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Abstract. Precise prediction of the elastic response is crucial to model cracking 
at early and late ages of cement-based materials and structures. Here, we use 
Machine Learning (ML) techniques to predict the elastic properties of Ordinary 
Portland Cement (OPC) pastes. A database with 365 observations is built on 
experimental studies from in the literature. We show that micromechanics-
based estimations may provide missing data in databases to be interrogated by 
ML, increasing the accuracy of predictions. Finally, we explore the formulation 
space of OPC pastes using Monte Carlo computations, which enables guessing 
which are the compositions that can be associated with a given elastic response. 
Applications of our results include the development of tailored formulations for 
a target elastic response and also in the forensics of existing cement pastes. 
Keywords: Elastic constants; Machine Learning; Data Science; Composition-
Property Correlations. 

 

1 Introduction  

Modeling cracking in cement-based materials and structures requires a precise de-
scription prediction of the elastic response of the material. One of the main approach-
es to assess cracking risk in concrete is based on elastic analysis of the (e.g. crack risk 
index in JCI recommendation [1]), which of course require an accurate prediction of 
the elastic properties, especially at early-age when properties significantly change due 
to the progress of hydration process.  The correct prediction of the evolution of me-
chanical properties is also a fundamental input in more sophisticated non-linear analy-
sis of cracking of cement-based materials. 

Establishing composition-structure-property correlations is the central paradigm in 
the optimization of the formulation and understanding the behavior of cement-based 
materials. Most of the concrete research community has focused on an increasingly 
costly and laborious trial-and-error experimental exploration of the formulation space, 
while much less significant attention has been devoted to establishing composition-
structure-property correlations via fundamental component data and validated model-
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ing approaches. The latter is a strategy that has been recognized with the potential to 
“revolutionize” cement and concrete research [1]. 

In this work, we first use Machine Learning (ML) techniques to predict the elastic 
properties of OPC pastes. Understanding cracking process in cement pastes is a first 
milestone to understand cracking at more complex system such as mortar and con-
crete in which the heterogeneities due to interfacial transition zone (ITZ) may play a 
role. Here, we show that micromechanics-based estimations can be useful to provide 
missing data in databases to be interrogated by ML. Finally, we explore the formula-
tion space of OPC pastes using Monte Carlo computations. This strategy allows 
guessing what are the compositions that can be associated with a given elastic re-
sponse, which can be useful for application requiring a target elastic response and also 
in the forensics of existing cement pastes. 

2 Data science and machine learning methods 

2.1 Database construction 

A database with 365 observations is collected from experimental data from the litera-
ture [2–8]. The input and output, as well as statistical parameters associated, are dis-
played in Table 1. Both dynamic and quasi-static data are used to build the database. 
Dynamic and quasi-static methods are known to yield different values of elastic mod-
uli (e.g. [9]). This fact adds to the uncertainties already present in experimental as-
sessment of the elastic properties. To check the trustfulness of the data collected, we 
computed the theoretical bounds of Voigt-Reuss and Hashin-Shtrikman. All data  
collected regarding Young modulus respect the theoretical bounds. 

Table 1. Statistical parameters of the training dataset on OPC cement pastes. Datasize of 365 
observations. DOH refers to degree of hydration, w/c to the (mass) water-cement ratio, and the 
mass fraction of the four main clinker minerals (mC3S,  mC2S, mC3A and mC4AF) and gypsum 

(mGyp.) are reported in %.  

Data Variable Min. Max. Mean St. Dev Ex. Kur.* 
Input DOH [-] 0.03 1.0 0.46 0.29 -0.68 

 w/c [-] 0.25 0.80 0.44 0.10 -0.20 

 mC3S [%] 24.5 100 60.2 13.8 2.06 

 mC2S [%] 0 61.3 16.6 15.2 2.43 

 mC3A [%] 0 12.7 8.13 3.36 -0.70 

 mC4AF [%] 0 12.7 5.8 4.2 -1.53 

 mGyp. [%] 0 6.8 2.9 2.9 -1.7 

Output E [GPa] 0.22 37.2 11.2 7.8 0.32 

*normalized exceed kurtosis 
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2.2 Machine learning methods  

We consider here two ML methods: 
•  Artificial Neural Network (ANN): with this method a neural network is 

constituted of stacked layers. Each layer is related to simple computation. 
The information is then processed layer by layer starting at the input layer 
until the output layer. The neural network is trained to minimize a loss func-
tion on the training set. A gradient descent method is used to perform this 
minimization. 

•  Gaussian Process (GP): with this method predictions are made using 
Bayesian inference on the Gaussian process conditioned to the training data 
(see,  for example [10]). The assumption behind the method is that the pre-
diction functions can be described by a Gaussian process, which is defined 
by its kernel. The training phase with GP consists of estimating the parame-
ters of this kernel. 

The algorithms are built in Mathematica®. 

3 Results and discussion 

3.1 Validation  

To validate our ML approach against the training dataset, we deploy the K-fold meth-
od [11]. This method consists of dividing the training dataset in K folds in which 
elements are randomly sampled. ANN or GP predictor is then trained on K-1 folds 
and, next, it is used to predict the values in the remaining folds. This step is repeated 
K times so that all folds have been used for validation. Fig. 1 shows one of the stages 
of validation. The accuracy of the predictions is computed as the square root of the 
average variance obtained from the validation on all K-folds for the elastic constants. 
We obtain an average deviation of the Young modulus of 0.61 GPa for ANN and of 
1.19 GPa for GP with K = 5 (which is a usual value adopted for validation). 

 
3.2 Predictions on testing dataset  

We define a testing dataset composed of experimental data from the literature, which 
are not included in the training dataset. Prediction using ANN and GP of the Young 
modulus of OPC pastes are gathered in Table 2 and compared against their experi-
mental counterpart. 
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Fig. 1. An illustration of the K-fold (with K = 5) validation method: Experimental Young mod-
ulus plotted against the predicted Young modulus at one stage (out of 5) of validation for ANN 
and GP. The empty symbols are the values associated with the (K-1) folds (with 292 observa-
tions in total) used for training, and full symbols depict the 73 elements in the remaining fold 
used in the validation. 

 

Table 2. Comparison of predictions with ANN and GP using the testing dataset (not comprised 
in the training dataset) against the experimental data provided in the literature by various au-
thors. The mass fraction of clinker mineral and gypsum as provided by the authors as well as 

the w/c and degree of hydration were used as input in the predictions. 

Data w/c Exp. ANN GP 
Constatinides et al. [12] 0.50 22.8 20.7 14.0 
Tamtsia et al. [13] 0.35 

0.35 
0.35 
0.5 
0.5 
0.5 

20.70  
20.80 
21.50 
7.90 
10.40 
11.60 

14.2 
17.6 
18.5 
4.3 
7.4 
7.7 

22.6 
22.6 
22.7 
10.1 
12.4 
12.5 

Savija et al. [14] 0.3 
0.4 
0.5 

16.68 
12.79 
9.09 

27.7 
22.9 
18.0 

16.4 
14.1 
14.9 

Haecker et al. [3] 0.6 1.7 6.9 10.6 

 
 

3.3 Using Micromechanics to provide missing data 

We use Micromechanics, i.e. another technique to establish composition-property 
correlations in cement-based materials [15], to provide data that may be missing in 
our training dataset. In the sequel, we verify if the extended database performs better 
than the original database in the predictions. 

For the micromechanics-based estimations, we adopt the representation of the mi-
crostructure of cement paste combining self-consistent (SC) scheme to estimations at 



5 

 

the gel scale, and Mori-Tanaka scheme to estimations at the cement paste scale, as 
shown in Fig. 2A. Similar representations were successfully used in previous work to 
estimate mechanical [16, 17], thermal [18], and electromagnetic properties [19, 20] of 
cement pastes. 

The accuracy of micromechanics-based estimations is illustrated in Fig. 2B, in 
which the data associated with late ages (DOH > 0.7) are identified. The average de-
viations in the Young modulus estimated by micromechanics are 6.9 GPa when all 
data is considered and 2.8 GPa when only late age data is taken into account. 
 
 

 
Fig. 2. A) Adopted representation of the microstructure of cement paste in the micromechanics 
estimations: combinations of self-consistent scheme estimate at the gel scale, and Mori-Tanaka 
estimate at the cement paste scale. B) Comparison of experimental and micromechanics pre-
dicted Young modulus taking into account the training database (black points corresponds to 
late ages (DOH > 0.7). C) Identification of the main domains with missing data regarding OPC 
composition using the derivative approach of the ordered input. 

 Among the variety of possibility to guide the plan of experiments [20], the strategy 
deployed here to identify the domain in the 7-dimension space of input variables is to 
take a derivative of the ordered components of each input vector. The higher the peak 
in the derivative, the most significant is the domain with missing data. Fig. 2C shows 
the derivative for the mass fraction of OPC constituents. With this approach the points 
related to the most significant domain with missing data were identified as follows: 

•  DOH [-]:   0.70, 0.95 
•  w/c [-]:   0.28, 0.37, 0.72 
•  mC3S [%]:  33.0, 52.4, 85.2 
•  mC2S [%]:  5.40, 11.2, 16.7, 20.7, 31.7, 49.9 
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•  mC2S [%]:  1.10, 9.95 
•  mC2S [%]:   4.40 11.2 
•  mGyp. [%]:   1.05, 2.00, 2.90, 3.65, 4.68, 6.09 

where an arbitrary cut-off of 0.0001 for the w/c and degree of hydration, and 0.0005 
for the clinker minerals and gypsum mass fractions was adopted.  
 In Fig. 3, we compare the average deviations of predictions in the testing dataset 
using the original (lorig) and extended (lEx,6 and lEx,24) training datasets. The extended 
dataset is composed of a (i) lEx,6 with the minimum number of input points (6) com-
prising all the points above related to the most significative missing data domains; and 
(ii) lEx,24 with each point (24 in total) being associated with one of the points above 
related to the most significant missing data domains and the other input components 
are chosen also among these points related to the most significative missing data do-
mains. 
 We observe that for both ANN and GP, using the extended dataset yields smaller 
average deviations than using the original dataset. This is an interesting result show-
ing that micromechanics can be used to generate missing data in dataset for training 
ML methods. 
 

 
Fig. 3. Average deviations of predictions in the testing dataset using the original (lorig) and 
extended (lEx,6 and lEx,24) training datasets. 

 
3.4 Towards the estimation of the composition from a target elastic modulus 

To estimate the composition from the elastic response, i.e. do the reverse path in the 
prediction done so far in this study, we adopt a Monte Carlo (MC) approach. We 
sample the given input following a uniform distribution with the limits defined by the 
minimum and maximum values in Table 1. We set the DOH at 1 to avoid the uncer-
tainties related to hydration kinetics and early-age effects. Since we use as input the 
mass fraction of clinker minerals and gypsum, as a consistency condition, the sum of 
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all masses should be 100%, which means that not all mass fractions can vary inde-
pendently in the MC trials, one of the phases mass fractions (we adopted C3S) must 
be computed from the consistency condition. A random sample with 10000 MC trials 
is computed for each independent input variable. 

The probability distribution functions of each input from MC trials yielding predic-
tions that comply with the target 16.68±2 GPa (which corresponds to one of the ex-
perimental data from ref. [14]) are shown in Fig. 4. Yellow and blue histograms cor-
respond to ANN and GP predictions, respectively. We also indicate the composition 
of the system according to the data provided in ref. [14]. The reverse predictions us-
ing GP yield distributions of input variables containing the experimental composition 
data. The distribution obtained with ANN failed in containing the experimental w/c. 
For both ML methods, the distribution obtained can be rather broad, which may indi-
cate that the reverse problem might be ill-posed. 

 
 

 
 

Fig. 4. Probability distribution function of each input from MC trials yielding predictions that 
comply with the target 16.68±2 GPa (which corresponds to one of the experimental data from 
ref. [14]). Yellow and blue histograms correspond to ANN and GP predictions, respectively. 
The red dashed line indicates the composition of the system according to data from ref. [14]. 

4 Conclusion 

In this work, Machine Learning methods were deployed to establish correlations be-
tween the composition and the Young modulus of OPC pastes.  Both ANN and GP 
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prediction performed here are not computer-intensive once the predictor function is 
trained, especially when one compares to the increasingly fastidious numerical ho-
mogenization approaches. This aspect indicates a clear advantage of ML methods, in 
particular in an application in which a larger exploration of the compositional and 
mixing design space is desired. ML prediction yields adequate precision with the 
training dataset proposed. Even in a relatively small dataset, ANN and GP have prov-
en to be reliable and robust in the prediction of elastic constants of cement pastes 
from their composition. Micromechanics can be an ally of ML approaches by provid-
ing data missing in the database, increasing the accuracy of ML predictions. This 
result adds to the accumulating evidence showing that micromechanics-based ap-
proaches are a powerful tool to correlate composition and property in cement-based 
materials based on a few fundamental component data set and assumptions. 

The strategy outlined in this work to explore the space of formulation design of 
cement pastes and correlating their composition to their effective Young modulus can 
be extended to other properties of cement-based materials. 
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