA

processing mechanisms resulting from the extreme size of intron

5. Indeed, our 39-RACE-PCR experiments show that at least two

distinct transcripts are produced from the EgDEF1 gene. As

illustrated by Figures 1A and S7, in addition to the 979

nucleotides-long full-length transcript (hereafter named cDEF) we

detect a slightly shorter polyadenylated molecule (845 nucl). This

alternate transcript contains exons 1 to 4 and includes the 59

extremity of intron 5 with two small deletions (5 and 13 nucl

respectively) inducing two successive frameshifts. Because of the

truncated coding sequence of the alternate transcript, we named it

tDEF (accession number KF142649). A BLASTN search in the

available oil palm inflorescence transcrip datasets [26,28]

confirmed the occurrence of several shorter isoforms similar to

tDEF.

In the aim of evaluating the potential consequences of structural

alterations in tDEF with respect to cDEF, we compared the

putative peptidic sequences derived from each transcript (Figure 5).

The hypothetical product of tDEF is 58 residues shorter than the

complete peptide and therefore lacks the C-terminal domain.

Moreover, its K domain is modified in the K3 motif since 9 of the

14 aminoacids originating from the partial read-through of intron

5 correspond to altered biochemical properties with respect to the

functional peptide.

In order to understand the dynamics of EgDEF1 expression in

the developing oil palm inflorescence, we designed rt-qPCR

primers targeting specifically the cDEF or the tDEF transcript

(Figure S7 and Table S5). Both transcripts were detected in

samples from all developmental stages, including stage 0. In the

normal male inflorescence (Figure 6A, top panel) the accumulation

of the cDEF transcript undergoes a sharp increase with respect to

its initial level at stage 0 and this effect gradually recedes

throughout developmental stages: over 1,000-fold between Early

and Late stage 1, then nearly 6-fold between Late stage 1 and

Early stage 2 and 1.5-fold between late stage 2 and stage 3. In the

mantled male inflorescence, the increase appears to be delayed and

more modest in magnitude: about 130-fold between Late stage 1

and Late stage 2, then over 2-fold between Late stage 2 and Late

stage 3 - Early stage 4. For each comparable developmental stage,

we found statistically significant differences in cDEF accumulation

between normal and mantled male inflorescences, with higher

expression of cDEF in normal tissues.

As for the tDEF transcript (Figure 6A, bottom panel), its

upregulation occurs earlier than for cDEF in the normal male

inflorescences since its accumulation is increased 8-fold in the

course of stage 1. However this increase slows down rapidly: 2-fold

increase between Late stage 1 and Early stage 2 then the

expression of tDEF reaches a plateau. By contrast, in the

corresponding variant inflorescence the increase in tDEF accumu-

lation is sustained until the later stages of inflorescence develop-

ment: 4-fold between both the two latest Stage 1 inflorescences

and Late stage 1 and Late stage 2, then 2-fold between Late stage

2 and Late stage 3 - Early stage 4. Differences in tDEF expression

between normal and mantled male inflorescences were statistically

Figure 4. McrBC-PCR analysis of DNA methylation within the target regions. Plus and minus signs correspond to amplifications performed
from DNA samples incubated in the presence or in the absence of the McrBC enzyme, respectively. The localization of the M1 to M7 PCR fragments is
illustrated in Figure 1.
doi:10.1371/journal.pone.0091896.g004
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significant for the last two developmental stages studied, with

higher accumulation of tDEF observed in mantled inflorescences.

We tried to determine whether the expression level of tDEF,

compared to that of cDEF, was sufficient to support the hypothesis

of a competition between both transcripts. To achieve this, we

performed absolute qPCR quantitation of each transcript within

each inflorescence and used the resulting transcript copy numbers

to express the accumulation of tDEF as a percentage of the cDEF +
tDEF total. As show in Figure 6B, during the earliest stages (0-1) of

both normal and mantled male inflorescence development the

truncated transcript accounts for up to half of the total EgDEF1

transcript accumulation, with no statistically significant difference

Figure 5. In silico translation of the cDEF and tDEF transcripts. Start and stop codons are boxed. The peptidic sequence hypothetically
produced by the full-lenght transcript (cDEF) of the EgDEF1 gene has been inferred from the nucleotidic sequence using Translate (http://web.expasy.
org/translate/). Only the portion of the tDEF transcript sequence that differs from cDEF is represented in the figure (italics), and the resulting peptidic
sequence is shaded in grey. Residues of the alternate peptide with modified biochemical properties with respect to their counterpart in the native
peptide are in bold. The three motifs forming the K box domain are underlined.
doi:10.1371/journal.pone.0091896.g005
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Figure 6. Real-time qPCR quantitation of cDEF and tDEF transcript accumulation in developing male inflorescences. Inflorescences
were sampled from adult palms of either normal (orange) or mantled (green) phenotype. Developmental stages are numbered from 0 to 4 according
to Adam et al (2007). A: Relative Expression (RE) values for cDEF (top) and tDEF (bottom) are calibrated against stage 0 normal inflorescences and
displayed as means of three technical replicates 6 Standart Deviation. P-values obtained through the comparison of the REs between normal and
mantled inflorescences with Student’s two-tailed t-test are indicated (n.s.: not significant; *: p,0.05; **: p,0.01; ***: p,0.001). B: Absolute tDEF
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in these proportions between the two floral phenotypes. In the

true-to-type inflorescence the proportion of tDEF drops abruptly

from 48% to 8.5% at Late stage 1, then stabilizes around 4–5%

throughout the following developmental stages. By contrast, in the

developing abnormal male inflorescence the percentage of tDEF

remains mostly stable (37–40% of EgDEF1 transcripts) with the

exception of Late Stage 2 (20%). The differences in the tDEF-to-

cDEF absolute ratio between normal and mantled male inflores-

cences were found to be statistically significant for all comparable

inflorescence stages from Late stage 1 onwards.

We obtained similar results in female inflorescences (Figure

S8A), the upregulation of both EgDEF1 transcripts being both less

important and more variable than in their male counterparts.

Nevertheless, the respective proportions of cDEF and tDEF (Figure

S8B) are significantly different between the two floral phenotypes

from Late Stage 2 – Early Stage 3 onwards, with tDEF

representing roughly 7% of total EgDEF1 transcripts in Stage 4

normal female inflorescences compared to 18–28% in the

corresponding mantled inflorescences.

Discussion

The present work describes for the first time the structure of the

EgDEF1 gene, the oil palm ortholog of the B-class MADS-box

genes APETALA3 (Arabidopsis thaliana) and DEFICIENS (Antirrhinum

majus). Very large introns (i.e. several kbs long) are commonly

found in members of this gene superfamily [29]. The singularity of

intron 5 in the EgDEF1 gene resides in its extreme size of 36.3 kb,

an enlargement which is partially attributable to the insertion of

the 10.9 kbp Koala retrotransposon. The presence of intronic TE-

derived sequences has been documented for several other large

introns of MADS-box genes [30–32] and a survey of AP3-like

genes in public databases showed that such remnants are

detectable in most of them (Table S9). However, the intronic

insertion of Koala is not, in itself, at the origin of the mantled

phenotype. Indeed, we identified this insertion in both our BAC

library and the recently published pisifera oil palm genome

sequence [26], both originating from seed-derived palms that

were therefore devoid of somaclonal variation.

Most TEs found in plant genomes are maintained in a

constitutively repressed state through epigenetic silencing involving

both a high level of DNA methylation at symmetrical sites (CG

and CHG) and the formation of highly condensed heterochro-

matin [33,34]. Moreover, several recent studies have shown that

the complete de-repression of TE activity involves a massive

decrease in LTR methylation (up to 80–90%) [33–36]. Both

retrotransposons studied here display high methylation in both CG

and CHG sequence contexts, with different consequences on their

respective expression. We show that Koala does not display

significant differences in either DNA methylation or expression

between normal and mantled inflorescences. Taken together, these

results suggest that this retroelement is efficiently silenced in our

material and that it is not reactivated in the hypomethylated

genome context of the mantled variation, making it unlikely that it

can actively interfere with EgDEF1 expression. Such a conclusion

is further supported by ongoing experiments indicating that Koala

is not transcriptionally or transpositionally reactivated in the

course of in vitro micropropagation (T. Beulé, unpublished data).

By contrast, in mantled inflorescences of both sexes the 59LTR of

Rider exhibits a combination of slightly increased CG methylation

and strongly decreased CHG methylation compared to the

corresponding normal inflorescences. These statistically significant

changes are associated with higher transcript accumulation in

mantled inflorescences at most developmental stages. This partial

release from silencing in abnormal tissues could be the

consequence of the decreased CHG methylation, since the

imposition of this mark is functionally associated to heterochro-

matin formation [37]. Whether the expression of Rider interferes

with that of EgDEF1 in mantled inflorescences will have to be

explored in future studies.

In parallel, after studying DNA methylation within the proximal

promoter and first 400 bp of EgDEF1 coding sequence we find

that this sequence is essentially unmethylated in normal inflores-

cences. Also, no methylation change can be associated with either

the mantled floral phenotype or with repressive epigenetic marks

spreading from the two retrotransposons, whereas major differ-

ences in transcript accumulation are observed between normal

and variant inflorescences. Globally we can conclude that, in the

context of the somaclonal variation in oil palm, the regulation of

EgDEF1 expression does not depend on DNA methylation

changes, nor is it directly affected by the genome-wide deficit in

DNA methylation characterized previously in mantled tissues [2,7].

With respect to previous results obtained through semi-

quantitative RT-PCR by Adam et al. [38], we show that significant

EgDEF1 transcript accumulation can be detected at earlier stages

of inflorescence development than previously thought and we

identify an alternative, truncated transcript produced by the

EgDEF1 gene. According to current estimates, Alternative Splicing

(AS) affects as much as 61.2% of intron-contaning genes in

Arabidopsis [39]. A large number of MADS-box genes, including

organ identity genes, undergo AS in a wide range of plant species

[29,40–48] and Jiao and Meyerowitz [49] have shown an

increased frequency of AS events during floral organ differencia-

tion in Arabidopsis. Our qPCR experiments demonstrated that

the balance between the respective absolute accumulations of the

functional (cDEF) and the truncated (tDEF) transcript is differen-

tially regulated according to the floral phenotype. Remarkably, the

stronger phenotype-dependent effect on the tDEF/cDEF ratio we

observed in male inflorescences is consistent with the higher

requirement of this tissue for the expression of genes controlling

the formation of functional male organs, whereas only rudimen-

tary and abortive stamens are found in female inflorescences [19].

This result is also in line with the greater severity of the mantled

variation observed in clonal palms bearing abnormal male

inflorescences. The fact that cDEF accounts for 60–63% (male)

to 71–81% (female) of EgDEF1 transcript accumulation through-

out the stages of mantled inflorescences development during which

stamens are formed (vs. 96 and 93% in the corresponding normal

inflorescences, respectively) could result in a decreased production

of the full-length peptide. Such a mechanism has been demon-

strated in the case of the FCA gene of Arabidopsis thaliana [50–52]

for which the amount of functional peptide synthesized is

regulated through the balance between several alternative

transcripts. A similar regulation of EgDEF1 gene expression could

potentially result in the formation of an insufficient amount of the

DEF-containing ternary protein complex governing stamen

formation in mantled inflorescences and, ultimately, in abnormal

flower development.

transcript accumulation in normal (top) and mantled (bottom) inflorescences represented as a percentage of tDEF copy number over the sum of cDEF
and tDEF copy numbers within each sample, normalized with respect to the reference gene. The p-values obtained through the stage-by-stage
comparison of tDEF/cDEF ratios between comparable normal/mantled inflorescence pairs are displayed below the graphs.
doi:10.1371/journal.pone.0091896.g006
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Another possibility is that both transcripts are translated and

that the truncated peptide competes with the native peptide for the

generation of ternary complexes. In both APETALA3 and

PISTILLATA proteins, the K3 motif is essential for both the

formation of MADS complexes and the specification of organ

identity, whereas the C domain could contribute to complex

stabilization [53–56]. According to this scenario, the hypothetic

tDEF peptide could generate non-functional complexes, leading to

altered flower morphology through a dominant-negative effect

[57]. The tDEF peptide will need to be isolated and quantified,

and its binding properties will have to be compared to its full-

length counterpart before this hypothesis can be validated.

What is the source of the AS event giving rise to the alternative

tDEF transcript and how this phenomenon is altered in mantled

inflorescences are still pending questions. Although the Koala

element is distant from the borders of intron 5, we cannot exclude

that the surrounding heterochromatin could interfere with the

splicing of the host intron and contribute to the formation of tDEF.

Two recently published articles [58,59] have shown that intronic

heterochromatin associated with TE insertions could influence

pre-mRNA processing mechanisms, resulting in a modified

balance between full-length and shorter transcript isoforms. The

involvement of a similar process in the expression of EgDEF1 and

in the emergence of the mantled variation will have to be

demonstrated. Nevertheless, this attractive hypothesis would be

in accordance with an increasing number of publications

demonstrating the occurrence of a crosstalk between epigenetic

regulation processes and mRNA splicing in both animals [60–62]

and plants [63–66].

While the present study does not allow us to establish direct

causal relationships between DNA methylation, alternative tran-

script production and phenotypic plasticity, the next step will be to

investigate the interactions between these phenomena. With this

aim in mind, we have undertaken a high-throughput analysis of

the transcriptome in developing oil palm inflorescences, which will

allow us to determine whether the production of an alternative

transcript by the EgDEF1 gene is an isolated event or if this is part

of a large-scale misregulation of mRNA processing mechanisms in

mantled oil palm inflorescences.

Supporting Information

Figure S1 Calibration curves for the EgEF1a1, cDEF and
tDEF transcripts. y1, y2 and y3 are the equations of the Log

[Copy number] vs. Cp curves obtained for the EgEF1a1 (black

diamonds), cDEF (white squares) and tDEF transcripts (grey

triangles), respectively.

(PDF)

Figure S2 Position-specific analysis of DNA methylation
within the EgDEF1 gene by bisulfite sequencing. A-C:

PCR fragments F1, F2, and F3. The methylation percentage at

every cytosine position within the sequence is represented by black

bars. The symbol below the horizontal axis corresponds to the

sequence context of the corresponding C: CG is a red disc, CHG

is a blue square, CHH is a green triangle. N, M: inflorescence

sampled on a clonal oil palm of either normal or mantled floral

phenotype, respectively. The localization of PCR fragments on

their respective target sequence is as indicated in Figure 1. n is the

number of individually cloned amplicons included in the study for

each experimental condition.

(PDF)

Figure S3 Position-specific analysis of DNA methylation
within the Koala retrotransposon by bisulfite sequenc-

ing. A–D: PCR fragments G1, G2 and G3 (allele 1 and 2). For

legend see Figure S2.

(PDF)

Figure S4 Position-specific analysis of DNA methylation
within the Rider retrotransposon by bisulfite sequenc-
ing. A–C: PCR fragments C1, C2 and C3. For legend see Figure

S2.

(PDF)

Figure S5 Real-time qPCR quantitation of transcripts
produced respectively by the Koala and Rider retro-
elements. In male (A) and female (B) inflorescence developmen-

tal series of normal (orange) or mantled (green) phenotype, we

evaluated the expression of the Koala (top) and Rider (bottom)

retroelements. For each TE, p-values obtained through the

comparison of the REs between normal and mantled inflorescences

with Student’s two-tailed t-test are indicated (n.s.: not significant; *:

p,0.05; **: p,0.01; ***: p,0.001).

(PDF)

Figure S6 Localization of the rt-qPCR primers targeting
the retrotransposons under study. A: Koala; B: Rider. Target

Site Duplications (TSD) appear in italics; LTRs are in bold.

Sequences are displayed according to the 59-39orientation of their

respective ORFs. The complete list of primers is available in Table

S5.

(PDF)

Figure S7 Alignment of two transcripts produced by the
EgDEF1 gene. Genomic: genomic sequence (note that only the

59 and 39 extremities of intron 5 are represented on this figure; the

missing part of the genomic sequence is replaced by a double slash

symbol at each gap border). cDEF: full-length EgDEF1 transcript;

tDEF: truncated EgDEF1 transcript (see manuscript for details).

Start and Stop codons are in bold, 39-UTR regions of each

transcript are in italics. Exons are numbered from e1 to e7 and

introns (shaded in grey) from i1 to i6. The sequences matching the

rt-qPCR primers used to amplify each transcript (Table S5) are

underlined.

(PDF)

Figure S8 Real-time qPCR quantitation of cDEF and
tDEF transcript accumulation in developing female
inflorescences. See Figure 6 for legend.

(PDF)

Table S1 Genetic origin of the plant material. Conventionally,

crosses are given under the form ‘‘male parent x female parent’’.

(PDF)

Table S2 List of primers used in genome walking and RACE

experiments. Primer names beginning with ‘‘5’’ and ‘‘3’’ are

primers designed for the amplification of sequences located

respectively 59 or 39 relatively to their target region. Primer

names ending with ‘‘n’’ are used in nested amplifications.

(PDF)

Table S3 Probes used in Southern blot experiments. The

position of each probe relatively to the first coding base of the

EgDEF1 gene is indicated in Figure 1.

(PDF)

Table S4 List of primers used in DNA methylation analyses.

Primers used to amplify the fragments depicted in Figure 1 are

indicated. Primer names beginning with the letter ‘‘b’’ were used

in bisulfite sequencing analyses, those beginning with ‘‘m’’ were

used in McrBC-PCR analyses.

(PDF)
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Table S5 List of primers used for rt-qPCR. Primer position on

their respective target sequence is shown in Figures S6 and S7.

(PDF)

Table S6 Sequence characteristics of the amplification frag-

ments analyzed through bisulfite sequencing. For the localization

of each bisulfite-PCR fragment on the corresponding target region

(EgDEF1 gene or retrotransposons), see Figure 1. For the list of

primers used to generate these fragments, see Table S5.

(PDF)

Table S7 Allele-specific analysis of DNA methylation within

the G3 region of the Koala retrotransposon. n is the number of

individually cloned amplicons analyzed and the average of

methylation rates between both alleles is weighted accordingly.

(PDF)

Table S8 Sequence characteristics of the amplification frag-

ments analyzed through McrBC-PCR. *McrBC half-sites are two

RmC dinucleotides (where R is A or G and mC is a methylated

cytosine) separated by 55 to 103 nucleotides in optimal

conditions, the cut occurring randomly between them. For the

localization of each McrBC-PCR fragment on the corresponding

target region (EgDEF1 gene or retrotransposons), see Figure 1.

For the list of primers used to generate these fragments, see Table

S5.

(PDF)

Table S9 Size of intron 5 in orthologs and putative orthologs of

the APETALA3 and DEFICIENS genes. The presence of TE-

related sequences in the largest intron was assessed using

CENSOR (http://www.girinst.org/censor/index.php).

(PDF)
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